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Rare Events

Although rare, rare events matter.

Need for understanding ‘how often?’ & ‘why?’
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Rare Events depend on “Tail Behaviors”

Light-Tailed Distributions

• Extreme Values are Very Rare

• Normal, Exponential, etc

Heavy-Tailed Distributions

• Extreme Values are Frequent

• Power Law, Weibull, etc

Structural difference in the way systemwide rare events arise.
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Rare Events depend on “Tail Behaviors”

Light-Tailed Distributions

• Extreme Values are Very Rare

• Normal, Exponential, etc

Systemwide rare events

arise because

EVERYTHING goes wrong.

(Conspiracy Principle)

Heavy-Tailed Distributions

• Extreme Values are Frequent

• Power Law, Weibull, etc

Systemwide rare events

arise because of

A FEW Catastrophes.

(Catastrophe Principle)

Structural difference in the way systemwide rare events arise.
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Light-tailed rare-event analysis has a long & successful history.

• Large Deviations Theory answers ‘How rare?’,

• Design of Scheduling Algorithms, Simulation Algorithms, etc

Varadhan won Abel Prize in 2007

Heavy-tailed rare events are NOT understood well.
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But, Heavy Tails are Everywhere:Heavy tails are everywhere!

  

Computer systems Finance 

delays, files, … losses 

1 
𝑃 𝑠𝑖𝑧𝑒 > 𝑛 ≈ 1

𝑛𝛼 

Social networks Energy Systems 

popularity, contagion blackouts 

B. Zwart (CWI) Heavy tails 4 / 43
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For Example: Open Problem Posed by Whitt (2000)

Congestion of Multiple Server Queue:

d

2

1

How many big jobs are needed to create large queue lengths?

In case of Weibull tails, NOT EVEN a conjecture!
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Goal: Systematic Tools for Heavy-Tailed Systems

In many applications, one can write the rare event of interest as

{S̄n ∈ A}

where S̄n is the whole trajectory of a random walk.

We want to understand P(S̄n ∈ A) and P(S̄n ∈ ·|S̄n ∈ A)

for as general A as possible.
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Goal: Systematic Tools for Heavy-Tailed Systems

In many applications, one can write the rare event of interest as

{S̄n ∈ A}

where S̄n is the whole trajectory of a random walk.

We want to understand P(S̄n ∈ A) and P(S̄n ∈ ·|S̄n ∈ A)

for as general A as possible.

sample path︷ ︸︸ ︷
How rare? Most likely scenario?
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Goal: Systematic Tool for Heavy-Tailed Systems

• Sk , X1 + · · ·+Xk.

• Xi: iid, EXi = 0,

P(Xi ≥ x) = x−(α+1), α > 0 or P(Xi ≥ x) = exp(−xα), α ∈ (0,1).

yolo

• P(S̄n ∈ A)→ 0

Goal - How fast? P(S̄n ∈ A)∼ ?

- What is the most likely scenario? P(S̄n ∈ ·|S̄n ∈ A)→?

- How to compute? P(S̄n ∈ A) = ?
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Outline

Part 1. Large Deviations for Power Law Tails

R., Blanchet, Zwart (2016)

Under second round review at Annals of Probability

Part 2. Heavy-Tailed Rare Event Simulation

Chen, Blanchet, R., Zwart (2017)

Mathematics of Operations Research

Part 3. Large Deviations for Weibull Tails

Bazbha, Blanchet, R., Zwart (2017)

Submitted to Annals of Applied Probability
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Part 1. Large Deviations for Power Law Tails

i.e., P(Xi ≥ x) = x−(α+1), α > 0
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What’s already known: principle of a single big jump

“In heavy-tailed systems, rare events arise due to one big anomaly.”
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Hult, Lindskog, Mikosch, Samorodnitsky (2005)

↙ Typical S̄n
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• P(S̄n ∈ A) ∼ cn−αsupt∈[0,1] (Ruin Probability of Insurance Firm)

• P(S̄n ∈ ·|S̄n ∈ A)→ P(Z1[U≤t] ∈ ·) for some r.v.-s Z and U

Hult, Lindskog, Mikosch, Samorodnitsky (2005)

↖This is typical S̄n|S̄n ∈ A

Principle of a single big jump
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Are all heavy-tailed rare events due to a single big jump?

No, by no means, absolutely not:

• Multiple server queues

• Queueing networks

• Re-insured insurance line

• Down-and-in barrier option

• Many more
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Principle of a single big jump is just a tip of the iceberg!
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Illustration: What if Large Claims are Reinsured?
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• A = { f ∈ D : f crosses level a on [0,1] & jump sizes ≤ b}

• P(S̄n ∈ A) 6∼ cn−α ?⇒ (cn−α)
3

• P(S̄n ∈ ·|S̄n ∈ A) 6→ P(Z1[U≤t] ∈ ·)
?⇒ P

(
∑

3
i=1 Zi1[Ui≤t] ∈ ·

)

Principle of multiple big jumps?
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Exact Asymptotics for Heavy-tailed Random Walks

P(Xi ≥ x) = x−(α+1), α > 0

Theorem (R., Blanchet, Zwart, 2017)

For “general” A⊆ D

C(A◦)≤ liminf
n→∞

P(S̄n ∈ A)
n−αJ (A)

≤ limsup
n→∞

P(S̄n ∈ A)
n−αJ (A)

≤ C(A−).

• J (A): min #jumps for step functions to be inside A

• C(·): a measure
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Exact Asymptotics for Heavy-tailed Random Walks

P(Xi ≥ x) = x−(α+1), α > 0

Theorem (R., Blanchet, Zwart, 2017)

For “general” A⊆ D

P(S̄n ∈ A)∼ n−αJ (A)

• J (A): min #jumps for step functions to be inside A

• C(·): a measure

↙ LD power index
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Back to Our Reinsurance Example: Conjecture Confirmed!

t

f (t)

0 1

a

b
b

b

b

• A = { f ∈ D : f crosses level a on [0,1] & jump sizes ≤ b}

• P(S̄n ∈ A)∼ n−da/beα

• P(S̄n ∈ ·|S̄n ∈ A)→ P
(

∑
da/be
i=1 Zi1[Ui≤t] ∈ ·

)

J (A) = da/be= 3



17

Conspiracy vs Catastrophy

A = { f ∈ D : f crosses level a on [0,1] & jump sizes ≤ b}

t

f (t)

0 1

a

b

t

f (t)

0 1

a

b
b

b

b

Light-Tailed Claim Size

Reinsurance makes no difference.

Heavy-Tailed Claim Size

Reinsurance helps!
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Two-sided Random Walks

P(Xi ≥ x) = x−(α+1), α > 0 and P(Xi ≤−x) = x−(β+1), β > 0.

Theorem (R., Blanchet, Zwart, 2017)

For “general” A⊆ D,

P(S̄n ∈ A)∼ n−{αJ (A)+βK(A)}.

• J (A): # of upward jumps

• K(A): # of downward jumps

of step functions that minimize the cost of staying inside A

↙ Cost of Jumps︷ ︸︸ ︷
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Connection to Impulse Control Problem

The “rate of decay” is determined by a discrete optimization problem:

αJ (A)+βK(A) = min
j,k

αj+βk

subject to ( j,k) ∈ Z2
+

Dj,k∩A 6= /0

where

Dj,k = {step functions w/ j upward jumps and k downward jumps}

Different from variational calculus that arises in light-tailed case!
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Example: Barrier Option

t

f (t)

0 1

a

b

• A = { f ∈ D : f is below b at some point & end up above a}

• P(S̄n ∈ A)∼ ?n−(α+β )

• P(S̄n ∈ ·|S̄n ∈ A)→ ?

P
(
Z11[U1≤t]−Z21[U2≤t] ∈ ·

)

K(A) = 1

J (A) = 1
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Example: Sausage
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Example: Sausage
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f (t)
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• A = { f ∈ D : f stays between the two curves}

• P(S̄n ∈ A)∼ exp(−nI∗)

I∗: sol’n of optimization problem over absolutely continuous functions.

in case Xi’s are light tailed
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Example: Sausage

Conspiracy

Connection to variational problems

(continuous optimization)

Catastrophy

Connection with impulse control

(discrete optimization)
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Lévy Processes and Multidimensional Processes

• Same results for Lévy processes.

• Similar results for vector valued processes with independent
components as well (for both Lévy processes and random walks).

Analysis of Many Server Queues and even Queueing Networks!
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Example - Stochastic Fluid Network
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• Job size distribution: Pareto with α1 = 1, α2 = 1, α3 = 3

• Queue 3 experiences congestion because of what?

• Optimization problem reduces to a knapsack type problem
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Part 2. Heavy-Tailed Rare Event Simulation

Computing P(S̄n ∈ A) for finite n
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Challenge of Rare Event Simulation

Monte Carlo simulations as repetitive random experiments:

e.g. Coin flip: want to estimate P(Head)

Suppose
≈ 10−6

• Flip the coin 100 times

• Count the number of head

• Divide by 100 and report the number

Should be reasonably close to 1/2
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Challenge of Rare Event Simulation

Monte Carlo simulations as repetitive random experiments:

e.g. Coin flip: want to estimate P(Edge)
Suppose
≈ 10−6

• Flip the coin 100 a few million times

• Count the number of Edge

• Divide by the total number of flips and report the number

Much harder than P(Head)
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Importance Sampling

for P(S̄n ∈ A)

• Construct an alternative universe

- i.e., Consider an ”importance distribution” Q

• Perform experiments there

- i.e., Sample I(1)Edge, . . . ,I
(m)
Edge from Q

i.e., as well as the likelihood ratio
(

dP
dQ

)(1)
, . . . ,

(
dP
dQ

)(m)

• Recover the true probability using the relationship between the two
parallel universes

- i.e., Report
1
m

m

∑
i=1

I(i)Edge
(

dP
dQ

)(i)

Finding a good alternative universe Q is crucial.
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Goal: Strongly Efficient IS Estimator

I{S̄n∈A}
dP

dQn
is a strongly efficient estimator for P(S̄n ∈ A), if

EQn

(
I{S̄n∈A}

dP
dQn

)2

∼ P(S̄n ∈ A)2

⇒ Number of simulation runs required remains bounded.

Notoriously Hard for Heavy-Tailed Processes.
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dQn

)2

∼ P(S̄n ∈ A)2

⇒ Number of simulation runs required remains bounded.

Notoriously Hard for Heavy-Tailed Processes.

Error 2
Target Quantity2



28

What is a good alternate universe Qn for P(S̄n ∈ A)?

General principle for making I{S̄n∈A}
dP

dQn
an efficient estimator:

- Choose Qn(·) as close to P(·|S̄n ∈ A) as possible.

- Make sure that dP
dQn

does not blow up.
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First All-Purpose Simulation Scheme for Heavy-Tails

• Bγ , {paths w/ at least J (A) jumps of size > γ}

⇒ J (A) = J (Bγ)

• Fix w ∈ (0,1) and define

Qn( ·), wP( ·)+(1−w)P( · | S̄n ∈ Bγ)
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≤ 1
w
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∼
(
n−αJ (A))2 ∼

(
P(S̄n ∈ A)

)2

Zn , 1{S̄n∈A}
dP

dQn
is strongly efficient for P(S̄n ∈ A)!
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How to ensure J (A\Bγ)≥ 2J (A): Reinsurance Example

t

f (t)

0 1

a

b

γ
≤ b

≤ b

b≥

• A = {paths that cross level a on [0,1] & jump sizes ≤ b}

• Bγ = {paths with at least 3 jumps of size > γ}

• A\Bγ = {paths that cross level a on [0,1]
& all jump sizes ≤ b & at most 2 jumps of size > γ}
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How to ensure J (A\Bγ)≥ 2J (A): Reinsurance Example
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• A = {paths that cross level a on [0,1] & jump sizes ≤ b}

• Bγ = {paths with at least 3 jumps of size > γ}

• A\Bγ = {paths that cross level a on [0,1]
& all jump sizes ≤ b & at most 2 jumps of size > γ}

7 = J (A\Bγ)> 2J (A) = 6
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Numerical Experiments for Reinsurance Example
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Numerical Results for Queueing Network

2000 4000 6000 8000 10000 12000

0.
10

0.
15

0.
20

0.
25

Numerical results − fluid queue

n

le
ve

l o
f p

re
ci

si
on

β=(1.2,1.2,2.3)

β=(1.6,1.4,3.1)

β=(1.8,2.0,3.0)

β=(2.3,2.0,3.5)



33

Part 3. Large Deviations for Weibull Tails

P(Xi ≥ x) = exp(−xα), α ∈ (0,1)
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Rate function depends on the size of the jump

Theorem (Bazhba, Blanchet, R., Zwart 2017)

Suppose that P(Xi ≥ x) = exp(−xα), α ∈ (0,1). Then

P(S̄n ∈ A)∼ exp(−nα inf
f∈A

I( f ))

where

I( f ) =

{
∑t
(

f (t)− f (t−)
)α

, if f is a nondecreasing step function

∞, otherwise.
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Back to our old example

t

f (t)

0 1

a

b
b

b

a−2b

• A = { f ∈ D : f crosses level a on [0,1] & jump sizes ≤ b}

• P
(
S̄n ∈ A

)
∼ exp

(
−nα I∗

)
where I∗ = bα +bα +(a−2b)α .
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Back to our old example

t

f (t)

0 1

a

b
b

b

a−2b

• A = { f ∈ D : f crosses level a on [0,1] & jump sizes ≤ b}

• P
(
S̄n ∈ A

)
∼ exp

(
−nα I∗

)
where I∗ = bα +bα +(a−2b)α .

Jump Sizes Matter
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Queue Length Asymptotics for the Weibull GI/GI/d Queue

In case service time distribution is Weibull, i.e., P(S > x) = exp(−xα),

d

2

1

Tail Asymptotics? Most likely scenario?

So far, NOT EVEN a reasonable conjecture!
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P(Queue length exeeds n)∼ exp(−c∗nα)

where

c∗ = min
d

∑
i=1

xα
i s.t.

λ s−
d

∑
i=1

(s− xi)
+ ≥ 1 for some s ∈ [0,γ],

x1, ...,xd ≥ 0 .

• Special case of Lα -norm minimization problem.

• We have explicit solution.

Solution to Open Problem Posed by Whitt (2000)
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Summary

• Systematic tools for rare-event analysis of heavy-tailed systems

• The principle of multiple (least expensive) big jumps

• Solved longstanding open problems in simulation and queueing theory

• New connections btwn rare event analysis and (discrete) optimization

e.g., impulse control, knapsack problem, Lα -norm minimization α < 1


