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Abstract. In this paper, we address rare-event simulation for heavy-tailed Lévy pro-

cesses with infinite activities. The presence of infinite activities poses a critical chal-

lenge, making it impractical to simulate or store the precise sample path of the Lévy

process. We present a rare-event simulation algorithm that incorporates an importance

sampling strategy based on heavy-tailed large deviations, the stick-breaking approxi-

mation for the extrema of Lévy processes, the Asmussen-Rosiński approximation, and

the randomized debiasing technique. By establishing a novel characterization for the

Lipschitz continuity of the law of Lévy processes, we show that the proposed algorithm

is unbiased and strongly efficient under mild conditions, and hence applicable to a

broad class of Lévy processes. In numerical experiments, our algorithm demonstrates

significant improvements in efficiency compared to the crude Monte-Carlo approach.
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1. Introduction In this paper, we propose a strongly efficient rare-event simulation algorithm for

heavy-tailed Lévy processes with infinite activities. Specifically, the goal is to estimate probabilities of the

form P(𝑋 ∈ 𝐴), where 𝑋 = {𝑋 (𝑡) : 𝑡 ∈ [0,1]} is a Lévy process in R, 𝐴 is a subset of the càdlàg space that
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doesn’t include the typical path of 𝑋 so that P(𝑋 ∈ 𝐴) is close to 0, and the event {𝑋 ∈ 𝐴} is “unsimulatable”

due to the infinite number of activities within any finite time interval. The defining features of the problem

are as follows.

• The increments of the Lévy process 𝑋 (𝑡) are heavy-tailed. Throughout this paper, we characterize

the heavy-tailed phenomenon through the notion of regular variation and assume that the tail cdf

P(±𝑋 (𝑡) > 𝑥) decays roughly at a power-law rate of 1/𝑥𝛼; see Definition 1 for details. The notion of

heavy tails provides the mathematical formulation for the extreme uncertainty that manifests in a wide

range of real-world dynamics and systems, including the spread of COVID-19 (see, e.g., Cohen et al.

(2022)), traffic in computer and communication networks (see, e.g., Li (2018)), financial assets (see,

e.g., Embrechts et al. (2013), Borak et al. (2011)), and the training of deep neural networks (see, e.g.,

Gurbuzbalaban et al. (2021), Hodgkinson and Mahoney (2021)).

• 𝐴 is a general subset of D (i.e., the space of the real-valued càdlàg functions over [0,1]) that involves

the supremum of the path. For concreteness in our presentation, the majority of the paper focuses on

𝐴 =

{
𝜉 ∈D : sup

𝑡∈[0,1]
𝜉 (𝑡) ≥ 𝑎; sup

𝑡∈ (0,1]
𝜉 (𝑡) − 𝜉 (𝑡−) < 𝑏

}
. (1)

Intuitively speaking, this is closely related to ruin probabilities under reinsurance mechanisms, as

{𝑋 ∈ 𝐴} requires the supremum of the process 𝑋 (𝑡) over [0,1] to exceed some threshold 𝑎 even though

all upward jumps in 𝑋 (𝑡) are bounded by 𝑏. Nevertheless, we stress that the algorithmic framework

proposed in this paper is flexible enough to address more general form of events {𝑋 ∈ 𝐴} that are of

practical interest. For instance, we demonstrate in Section B of the Supplementary Materials that the

framework can also address rare event simulation in the context of barrier option pricing.

• 𝑋 (𝑡) possesses infinite activities; see Section 2.3 for the precise definition. Consequently, it is compu-

tationally infeasible to simulate or store the entire sample path of such processes. In other words, we

focus on a computationally challenging case where I{𝑋 ∈ 𝐴} cannot be exactly simulated or evaluated.

Addressing such “unsimulatable” cases is crucial due to the increasing popularity of Lévy models with
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infinite activities in risk management and mathematical finance (see, e.g., Carr et al. (2002, 2003),

Rosiński (2007), Bianchi et al. (2011), Sabino (2022)), as they offer more accurate and flexible descrip-

tions for the price and volatility of financial assets compared to the classical jump-diffusion models

(see, e.g., Mijatović and Tankov (2016)).

In summary, our goal is to tackle a practically significant yet computationally challenging task, where the

nature of the rare events renders crude Monte Carlo methods highly inefficient, if not entirely infeasible, due

to the infinite activities in 𝑋 (𝑡). To address these challenges, we integrate several mathematical machinery:

a design of importance sampling based on sample-path large deviations for heavy-tailed Lévy processes in

Rhee et al. (2019), the stick-breaking approximation in González Cázares et al. (2022) for Lévy processes

with infinite activities, and the randomized multilevel Monte Carlo debiasing technique in Rhee and Glynn

(2015). By combining these tools, we propose a rare event simulation algorithm for heavy-tailed Lévy

processes with infinite activities that attains strong efficiency (see Definition 2 for details).

As mentioned above, the first challenge is rooted in the nature of rare events as the crude Monte Carlo

methods can be prohibitively expensive when estimating a small 𝑝 = P(𝑋 ∈ 𝐴). Instead, variance reduction

techniques are often employed for efficient rare event simulation. When the underlying uncertainties are

light-tailed, the exponential tilting strategy guided by large deviation theories has been successfully applied

in a variety of contexts; see, e.g., Bucklew et al. (1990), Boxma et al. (2019), Torrisi (2004), Dupuis

et al. (2007b). However, the exponential tilting approach falls short in providing a principled and provably

efficient design of the importance sampling estimators (see, for example, Bassamboo et al. (2007)) due

to fundamentally different mechanisms through which the rare events occur. Instead, different importance

sampling strategies (e.g., Blanchet and Glynn (2008), Dupuis et al. (2007a), Blanchet et al. (2008), Blanchet

and Liu (2008), Murthy et al. (2014), Blanchet et al. (2013)) and other variance reduction techniques such as

conditional Monte Carlo (e.g., Asmussen and Kroese (2006), Hult et al. (2016)) and Markov Chain Monte

Carlo (e.g., Gudmundsson and Hult (2014)) have been proposed to address problems associated with specific

types of processes or events.

Recent developments in heavy-tailed large deviations, such as those by Rhee et al. (2019) and Wang and

Rhee (2023), offer critical insights into the design of efficient and universal importance sampling schemes
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for heavy-tailed systems. Central to this development is the discrete hierarchy of heavy-tailed rare events,

known as the catastrophe principle. The principle dictates that rare events in heavy-tailed systems arise due to

catastrophic failures of a small number of system components, and the number of such components governs

the asymptotic rate at which the associated rare events occur. This creates a discrete hierarchy among heavy-

tailed rare events. By combining the defensive importance sampling design with such hierarchy, strongly

efficient importance sampling algorithms have been proposed for a variety of rare events associated with

random walks and compound Poisson processes in Chen et al. (2019). See also Wang and Rhee (2024) for a

tutorial on this topic. In this paper, we adopt and extend this framework to encompass Lévy processes with

infinite activities. The specifics of the importance sampling distribution are detailed in Section 3.1.

Another challenge arises from the simulation of Lévy processes with infinite activities. While the design

of importance sampling algorithm in Chen et al. (2019) has been successfully applied to a wide range

of stochastic systems that are exactly simulatable (including random walks, compound Poisson processes,

iterates of stochastic gradient descent, and several classes of queueing systems), it cannot be implemented for

Lévy processes with infinite activities. More specifically, the simulation of the random vector (𝑋 (𝑡), 𝑀 (𝑡)),

where 𝑀 (𝑡) = sup𝑠≤𝑡 𝑋 (𝑡), poses a significant challenge in the case with infinite activities. As of now, exact

simulation of the extrema of Lévy processes (excluding the compound Poisson case) is only available for

specific cases (see, for instance, González Cázares et al. (2019), Cázares et al. (2023), Cázares et al. (2020)),

let alone the exact simulation of the joint law of (𝑋 (𝑡), 𝑀 (𝑡)). We therefore approach the challenge by

considering the following questions: (𝑖) Does there exist a provably efficient approximation algorithm for

(𝑋 (𝑡), 𝑀 (𝑡)), and (𝑖𝑖) Are we able to remove the approximation bias while still attaining strong efficiency

in our rare-event simulation algorithm?

Regarding the first question, several classes of algorithms have been proposed for the approximate simu-

lation of the extrema of Lévy processes. This includes the random walk approximations based on Euler-type

discretization of the process (see e.g., Asmussen et al. (1995), Dia and Lamberton (2011), Giles and Xia

(2017)), the Wiener-Hopf approximation methods (see e.g. Kuznetsov et al. (2011), Ferreiro-Castilla et al.

(2014)) based on the fluctuation theory of Lévy processes, the jump-adapted Gaussian approximations
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(see e.g. Dereich (2011), Dereich and Heidenreich (2011)), and the characteristic function approach in

Boyarchenko and Levendorskii (2023a,b) based on efficient evaluation of joint cdf. Nevertheless, the approx-

imation errors in the aforementioned methods are either unavailable or exhibit a polynomial rate of decay.

Thankfully, the recently developed stick-breaking approximation (SBA) algorithm in González Cázares et al.

(2022) provides a novel approach to the simulation of the joint law of 𝑋 (𝑡) and 𝑀 (𝑡). The theoretical

foundation of SBA is the following description for the concave majorants of Lévy processes with infinite

activities in Pitman and Bravo (2012):

(
𝑋 (𝑡), 𝑀 (𝑡)

)
=
𝑑

(∑︁
𝑗≥1

𝜉 𝑗 ,
∑︁
𝑗≥1

max{𝜉 𝑗 ,0}
)
.

Here, (𝑙 𝑗) 𝑗≥1 is a sequence of iteratively generated non-negative RVs satisfying
∑

𝑗≥1 𝑙 𝑗 = 𝑡 and E𝑙 𝑗 =

𝑡/2 𝑗 ∀ 𝑗 ≥ 1; conditioned on the values of (𝑙 𝑗) 𝑗≥1, 𝜉 𝑗’s are independently generated such that 𝜉 𝑗 =𝑑 𝑋 (𝑙 𝑗).

While it is computationally infeasible to generate the entirety of the infinite sequences (𝑙 𝑗) 𝑗≥1 and (𝜉 𝑗) 𝑗≥1,

by terminating the procedure at the 𝑚-th step we yield approximations of the form

(
𝑋̂𝑚(𝑡), 𝑀̂𝑚(𝑡)

)
=
Δ

( 𝑚∑︁
𝑗=1

𝜉 𝑗 ,

𝑚∑︁
𝑗=1

max{𝜉 𝑗 ,0}
)
. (2)

We provide a review in Section 2.3. In particular, due to E
[∑

𝑗>𝑚 𝑙 𝑗
]
= 𝑡/2𝑚, with each extra step in (2) we

expect to reduce the approximation error by half, thus leading to the geometric convergence rate of errors.

See González Cázares et al. (2022) for analyses of the approximation errors for different types of functionals.

Additionally, while SBA can be considered sufficiently accurate for a wide range of tasks, eliminating the

approximation errors is crucial in the context of rare-event simulation. Otherwise, any effort to efficiently

estimate a small probability might be fruitless and could be overwhelmed by potentially large errors in

the algorithm. In order to remove the approximation errors of SBA in (2), we employ the construction

of unbiased estimators proposed in Rhee and Glynn (2015). This can be interpreted as a randomized

version of the multilevel Monte Carlo scheme Heinrich (2001), Giles (2008) when a sequence of biased

yet increasingly more accurate approximations is available. It allows us to construct an unbiased estimation
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6 Article submitted to Mathematics of Operations Research

algorithm that terminates within a finite number of steps. By combining SBA, the randomized debiasing

technique, and the design of importance sampling distributions based on heavy-tailed large deviations, we

propose Algorithm 2 for rare-event simulation of Lévy processes with infinite activities. In case that the

exact sampling of 𝑋 (𝑡), and hence the increments 𝜉 𝑗’s in (2), is not available, we further incorporate the

Asmussen-Rosiński approximation (ARA) in Asmussen and Rosiński (2001). This approximation replaces

the small-jump martingale in the Lévy process 𝑋 (𝑡) with a Brownian motion of the same variance, thus

leading to Algorithm 3. We note that the combination of SBA and the randomized debiasing technique

has been explored in González Cázares et al. (2022), and an ARA-incorporated version of SBA has been

proposed in González Cázares and Mijatović (2022). However, the goal of proposing strongly efficient rare-

event simulation algorithm adds another layer of difficulty and sets our work apart from the existing literature.

In particular, the notion of strong efficiency demands that the proposed estimator remains efficient under

the importance sampling algorithm w.r.t. not just a given task, but throughout a sequence of increasingly

more challenging rare-event simulation tasks as P(𝑋 ∈ 𝐴) tends to 0. This introduces a new dimension

into the theoretical analysis that is not presented in González Cázares et al. (2022), González Cázares and

Mijatović (2022) and necessitates the development of new technical tools to characterize the performance

of the algorithm when all these components (importance sampling, SBA, debiasing technique, and ARA)

are in effect.

An important technical question in our analysis concerns the continuity of the law of the running supremum

𝑀 (𝑡). To provide high-level descriptions, let us consider estimators for P(𝑋 ∈ 𝐴) = E
[
I{𝑋 ∈ 𝐴}

]
that admit

the form 𝑓 ( 𝑋̂) where 𝑋̂ is some approximation to the Lévy process 𝑋 and 𝑓 (𝜉) = I{𝜉 ∈ 𝐴}. SBA and the

debiasing technique allow us to construct 𝑋̂ such that the deviation 𝑋̂ −𝑋 has a small variance. Nevertheless,

the estimation can be fallible if 𝑋 concentrates on the boundary cases, i.e., 𝑋 falls into a neighborhood of 𝜕𝐴

fairly often. Specializing to the case in (1), this requires obtaining sufficiently tight bounds for probabilities

of form P(𝑀 (𝑡) ∈ [𝑥, 𝑥 + 𝛿]). Nevertheless, the continuity of the law of the supremum 𝑀 (𝑡) remains an

active area of study, with many essential questions left open. Recent developments regarding the law of 𝑀 (𝑡)

are mostly qualitative or focus on the cumulative distribution function (cdf); see, e.g., Chaumont (2013),
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Coutin et al. (2018), Kwaśnicki et al. (2013), Michna (2012), Michna et al. (2014), Michna (2013). In short,

addressing this aspect of the challenge requires us to establish novel and useful quantitative characterizations

of the law of supremum 𝑀 (𝑡).

For our purpose of efficient rare event simulation, particularly under the importance sampling scheme

detailed in Section 3.1, the following condition proves to be sufficient:

P
(
𝑋<𝑧 (𝑡) ∈ [𝑥, 𝑥 + 𝛿]

)
≤ 𝐶

𝑡𝜆 ∧ 1
𝛿 ∀𝑧 ≥ 𝑧0, 𝑡 > 0, 𝑥 ∈ R, 𝛿 ∈ [0,1] . (3)

Here, 𝑋<𝑧 (𝑡) is a modulated version of the process 𝑋 (𝑡) where all the upward jumps with sizes larger than

𝑧 are removed; see Section 3 for the rigorous definition. First, we establish in Theorem 1 (resp. Theorem 2)

that Algorithm 2 (resp. Algorithm 3) does attain strong efficiency under condition (3). More importantly,

we demonstrate in Section 4 that condition (3) is mild for Lévy processes with infinitive activities, as it only

requires the intensity of jumps to approach ∞ (hence attaining infinite activities in 𝑋) at a rate that is not

too slow. In particular, in Theorems 3 and 4 we provide two sets of sufficient conditions for (3) that are easy

to verify. We note that the representation of concave majorants for Lévy processes developed in Pitman and

Bravo (2012) proves to be a valuable tool for studying the law of 𝑋 (𝑡) and 𝑀 (𝑡). As will be elaborated in the

proofs in Section 6, the key technical tool that allows us to connect condition 3 with the law of the supremum

𝑀 (𝑡) is, again, the representation in (2). See also Cázares et al. (2023) for its application in studying the

joint density of 𝑋 (𝑡) and 𝑀 (𝑡) of stable processes.

Some algorithmic contributions of this paper were presented in a preliminary form at a conference in

Wang and Rhee (2021) without rigorous proofs. The current paper presents several significant extensions:

(𝑖) In addition to Algorithm 2, we also propose an ARA-incorporated version of the importance sampling

algorithm (see Algorithm 3) to address the case where 𝑋 (𝑡) cannot be exactly simulated; (𝑖𝑖) Rigorous

proofs of strong efficiency are provided in Section 6 in this paper; (𝑖𝑖𝑖) We establish two sets of sufficient

conditions for (3) in Section 4, leveraging the properties of regularly varying or semi-stable processes.

The rest of the paper is structured as follows. Section 2 reviews the theoretical foundations of our algo-

rithms, including the heavy-tailed large deviation theories (Section 2.2), the stick-breaking approximations
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(Section 2.3), and the debiasing technique (Section 2.4). Section 3 presents the importance sampling algo-

rithms and establishes their strong efficiency. Section 4 investigates the continuity of the law of 𝑋 (𝑡) and

provides sufficient conditions for (3), a critical condition to ensure the strong efficiency of our importance

sampling scheme. Numerical experiments are reported in Section 5. Section 6 collects the proofs of strong

efficiency. In the Supplementary Materials, Section A collects the proofs of technical results in Section 4,

and Section B extends the algorithmic framework to the context of barrier option pricing.

2. Preliminaries In this section, we introduce some notations and results that will be frequently used

when developing the strongly efficient rare-event simulation algorithm.

2.1. Notations Let N = {0,1,2, . . .} be the set of non-negative integers. For any positive integer 𝑘 , let

[𝑘] = {1,2, . . . , 𝑘}. For any 𝑥, 𝑦 ∈ R, let 𝑥 ∧ 𝑦 =
Δ min{𝑥, 𝑦} and 𝑥 ∨ 𝑦 =

Δ max{𝑥, 𝑦}. For any 𝑥 ∈ R, we define

(𝑥)+ =Δ 𝑥 ∨ 0 as the positive part of 𝑥, and

⌊𝑥⌋ =Δ max{𝑛 ∈ Z : 𝑛 ≤ 𝑥}, ⌈𝑥⌉ =Δ min{𝑛 ∈ Z : 𝑛 ≥ 𝑥}

as the floor and ceiling function. Given a measure space (X,F , 𝜇) and any set 𝐴 ∈ F , we use 𝜇 |𝐴(·) =Δ 𝜇(𝐴∩·)

to denote restriction of the measure 𝜇 on 𝐴. For any random variable 𝑋 and any Borel measureable set 𝐴,

let ℒ(𝑋) be the law of 𝑋 , and ℒ(𝑋 |𝐴) be the law of 𝑋 conditioned on event 𝐴. Let (D[0,1],R, 𝒅) be the

metric space of D =D[0,1],R (i.e., the space of all real-valued càdlàg functions with domain [0,1]) equipped

with Skorokhod 𝐽1 metric 𝒅. Here, the metric 𝒅 is defined by

𝒅(𝑥, 𝑦) =Δ inf
𝜆∈Λ

sup
𝑡∈[0,1]

|𝜆(𝑡) − 𝑡 | ∨ |𝑥(𝜆(𝑡)) − 𝑦(𝑡) | (4)

with Λ being the set of all increasing homeomorphisms from [0,1] to itself.

Henceforth in this paper, the heavy-tailedness of any random element will be captured by the notion of

regular variation.
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DEFINITION 1. For any measurable function 𝜙 : (0,∞) → (0,∞), we say that 𝜙 is regularly varying

as 𝑥→∞ with index 𝛽 (denoted as 𝜙(𝑥) ∈ RV𝛽 (𝑥) as 𝑥→∞) if lim𝑥→∞ 𝜙(𝑡𝑥)/𝜙(𝑥) = 𝑡𝛽 for all 𝑡 > 0. We

also say that a measurable function 𝜙(𝜂) is regularly varying as 𝜂 ↓ 0 with index 𝛽 if lim𝜂↓0 𝜙(𝑡𝜂)/𝜙(𝜂) = 𝑡𝛽

for any 𝑡 > 0. We denote this as 𝜙(𝜂) ∈ RV𝛽 (𝜂) as 𝜂 ↓ 0.

For properties of regularly varying functions, see, for example, Chapter 2 of Resnick (2007).

Next, we discuss the Lévy-Ito decomposition of one-dimensional Lévy processes, i.e., 𝑋 (𝑡) ∈ R. The

law of a one-dimensional Lévy process {𝑋 (𝑡) : 𝑡 ≥ 0} is completely characterized by its generating triplet

(𝑐, 𝜎, 𝜈) where 𝑐 ∈ R represents the constant drift, 𝜎 ≥ 0 is the magnitude of the Brownian motion term, and

the Lévy measure 𝜈 characterizes the intensity of the jumps. More precisely,

𝑋 (𝑡) =𝑑 𝑐𝑡 +𝜎𝐵(𝑡) +
∫
|𝑥 | ≤1

𝑥 [𝑁 ( [0, 𝑡] × 𝑑𝑥) − 𝑡𝜈(𝑑𝑥)] +
∫
|𝑥 |>1

𝑥𝑁 ( [0, 𝑡] × 𝑑𝑥) (5)

where Leb(·) is the Lebesgue measure onR, 𝐵 is a standard Brownian motion, the measure 𝜈 satisfies
∫
( |𝑥 |2∧

1)𝜈(𝑑𝑥) <∞, and 𝑁 is a Poisson random measure over (0,∞) ×R with intensity measure Leb((0,∞)) × 𝜈

and is independent of 𝐵. For standard references on this topic, see Chapter 4 of Sato et al. (1999).

Given two sequences of non-negative real numbers (𝑥𝑛)𝑛≥1 and (𝑦𝑛)𝑛≥1, we say that 𝑥𝑛 = 𝑶 (𝑦𝑛) (as

𝑛→∞) if there exists some 𝐶 ∈ [0,∞) such that 𝑥𝑛 ≤ 𝐶𝑦𝑛 ∀𝑛 ≥ 1. Besides, we say that 𝑥𝑛 = 𝒐(𝑦𝑛) if

lim𝑛→∞ 𝑥𝑛/𝑦𝑛 = 0. The goal of this paper is described in the following definition of strong efficiency.

DEFINITION 2. Let (𝐿𝑛)𝑛≥1 be a sequence of random variables supported on a probability space

(Ω,F ,P) and (𝐴𝑛)𝑛≥1 be a sequence of events (i.e., 𝐴𝑛 ∈ F ∀𝑛). We say that (𝐿𝑛)𝑛≥1 are unbiased and

strongly efficient estimators of (𝐴𝑛)𝑛≥1 if

E𝐿𝑛 = P(𝐴𝑛) ∀𝑛 ≥ 1; E𝐿2
𝑛 =𝑶

(
P2(𝐴𝑛)

)
as 𝑛→∞.

We stress again that strongly efficient estimators (𝐿𝑛)𝑛≥1 achieve uniformly bounded relative errors (i.e.,

the ratio between standard error and mean) for all 𝑛 ≥ 1.
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2.2. Sample-Path Large Deviations for Regularly Varying Lévy Processes The key ingre-

dient of our importance sampling algorithm is the recent development of the sample-path large deviations

for Lévy processes with regularly varying increments; see Rhee et al. (2019). To familiarize the readers with

this mathematical machinery, we start by reviewing the results in the one-sided cases, and then move onto

the more general two-sided results.

Let 𝑋 (𝑡) ∈ R be a centered Lévy process (i.e., E𝑋 (𝑡) = 0 ∀𝑡 > 0) with generating triplet (𝑐, 𝜎, 𝜈) such

that the Lévy measure 𝜈 is supported on (0,∞). In other words, all the discontinuities in 𝑋 will be positive,

hence one-sided. Moreover, we are interested in the heavy-tailed setting where the function 𝐻+(𝑥) = 𝜈[𝑥,∞)

is regularly varying as 𝑥 → ∞ with index −𝛼 where 𝛼 > 1. Define a scaled version of the process as

𝑋̄𝑛 (𝑡) =Δ 1
𝑛
𝑋 (𝑛𝑡), and let 𝑋̄𝑛 =

Δ {𝑋̄𝑛 (𝑡) : 𝑡 ∈ [0,1]}. Note that 𝑋̄𝑛 is a random element taking values in D.

For all 𝑙 ≥ 1, let D𝑙 be the subset of D containing all the non-decreasing step functions that has 𝑙

jumps (i.e., discontinuities) and vanishes at the origin. Let D0 = {0} be the set that only contains the zero

function 0(𝑡) ≡ 0. Let D<𝑙 = ∪ 𝑗=0,1, · · · ,𝑙−1D𝑙. For any 𝛽 > 0, let 𝜈𝛽 be the measure supported on (0,∞)

with 𝜈𝛽 (𝑥,∞) = 𝑥−𝛽. For any positive integer 𝑙, let 𝜈𝑙
𝛽

be the 𝑙−fold product measure of 𝜈𝛽 restricted on

{𝒚 = (𝑦1, . . . , 𝑦𝑙) ∈ (0,∞)𝑙 : 𝑦1 ≥ 𝑦2 ≥ · · · ≥ 𝑦𝑙}. Define the measure (for 𝑙 ≥ 1)

C𝑙 (·) =Δ E

[
𝜈𝑙𝛽

{
𝒚 ∈ (0,∞)𝑙 :

𝑙∑︁
𝑗=1

𝑦 𝑗I[𝑈 𝑗 ,1] ∈ ·
}]

where all 𝑈 𝑗’s are iid copies of Unif(0,1). In case that 𝑙 = 0, we set C0
𝛽

as the Dirac measure on 0. The

following result provides sharp asymptotics for rare events associated with 𝑋̄𝑛. Henceforth in this paper, all

measurable sets are understood to be Borel measurable.

Result 1 (Theorem 3.1 of Rhee et al. (2019)) Let 𝐴 ⊂ D be measurable. Suppose that J (𝐴) =Δ min{ 𝑗 ∈N :

D 𝑗 ∩ 𝐴 ≠ ∅} <∞ and 𝐴 is bounded away from D<J(𝐴) in the sense that 𝒅(𝐴,D<J(𝐴) ) > 0. Then

CJ(𝐴) (𝐴◦) ≤ lim inf
𝑛→∞

P( 𝑋̄𝑛 ∈ 𝐴)
(𝑛𝜈[𝑛,∞))J(𝐴)

≤ lim sup
𝑛→∞

P( 𝑋̄𝑛 ∈ 𝐴)
(𝑛𝜈[𝑛,∞))J(𝐴)

≤ CJ(𝐴) (𝐴−) <∞

where 𝐴◦, 𝐴− are the interior and closure of 𝐴 respectively.
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Intuitively speaking, Result 1 embodies a general principle that, in heavy-tailed systems, rare events arise

due to several “large jumps”. Here, J (𝐴) denotes the minimum number of jumps required in 𝑋̄𝑛 for

event {𝑋̄𝑛 ∈ 𝐴} to occur. As shown above in Result 1, J (𝐴) dictates the polynomial rate of decay of

the probabilities of the rare events P( 𝑋̄𝑛 ∈ 𝐴). Furthermore, results such as Corollary 4.1 in Rhee et al.

(2019) characterize the conditional limits of 𝑋̄𝑛: conditioning on the occurrence of rare events {𝑋̄𝑛 ∈ 𝐴}, the

conditional law ℒ( 𝑋̄𝑛 |{𝑋̄𝑛 ∈ 𝐴}) converges in distribution to that of a step function over [0,1] with exactly

J (𝐴) jumps (of random sizes and arrival times) as 𝑛→∞. Therefore, J (𝐴) also dictates the most likely

scenarios of the rare events. This insight proves to be critical when we develop the importance sampling

distributions for the rare events simulation algorithm in Section 3.

Results for the two-sided cases admit a similar yet slightly more involved form, where the Lévy process

𝑋 (𝑡) exhibits both positive and negative jumps. Specifically, let 𝑋 (𝑡) be a centered Lévy process such

that for 𝐻+(𝑥) = 𝜈[𝑥,∞) and 𝐻− (𝑥) = 𝜈(−∞,−𝑥], we have 𝐻+(𝑥) ∈ RV−𝛼 (𝑥) and 𝐻− (𝑥) ∈ RV−𝛼′ (𝑥) as

𝑥→∞ for some 𝛼, 𝛼′ > 1. Let D 𝑗 ,𝑘 be the set containing all step functions in D vanishing at the origin that

has exactly 𝑗 upward jumps and 𝑘 downward jumps. As a convention, let D0,0 = {0}. Given 𝛼, 𝛼′ > 1, let

D< 𝑗,𝑘 =
Δ ⋃

(𝑙,𝑚) ∈I< 𝑗,𝑘
D𝑙,𝑚 where I< 𝑗,𝑘 =

Δ
{
(𝑙, 𝑚) ∈N2\{( 𝑗 , 𝑘)} : 𝑙 (𝛼−1) +𝑚(𝛼′−1) ≤ 𝑗 (𝛼−1) + 𝑘 (𝛼′−1)

}
.

Let C0,0 be the Dirac measure on 0. For any ( 𝑗 , 𝑘) ∈N2\{(0,0)} let

C 𝑗 ,𝑘 (·) =Δ E

[
𝜈
𝑗
𝛼 × 𝜈𝑘𝛼′

{
(𝒙, 𝒚) ∈ (0,∞) 𝑗 × (0,∞)𝑘 :

𝑗∑︁
𝑙=1

𝑥𝑙I[𝑈𝑙 ,1] −
𝑘∑︁

𝑚=1
𝑦𝑚I[𝑉𝑚,1] ∈ ·

}]
(6)

where all 𝑈𝑙’s and 𝑉𝑚’s are iid copies of Unif(0,1) RVs. Now, we are ready to state the two-sided result.

Result 2 (Theorem 3.4 of Rhee et al. (2019)) Let 𝐴 ⊂ D be measurable. Suppose that

(
J (𝐴),K(𝐴)

)
∈ argmin
( 𝑗 ,𝑘 ) ∈N2, D 𝑗,𝑘∩𝐴≠∅

𝑗 (𝛼− 1) + 𝑘 (𝛼′ − 1) (7)
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and 𝐴 is bounded away from D<J(𝐴) ,K(𝐴) . Then the argument minimum in (7) is unique, and

CJ(𝐴) ,K(𝐴) (𝐴◦) ≤ lim inf
𝑛→∞

P( 𝑋̄𝑛 ∈ 𝐴)
(𝑛𝜈[𝑛,∞))J(𝐴) (𝑛𝜈(−∞,−𝑛])K(𝐴)

≤ lim sup
𝑛→∞

P( 𝑋̄𝑛 ∈ 𝐴)
(𝑛𝜈[𝑛,∞))J(𝐴) (𝑛𝜈(−∞,−𝑛])K(𝐴)

≤ CJ(𝐴) ,K(𝐴) (𝐴−) <∞

where 𝐴◦, 𝐴− are the interior and closure of 𝐴 respectively.

2.3. Concave Majorants and Stick-Breaking Approximations of Lévy Processes with Infi-

nite Activities Next, we review the distribution of the concave majorant of a Lévy process with infinite

activities characterized in Pitman and Bravo (2012), which paves the way to the stick-breaking approximation

algorithm proposed in González Cázares et al. (2022). Let 𝑋 (𝑡) be a Lévy process with generating triplet

(𝑐, 𝜎, 𝜈). We say that 𝑋 has infinite activities if 𝜎 > 0 or 𝜈(R) =∞. Let 𝑀 (𝑡) =Δ sup𝑠≤𝑡 𝑋 (𝑠) be the running

supremum of 𝑋 (𝑡). The results in Pitman and Bravo (2012) establishes a Poisson–Dirichlet distribution

that underlies the joint law of 𝑋 (𝑡) and 𝑀 (𝑡). Specifically, we fix some 𝑇 > 0 and let 𝑉𝑖’s be iid copies of

Unif(0,1) RVs. Recursively, let

𝑙1 =𝑇𝑉1, 𝑙 𝑗 =𝑉 𝑗 · (𝑇 − 𝑙1 − 𝑙2 − . . .− 𝑙 𝑗−1) ∀ 𝑗 ≥ 2. (8)

Conditioning on the values of (𝑙 𝑗) 𝑗≥1, let 𝜉 𝑗 be a random copy of 𝑋 (𝑙 𝑗), with all 𝜉 𝑗 being independently

generated.

Result 3 (Theorem 1 in Pitman and Bravo (2012)) Suppose that the Lévy process 𝑋 has infinite activities.

Then (with (𝑥)+ = max{𝑥, 0})

(
𝑋 (𝑇), 𝑀 (𝑇)

)
=
𝑑 (∑︁

𝑗≥1
𝜉 𝑗 ,

∑︁
𝑗≥1
(𝜉 𝑗)+

)
. (9)
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Based on the distribution characterized in (9), the stick-breaking approximation algorithm was proposed

in González Cázares et al. (2022) where finitely many 𝜉𝑖’s are generated in order to approximate 𝑋 (𝑇)

and 𝑀 (𝑇). This approximation technique is a key component of our rare event simulation algorithm. In

particular, we utilize a coupling between different Lévy processes based on the representation (9) above. For

clarity of our description, we focus on two Lévy processes 𝑋 and 𝑋 with generating triplets (𝑐, 𝜎, 𝜈) and

(𝑐̃, 𝜎̃, 𝜈̃), respectively. Suppose that both 𝑋 and 𝑋 have infinite activities. We first generate 𝑙𝑖’s as described

in (8). Conditioning on the values of (𝑙𝑖)𝑖≥1, we then independently generate 𝜉𝑖 and 𝜉𝑖, which are random

copies of 𝑋 (𝑙𝑖) and 𝑋 (𝑙𝑖), respectively. Let 𝑀 (𝑡) =Δ sup𝑠≤𝑡 𝑋 (𝑠). Applying Result 3, we identify a coupling

between 𝑋 (𝑇), 𝑀 (𝑇), 𝑋 (𝑇), 𝑀 (𝑇) such that

(
𝑋 (𝑇), 𝑀 (𝑇), 𝑋 (𝑇), 𝑀 (𝑇)

)
=
𝑑 (∑︁

𝑖≥1
𝜉𝑖 ,

∑︁
𝑖≥1
(𝜉𝑖)+,

∑︁
𝑖≥1

𝜉𝑖 ,
∑︁
𝑖≥1
(𝜉𝑖)+

)
. (10)

REMARK 1. It is worth noticing that the method described above in fact implies the existence of a

probability space (Ω,F ,P) that supports the entire sample paths {𝑋 (𝑡) : 𝑡 ∈ [0,𝑇]} and {𝑋 (𝑡) : 𝑡 ∈ [0,𝑇]},

whose endpoint values 𝑋 (𝑇), 𝑋 (𝑇) and suprema 𝑀 (𝑇), 𝑀 (𝑇) admit the joint law in (10). In particular, once

we obtain 𝑙𝑖 based on (8), one can generate Ξ𝑖 that are iid copies of the entire paths of 𝑋 . That is, we generate

a piece of sample path Ξ𝑖 on the stick 𝑙𝑖, and the quantities 𝜉𝑖 introduced earlier can be obtained by setting

𝜉𝑖 = Ξ𝑖 (𝑙𝑖). To recover the sample path of 𝑋 based on the pieces Ξ𝑖, it suffices to apply Vervatt transform

onto each Ξ𝑖 and then reorder the pieces based on their slopes. We refer the readers to theorem 4 in Pitman

and Bravo (2012). In summary, the method described above leads to a coupling between the sample paths

of the underlying Lévy processes 𝑋 and 𝑋 such that (10) holds.

2.4. Randomized Debiasing Technique To achieve unbiasedness in our algorithm and remove

the errors in the stick-breaking approximations, we apply the randomized multi-level Monte-Carlo technique

studied in Rhee and Glynn (2015). In particular, due to 𝜏 being finite (almost surely) in Result 4 below, the

simulation of 𝑍 relies only on 𝑌0,𝑌1, · · · ,𝑌𝜏 instead of the infinite sequence (𝑌𝑛)𝑛≥0.
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Result 4 (Theorem 1 in Rhee and Glynn (2015)) Let random variables 𝑌 and (𝑌𝑚)𝑚≥0 be such that

lim𝑚→∞E𝑌𝑚 = E𝑌 . Let 𝜏 be a positive integer-valued random variable with unbounded support, independent

of (𝑌𝑚)𝑚≥0 and 𝑌 . Suppose that

∑︁
𝑚≥1

E|𝑌𝑚−1 −𝑌 |2
/

P(𝜏 ≥ 𝑚) <∞, (11)

then 𝑍 =
Δ ∑𝜏

𝑚=0(𝑌𝑚 −𝑌𝑚−1)
/

P(𝜏 ≥ 𝑚) (with the convention 𝑌−1 = 0) satisfies

E𝑍 = E𝑌, E𝑍2 =
∑︁
𝑚≥0

𝑣̄𝑚
/

P(𝜏 ≥ 𝑚)

where 𝑣̄𝑚 = E|𝑌𝑚−1 −𝑌 |2 −E|𝑌𝑚 −𝑌 |2.

3. Algorithm Throughout the rest of this paper, let 𝑋 (𝑡) be a Lévy process with generating triplet

(𝑐𝑋, 𝜎, 𝜈) satisfying the following heavy-tailed assumption.

ASSUMPTION 1. E𝑋 (1) = 0. 𝑋 (𝑡) is of infinite activity. The Blumenthal-Getoor index 𝛽 =
Δ inf{𝑝 > 0 :∫

(−1,1) |𝑥 |
𝑝𝜈(𝑑𝑥) <∞} satisfies 𝛽 < 2. Besides, one of the two claims below holds for the Lévy measure 𝜈.

• (One-sided cases) 𝜈 is supported on (0,∞), and function 𝐻+(𝑥) = 𝜈[𝑥,∞) is regularly varying as

𝑥→∞ with index −𝛼 where 𝛼 > 1;

• (Two-sided cases) There exist 𝛼, 𝛼′ > 1 such that 𝐻+(𝑥) = 𝜈[𝑥,∞) is regularly varying as 𝑥→∞ with

index −𝛼 and 𝐻− (𝑥) = 𝜈(−∞,−𝑥] is regularly varying as 𝑥→∞ with index −𝛼′.

The other assumption on 𝑋 (𝑡) revolves around the continuity of the law of 𝑋<𝑧 , which is the Lévy process

with generating triplet (𝑐𝑋, 𝜎, 𝜈 | (−∞,𝑧) ). That is, 𝑋<𝑧 is a modulated version of 𝑋 where all the upward

jumps with size larger than 𝑧 are removed.

ASSUMPTION 2. There exist 𝑧0,𝐶, 𝜆 > 0 such that

P
(
𝑋<𝑧 (𝑡) ∈ [𝑥, 𝑥 + 𝛿]

)
≤ 𝐶𝛿

𝑡𝜆 ∧ 1
∀𝑧 ≥ 𝑧0, 𝑡 > 0, 𝑥 ∈ R, 𝛿 > 0.
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Assumption 2 can be interpreted as a uniform version of Lipschitz continuity in the law of 𝑋<𝑧 (𝑡). In

Section 4, we show that Assumption 2 is a mild condition for Lévy process with infinite activities and is

easy to verify.

Next, we describe a class of target events (𝐴𝑛)𝑛≥1 for which we propose a strongly efficient rare event

simulation algorithm. Let 𝑋̄𝑛 (𝑡) = 1
𝑛
𝑋 (𝑛𝑡) and 𝑋̄𝑛 = {𝑋̄𝑛 (𝑡) : 𝑡 ∈ [0,1]} be the scaled version of the process.

Define events

𝐴 =
Δ {𝜉 ∈D : sup

𝑡∈[0,1]
𝜉 (𝑡) ≥ 𝑎; sup

𝑡∈ (0,1]
𝜉 (𝑡) − 𝜉 (𝑡−) < 𝑏}, 𝐴𝑛 =

Δ {𝑋̄𝑛 ∈ 𝐴}. (12)

In words, 𝜉 ∈ 𝐴 means that the path 𝜉 crossed barrier 𝑎 even though no upward jumps in 𝜉 is larger than 𝑏.

For technical reasons, we also impose the following mild condition on the values of the constants 𝑎, 𝑏 > 0.

ASSUMPTION 3. 𝑎, 𝑏 > 0 and 𝑎/𝑏 ∉ Z.

In this section, we present a strongly efficient rare-event simulation algorithm for (𝐴𝑛)𝑛≥1. Specifically,

Section 3.1 presents the design of the importance sampling distribution Q𝑛, Section 3.2 discusses how we

apply the randomized Monte-Carlo debiasing technique in Result 4 in our algorithm, Section 3.3 discusses

how we combine the debiasing technique with SBA in Result 3, and Section 3.4 explains how to sample

from the importance sampling distribution Q𝑛. Combining all these components in Section 3.5, we propose

Algorithm 2 for rare-event simulation of P(𝐴𝑛) and establish its strong efficiency in Theorem 1. Section 3.6

addresses the case where the exact simulation of 𝑋<𝑧 (𝑡) is not available.

3.1. Importance Sampling Distributions Q𝑛 At the core of our algorithm is a principled design

of importance sampling strategies based on heavy-tailed large deviations. This can be seen as an extension

of the framework proposed in Chen et al. (2019). First, note that

𝑙∗ =Δ ⌈𝑎/𝑏⌉ (13)
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indicates the number of jumps required to cross the barrier 𝑎 starting from the origin if no jump is allowed

to be larger than 𝑏. Based on the sample-path large deviations reviewed in Section 2.2, we expect the events

𝐴𝑛 = {𝑋̄𝑛 ∈ 𝐴} to be almost always caused by exactly 𝑙∗ large upward jumps in 𝑋̄𝑛. These insights reveal

critical information regarding the conditional law P( · | 𝑋̄𝑛 ∈ 𝐴). More importantly, they lead to a natural

yet effective choice of importance sampling distributions to focus on the 𝑙∗-large-jump paths and provides

sufficient approximations to P( · | 𝑋̄𝑛 ∈ 𝐴). Specifically, for any 𝛾 ∈ (0, 𝑏), define events 𝐵
𝛾
𝑛 =

Δ {𝑋̄𝑛 ∈ 𝐵𝛾}

with

𝐵𝛾 =
Δ
{
𝜉 ∈D : #{𝑡 ∈ [0,1] : 𝜉 (𝑡) − 𝜉 (𝑡−) ≥ 𝛾} ≥ 𝑙∗

}
, (14)

where, for any 𝜉 ∈ D, we define 𝜉 (𝑡−) = lim𝑠↑𝑡 𝜉 (𝑠) as the left-limit of 𝜉 at time 𝑡. Intuitively speaking, the

parameter 𝛾 ∈ (0, 𝑏) acts as a threshold of “large jumps”: any path 𝜉 ∈ 𝐵𝛾 has at least 𝑙∗ upward jumps

that are considered large relative to the threshold level 𝛾. To prevent the likelihood ratio from blowing up

to infinity, we then consider an importance sampling distribution with defensive mixtures (see Hesterberg

(1995)) and define (for some 𝑤 ∈ (0,1))

Q𝑛 (·) =Δ 𝑤P(·) + (1−𝑤)P( · |𝐵𝛾
𝑛). (15)

Sampling from P( · |𝐵𝛾
𝑛), and hence Q𝑛 (·), is straightforward and will be addressed in Section 3.4.

With the design of the importance sampling distribution Q𝑛 in hand, one would naturally consider an

estimator for P(𝐴𝑛) of form I𝐴𝑛
· 𝑑P
𝑑Q𝑛

. This is due to

EQ𝑛

[
I𝐴𝑛

𝑑P
𝑑Q𝑛

]
= E[I𝐴𝑛

] = P(𝐴𝑛).

Here, we use EQ𝑛 to denote the expectation operator under law Q𝑛 and E for the expectation under P.

Nevertheless, the exact evaluation or simulation of I𝐴𝑛
= I{𝑋̄𝑛 ∈ 𝐴} is generally not computationally feasible

due to the infinite activities of the process 𝑋 , making it computationally infeasible to simulate or store the
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entire sample path with finite computational resources. This marks a significant difference from the tasks in

Chen et al. (2019), which focus on random walks or compound Poisson processes with constant drifts that

can be simulated exactly. To overcome this challenge, we instead consider estimators 𝐿𝑛 in the form of

𝐿𝑛 = 𝑍𝑛

𝑑P
𝑑Q𝑛

=
𝑍𝑛

𝑤 + 1−𝑤
P(𝐵𝛾

𝑛 )
I𝐵𝛾

𝑛

(16)

where 𝑍𝑛 can be simulated within finite computational resources and allows 𝐿𝑛 to recover the right expec-

tation under the importance sampling distribution Q𝑛, i.e., EQ𝑛 [𝐿𝑛] = P(𝐴𝑛). In Section 3.2, we elaborate

on the design of the estimators 𝑍𝑛.

3.2. Estimators 𝑍𝑛 Intuitively speaking, the goal is to construct 𝑍𝑛’s that can be plugged into (16)

as unbiased estimators of I𝐴𝑛
. To this end, we consider the following decomposition of the Lévy process 𝑋 .

For any 𝜉 ∈ D and 𝑡 ≥ 0, let Δ𝜉 (𝑡) = 𝜉 (𝑡) − 𝜉 (𝑡−) be the size of the discontinuity in 𝜉 at time 𝑡. Recall that

𝛾 ∈ (0, 𝑏) is the threshold of large jumps in the definition of 𝐵𝛾 in (14). Let

𝐽𝑛 (𝑡) =Δ
∑︁

𝑠∈[0,𝑡 ]
Δ𝑋 (𝑠)I

(
Δ𝑋 (𝑠) ≥ 𝑛𝛾

)
, (17)

Ξ𝑛 (𝑡) =Δ 𝑋 (𝑡) − 𝐽𝑛 (𝑡) = 𝑋 (𝑡) −
∑︁

𝑠∈[0,𝑡 ]
Δ𝑋 (𝑠)I

(
Δ𝑋 (𝑠) ≥ 𝑛𝛾

)
.

We highlight several important facts regarding the decomposition 𝑋 (𝑡) = 𝐽𝑛 (𝑡) +Ξ𝑛 (𝑡).

• By the definition of Q𝑛, the law of Ξ𝑛 remains unchanged under both Q𝑛 and P, which is identical to

the law of 𝑋<𝑛𝛾 , namely, a Lévy process with generating triplet (𝑐𝑋, 𝜎, 𝜈 | (−∞,𝑛𝛾) ).

• Under P, the process 𝐽𝑛 admits the law of a Lévy process with generating triplet (0,0, 𝜈 | [𝑛𝛾,∞) ), which

is a compound Poisson process.

• Under Q𝑛, the path {𝐽𝑛 (𝑡) : 𝑡 ∈ [0, 𝑛]} follows the same law as a Lévy process with generating triplet

(0,0, 𝜈 | [𝑛𝛾,∞) ), conditioned on having at least 𝑙∗ jumps over [0, 𝑛].

• Under both P and Q𝑛, the two processes 𝐽𝑛 and Ξ𝑛 are independent.
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Let 𝐽𝑛 (𝑡) = 1
𝑛
𝐽𝑛 (𝑛𝑡), 𝐽𝑛 = {𝐽𝑛 (𝑡) : 𝑡 ∈ [0,1]}, Ξ̄𝑛 (𝑡) = 1

𝑛
Ξ𝑛 (𝑛𝑡), and Ξ̄𝑛 = {Ξ̄𝑛 (𝑡) : 𝑡 ∈ [0,1]}. We now

discuss how the decomposition

𝑋̄𝑛 = 𝐽𝑛 + Ξ̄𝑛

can help us construct unbiased estimators of I𝐴𝑛
. First, recall that 𝛾 ∈ (0, 𝑏). As a result, in the definition of

events 𝐴𝑛 = {𝑋̄𝑛 ∈ 𝐴} in (12), the condition sup𝑡∈ (0,1] 𝜉 (𝑡) − 𝜉 (𝑡−) < 𝑏 only concerns the large jump process

𝐽𝑛 since any upward jump in Ξ̄𝑛 is bounded by 𝛾 < 𝑏. Therefore, with

𝐸 =
Δ {𝜉 ∈D : sup

𝑡∈ (0,1]
𝜉 (𝑡) − 𝜉 (𝑡−) < 𝑏}, 𝐸𝑛 =

Δ {𝐽𝑛 ∈ 𝐸} (18)

and

𝑀 (𝑡) =Δ sup
𝑠≤𝑡

𝑋 (𝑠), 𝑌 ∗𝑛 =
Δ I

(
𝑀 (𝑛) ≥ 𝑛𝑎

)
,

we have

I𝐴𝑛
=𝑌 ∗𝑛I𝐸𝑛

.

As discussed above, the exact evaluation of 𝑌 ∗𝑛 is generally not computationally possible. Instead, suppose

that we have access to a sequence of random variables (𝑌𝑚
𝑛 )𝑚≥0 that only take values in {0,1} and provide

progressively more accurate approximations to 𝑌 ∗𝑛 as 𝑚→∞. Then in light of the debiasing technique in

Result 4, one can consider (under the convention that 𝑌−1
𝑛 ≡ 0)

𝑍𝑛 =

𝜏∑︁
𝑚=0

𝑌𝑚
𝑛 −𝑌𝑚−1

𝑛

P(𝜏 ≥ 𝑚) I𝐸𝑛
(19)

where 𝜏 is Geom(𝜌) for some 𝜌 ∈ (0,1) and is independent of everything else. That is, P(𝜏 ≥ 𝑚) = 𝜌𝑚−1

for all 𝑚 ≥ 1. Indeed, this construction of 𝑍𝑛 is justified by the following proposition. We defer the proof to

Section 6.1.
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PROPOSITION 1. Let 𝐶0 > 0, 𝜌0 ∈ (0,1), 𝜇 > 2𝑙∗(𝛼− 1), and 𝑚̄ ∈N. Suppose that

P
(
𝑌 ∗𝑛 ≠𝑌𝑚

𝑛

��� D(𝐽𝑛) = 𝑘

)
≤ 𝐶0𝜌

𝑚
0 · (𝑘 + 1) ∀𝑘 ≥ 0, 𝑛 ≥ 1, 𝑚 ≥ 𝑚̄ (20)

whereD(𝜉) counts the number of discontinuities in 𝜉 for any 𝜉 ∈D. Besides, suppose that for all Δ ∈ (0,1),

P
(
𝑌 ∗𝑛 ≠𝑌𝑚

𝑛 , 𝑋̄𝑛 ∉ 𝐴Δ
��� D(𝐽𝑛) = 𝑘

)
≤
𝐶0𝜌

𝑚
0

Δ2𝑛𝜇
∀𝑛 ≥ 1, 𝑚 ≥ 0, 𝑘 = 0,1, · · · , 𝑙∗ − 1, (21)

where 𝐴Δ =
{
𝜉 ∈D : sup𝑡∈[0,1] 𝜉 (𝑡) ≥ 𝑎−Δ

}
. Then given 𝜌 ∈ (𝜌0,1), there exists some 𝛾̄ = 𝛾̄(𝜌) ∈ (0, 𝑏) such

that for all 𝛾 ∈ (0, 𝛾̄), the estimators (𝐿𝑛)𝑛≥1 specified in (16) and (19) are unbiased and strongly efficient

for P(𝐴𝑛) = P( 𝑋̄𝑛 ∈ 𝐴) under the importance sampling distribution Q𝑛 in (15).

3.3. Construction of 𝑌𝑚
𝑛 In light of Proposition 1, our next goal is to design 𝑌𝑚

𝑛 ’s that provide

sufficient approximations to 𝑌 ∗𝑛 = I(𝑀 (𝑛) ≥ 𝑛𝑎) and satisfy the conditions (20) and (21).

Recall the decomposition of 𝑋 (𝑡) = Ξ𝑛 (𝑡) +𝐽𝑛 (𝑡) in (17). Under both Q𝑛 and P, the processesΞ𝑛 and 𝐽𝑛 are

independent, and Ξ𝑛 admits the law of 𝑋<𝑛𝛾 , i.e., a Lévy process with generating triplet (𝑐𝑋, 𝜎, 𝜈 | (−∞,𝑛𝛾) ).

This section discusses how, after sampling 𝐽𝑛 from Q𝑛, we approximate the supremum of Ξ𝑛. Specifically,

on event {D(𝐽𝑛) = 𝑘}, i.e., the process 𝐽𝑛 makes 𝑘 jumps over [0, 𝑛], 𝐽𝑛 admits the form of 𝜁𝑘 with

𝜁𝑘 (𝑡) =
𝑘∑︁
𝑖=1

𝑧𝑖I[𝑢𝑖 ,𝑛] (𝑡) ∀𝑡 ∈ [0, 𝑛] (22)

for some 𝑧𝑖 ∈ [𝑛𝛾,∞) and 𝑢1 < 𝑢2 < · · · < 𝑢𝑘 . This allows us to partition [0, 𝑛] into 𝑘 + 1 disjoint intervals

[0, 𝑢1), [𝑢1, 𝑢2), . . . , [𝑢𝑘−1, 𝑢𝑘), [𝑢𝑘 ,1]. We adopt the convention 𝑢0 ≡ 0, 𝑢𝑘+1 ≡ 1 and set

𝐼𝑖 = [𝑢𝑖−1, 𝑢𝑖) ∀𝑖 ∈ [𝑘], 𝐼𝑘+1 = [𝑢𝑘 ,1] . (23)
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For 𝜁𝑘 =
∑𝑘

𝑖=1 𝑧𝑖I[𝑢𝑖 ,𝑛] , define

𝑀
(𝑖) ,∗
𝑛 (𝜁𝑘) =Δ sup

𝑡∈𝐼𝑖
Ξ𝑛 (𝑡) −Ξ𝑛 (𝑢𝑖−1) (24)

as the supremum of the fluctuations of Ξ𝑛 (𝑡) over 𝐼𝑖. Define random function

𝑌 ∗𝑛 (𝜁𝑘) =
Δ max
𝑖∈[𝑘+1]

I
(
Ξ𝑛 (𝑢𝑖−1) + 𝜁𝑘 (𝑢𝑖−1) +𝑀 (𝑖) ,∗𝑛 (𝜁𝑘) ≥ 𝑛𝑎

)
, (25)

and note that 𝑌 ∗𝑛 (𝐽𝑛) = I(sup𝑡∈[0,𝑛] 𝑋 (𝑡) ≥ 𝑛𝑎).

In theory, the representation (25) provides an algorithm for the simulation of I(sup𝑡∈[0,𝑛] 𝑋 (𝑡) ≥ 𝑛𝑎).

Nevertheless, the exact simulation of the supremum 𝑀
(𝑖) ,∗
𝑛 (𝜁𝑘) is generally not available. Instead, we apply

SBA introduced in Section 2.3 to approximate 𝑀 (𝑖) ,∗𝑛 (𝜁𝑘), thus providing the construction of𝑌𝑚
𝑛 . Specifically,

define

𝑙
(𝑖)
1 =𝑉

(𝑖)
1 · (𝑢𝑖 − 𝑢𝑖−1); (26)

𝑙
(𝑖)
𝑗

=𝑉
(𝑖)
𝑗
· (𝑢𝑖 − 𝑢𝑖−1 − 𝑙 (𝑖)1 − 𝑙

(𝑖)
2 − · · · − 𝑙

(𝑖)
𝑗−1) ∀ 𝑗 ≥ 2 (27)

where each 𝑉
(𝑖)
𝑗

is an iid copy of Unif(0,1). That is, for each 𝑖 ∈ [𝑘 + 1], the sequence (𝑙 (𝑖)
𝑗
) 𝑗≥1 is defined

under the recursion in (8), with 𝑇 = 𝑢𝑖 − 𝑢𝑖−1 set as the length of 𝐼𝑖. Then, conditioning on the values of

𝑙
(𝑖)
𝑗

’s, we sample

𝜉
(𝑖)
𝑗
∼ P

(
Ξ𝑛 (𝑙 (𝑖)𝑗 ) ∈ ·

)
, (28)
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i.e., 𝜉 (𝑖)
𝑗

is an independent copy of Ξ𝑛 (𝑙 (𝑖)𝑗 ), with all 𝜉 (𝑖)
𝑗

being independently generated. Result 3 then

implies
(
Ξ𝑛 (𝑢𝑖) −Ξ𝑛 (𝑢𝑖−1), 𝑀 (𝑖) ,∗𝑛 (𝜁𝑘)

)
=
𝑑 (∑

𝑗≥1 𝜉
(𝑖)
𝑗
,
∑

𝑗≥1(𝜉
(𝑖)
𝑗
)+

)
for each 𝑖 ∈ [𝑘 + 1]. Furthermore, by

summing up only finitely many 𝜉
(𝑖)
𝑗

’s, we define

𝑀̂
(𝑖) ,𝑚
𝑛 (𝜁𝑘) =

𝑚+⌈log2 (𝑛𝑑 ) ⌉∑︁
𝑗=1

(𝜉 (𝑖)
𝑗
)+ (29)

as an approximation to 𝑀
(𝑖) ,∗
𝑛 (𝜁𝑘) defined in (24). Here, 𝑑 > 0 is another parameter of the algorithm. For

technical reasons, we add an extra ⌈log2(𝑛𝑑)⌉ term in the summation in (29), which helps ensure that the

algorithm achieves strong efficiency as 𝑛→∞ while only introducing a minor increase in the computational

complexity.

Now, we are ready to present the design of the approximators 𝑌𝑚
𝑛 . For 𝜁𝑘 =

∑𝑘
𝑖=1 𝑧𝑖I[𝑢𝑖 ,𝑛] , define the

random function

𝑌𝑚
𝑛 (𝜁𝑘) = max

𝑖∈[𝑘+1]
I
( 𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞)
𝑗
+

𝑖−1∑︁
𝑞=1

𝑧𝑞 + 𝑀̂ (𝑖)𝑛 (𝜁𝑘) ≥ 𝑛𝑎
)
. (30)

Here, note that
∑𝑖−1

𝑞=1 𝑧𝑞 = 𝜁𝑘 (𝑢𝑖−1). As a high-level description, the algorithm proceeds as follows. After

sampling 𝐽𝑛 from the importance sampling distribution Q𝑛 defined in (15), we plug 𝑌𝑚
𝑛 (𝐽𝑛) into 𝑍𝑛 defined

in (19), which in turn allows us to simulate 𝐿𝑛 = 𝑍𝑛
𝑑P
𝑑Q𝑛

as the importance sampling estimator under Q𝑛.

REMARK 2. At first glance, one may get the impression that the simulation of𝑌𝑚
𝑛 involves the summation

of infinitely many elements in
∑𝑖−1

𝑞=1
∑

𝑗≥0 𝜉
(𝑞) ,𝑚
𝑗

. Fortunately, the truncation index 𝜏 in 𝑍𝑛 (see (19)) is

almost surely finite. Therefore, when running the algorithm in practice, after 𝜏 is decided, there is no need

to simulate any 𝑌𝑚
𝑛 beyond 𝑚 ≤ 𝜏. Given the construction of 𝑀̂ (𝑖) ,𝑚𝑛 (𝜁𝑘) in (29), the simulation of 𝑌𝑚

𝑛 (𝜁𝑘)

only requires (for each 𝑖 ∈ [𝑘 + 1]) 𝜉
(𝑖)
1 , 𝜉

(𝑖)
2 , . . . , 𝜉

(𝑖)
𝜏+⌈log2 (𝑛𝑑 ) ⌉

, as well as the sum
∑

𝑗≥𝜏+⌈log2 (𝑛𝑑 ) ⌉+1 𝜉
(𝑖)
𝑗

.

Furthermore, conditioning on the value of 𝑢𝑖 − 𝑢𝑖−1 −
∑𝜏+⌈log2 (𝑛𝑑 ) ⌉

𝑗=1 𝜉
(𝑖)
𝑗

= 𝑡, the sum
∑

𝑗≥𝜏+⌈log2 (𝑛𝑑 ) ⌉+1 𝜉
(𝑖)
𝑗

admits the law of Ξ𝑛 (𝑡) (see Result 3). This allows us to simulate
∑

𝑗≥𝜏+⌈log2 (𝑛𝑑 ) ⌉+1 𝜉
(𝑖)
𝑗

in one shot.
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Note that to implement the importance sampling algorithm and ensure strong efficiency, the following

tasks still remain to be addressed.

(𝑖) As mentioned above, the evaluation of𝑌𝑚
𝑛 (𝐽𝑛) requires the ability to first sample 𝐽𝑛 from the importance

sampling distribution Q𝑛 defined in (15). We address this in Algorithm 1 proposed in Section 3.4. In

summary, the simulation algorithm of estimators 𝐿𝑛 is detailed in Algorithm 2.

(𝑖𝑖) The strong efficiency of the proposed algorithm needs to be justified by verifying the conditions in

Proposition 1. This will be done in Section 3.5 by establishing Theorem 1.

(𝑖𝑖𝑖) Simulating 𝜉
(𝑖)
𝑗

’s requires the exact simulation of 𝑋<𝑛𝛾 (𝑡), which may not be computationally feasible

in certain cases. To address this challenge, Section 3.6 proposes Algorithm 3, which builds upon

Algorithm 2 and incorporates another layer of approximation via ARA.

3.4. Sampling from P( · |𝐵𝛾
𝑛) In this section, we revisit the task of sampling from P( · |𝐵𝛾

𝑛), which

is at the core of the implementation of the importance sampling distribution Q𝑛 in (15).

Recall that under P, the process 𝐽𝑛 is a compound Poisson process with generating triplet (0,0, 𝜈 | [𝑛𝛾,∞) ).

More precisely, let 𝑁𝑛 (·) be a Poisson process with rate 𝜈[𝑛𝛾,∞), and we use (𝑆𝑖)𝑖≥1 to denote the arrival

times of jumps in 𝑁𝑛 (·). Let (𝑊𝑖)𝑖≥1 be a sequence of iid random variables from

𝜈normalized
𝑛 (·) = 𝜈𝑛 (·)

𝜈[𝑛𝛾,∞) , 𝜈𝑛 (·) = 𝜈
(
· ∩[𝑛𝛾,∞)

)
and let 𝑊𝑖’s be independent of 𝑁𝑛 (·). Under P, we have

𝐽𝑛 (𝑡) =𝑑
𝑁𝑛 (𝑡 )∑︁
𝑖=1

𝑊𝑖 =
∑︁
𝑖≥1

𝑊𝑖I[𝑆𝑖 ,∞) (𝑡) ∀𝑡 ≥ 0.

Furthermore, for each 𝑘 ≥ 0, conditioning on {𝑁𝑛 (𝑛) = 𝑘}, the law of 𝑆1, . . . , 𝑆𝑘 is equivalent to that of the

order statistics of 𝑘 iid samples from Unif(0, 𝑛), and𝑊𝑖’s are still independent of 𝑆𝑖’s with the law unaltered.

Therefore, the sampling of 𝐽𝑛 from P( · |𝐵𝛾
𝑛) can proceed as follows. We first generate 𝑘 from the distribution

of Poisson(𝑛𝜈[𝑛𝛾,∞)), conditioning on 𝑘 ≥ 𝑙∗. Then, independently, we generate 𝑆1, · · · , 𝑆𝑘 as the order

statistics of 𝑘 iid samples from Unif(0, 𝑛), and 𝑊1, · · · ,𝑊𝑘 as iid samples of law 𝜈normalized
𝑛 (·). It is worth
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mentioning that the sampling of 𝑊𝑖 can be addressed with the help of the inverse measure. Specifically,

define 𝑄←𝑛 (𝑦) =
Δ inf{𝑠 > 0 : 𝜈𝑛 [𝑠,∞) < 𝑦} as the inverse of 𝜈𝑛, and observe that

𝑦 ≤ 𝜈𝑛 [𝑠,∞) ⇐⇒ 𝑄←𝑛 (𝑦) ≥ 𝑠.

More importantly, for 𝑈 ∼ Unif(0, 𝜈𝑛 [𝑛𝛾,∞)), the law of 𝑄←𝑛 (𝑈) is 𝜈normalized
𝑛 (·). This leads to the steps

detailed in Algorithm 1.

Algorithm 1 Simulation of 𝐽𝑛 from P( · |𝐵𝛾
𝑛)

Require: 𝑛 ∈N, 𝑙∗ ∈N, 𝛾 > 0, the Lévy measure 𝜈.

1: Sample 𝑘 from a Poisson distribution with rate 𝑛𝜈[𝑛𝛾,∞) conditioning on 𝑘 ≥ 𝑙∗

2: Simulate Γ1, · · · ,Γ𝑘
iid∼ 𝑈𝑛𝑖 𝑓

(
0, 𝜈𝑛 [𝑛𝛾,∞)

)
3: Simulate 𝑈1, · · · ,𝑈𝑘

iid∼ 𝑈𝑛𝑖 𝑓 (0, 𝑛)

4: Return 𝐽𝑛 =
∑𝑘

𝑖=1 𝑄
←
𝑛 (Γ𝑖)I[𝑈𝑖 ,𝑛]

3.5. Strong Efficiency and Computational Complexity With all the discussions above, we

propose Algorithm 2 for rare-event simulation of P(𝐴𝑛). Specifically, here is a list of the parameters of the

algorithm.

• 𝛾 ∈ (0, 𝑏): the threshold in 𝐵𝛾 defined in (14),

• 𝑤 ∈ (0,1): the weight of the defensive mixture in Q𝑛; see (15),

• 𝜌 ∈ (0,1): the geometric rate of decay for P(𝜏 ≥ 𝑚) in (19),

• 𝑑 > 0: determining the log2(𝑛𝑑) term in (29).

The choice of 𝑤 ∈ (0,1) won’t affect the strong efficiency of the algorithm. Meanwhile, under proper

parametrization, Algorithm 2 meets conditions (20) and (21) stated in Proposition 1 and attains strong

efficiency. This is verified in Theorem 1.

THEOREM 1. Let 𝑑 > max{2, 2𝑙∗(𝛼−1)} and 𝑤 ∈ (0,1). There exists 𝜌0 ∈ (0,1) such that the following

claim holds: Given 𝜌 ∈ (𝜌0,1), there exists 𝛾̄ ∈ (0, 𝑏) such that Algorithm 2 is unbiased and strongly efficient

under any 𝛾 ∈ (0, 𝛾̄).
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We defer the proof to Section 6.2. In fact, in Section 3.6 we propose Algorithm 3, which can be seen as an

extended version of Algorithm 2 with another layer of approximation. The strong efficiency of Algorithm 2

follows directly from that of Algorithm 3 (i.e., by setting 𝜅 = 0 in the proof of Theorem 2). The choices of 𝛾̄

and 𝜌̄ that ensure strong efficiency are also specified at the end of Section 3.6.

REMARK 3. To conclude, we add a remark regarding the computational complexity of Algorithm 2

under the goal of attaining a given level of relative error at a specified confidence level. First, consider the

case where the complexity of simulation of 𝑋<𝑧 (𝑡) scales linearly with 𝑡 (uniformly for all 𝑧 ∈ [𝑧0,∞] for

some constant 𝑧0). This is a standard since the number of jumps we expect to simulate over [0, 𝑡] grows

linearly with 𝑡. Then, the complexity of the SBA steps at step 13 of Algorithm 2 also scales linearly with

𝑛, as the stick lengths of 𝑙 (𝑖)
𝑗

’s, in expectation, grow linearly with 𝑛 because we deal with the time horizon

[0, 𝑛] given the scale factor 𝑛. Next, since the same law for the truncation index 𝜏 (see step 8 of Algorithm 2)

is applied for all 𝑛, the only other factor that is varying with 𝑛 is 𝑡𝑛 = ⌈log2(𝑛𝑑)⌉ in the loop at step 10.

The strong efficiency of the algorithm then implies a computational complexity of order 𝑂 (𝑛 · log2 𝑛). If

we instead assume that the cost of simulating 𝑋<𝑧 (𝑡) is also uniformly bounded for all 𝑡, then the overall

complexity of Algorithm 2 is further reduced to 𝑂 (log2 𝑛).

In comparison, the crude Monte Carlo method requires a number of samples that is inversely proportional

to the target probability P(𝐴𝑛) ≈ 𝑂 (1/𝑛𝑙
∗ (𝛼−1) ) (see Lemma 1) with 𝛼 > 1 being the heavy-tailed index

in Assumption 1 and 𝑙∗ ≥ 1 defined in (13). Hypothetically, assuming that the evaluation of I𝐴𝑛
(which at

least requires the simulation of 𝑋 (𝑡) and 𝑀 (𝑡)) is computationally feasible at a cost that scales linearly with

𝑛, we end up with a computational complexity of 𝑂 (𝑛 · 𝑛𝑙∗ (𝛼−1) ) (compared to the 𝑂 (𝑛 · log2 𝑛) cost of

our algorithm). Similarly, if we assume that the cost of generating I𝐴𝑛
is uniformly bounded for all 𝑛, then

the complexity of the crude Monte-Carlo method is 𝑂 (𝑛𝑙∗ (𝛼−1) ) (compared to the 𝑂 (log2 𝑛) cost of our

algorithm). In summary, not only does the proposed importance sampling algorithm address Lévy processes

with infinite activities that are not simulatable for crude Monte Carlo methods, but it also enjoys a significant

improvement in terms of computational complexity, with the advantage becoming even more evident for

multiple-jump events with large 𝑙∗.
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Algorithm 2 Strongly Efficient Estimation of P(𝐴𝑛)
Require: 𝑤 ∈ (0, 1) , 𝛾 > 0, 𝑑 > 0, 𝜌 ∈ (0, 1) as the parameters of the algorithm; 𝑎, 𝑏 > 0 as the characterization of the set 𝐴; (𝑐𝑋 , 𝜎, 𝜈) as the

generating triplet of 𝑋 (𝑡 ) .

1: Set 𝑡𝑛 = ⌈log2 (𝑛𝑑 ) ⌉

2: if Unif(0, 1) < 𝑤 then ⊲ Sample 𝐽𝑛 from Q𝑛

3: Sample 𝐽𝑛 =
∑𝑘

𝑖=1 𝑧𝑖I[𝑢𝑖 ,𝑛] from P
4: else
5: Sample 𝐽𝑛 =

∑𝑘
𝑖=1 𝑧𝑖I[𝑢𝑖 ,𝑛] from P( · |𝐵𝛾

𝑛 ) using Algorithm 1
6: end if
7: Set 𝑢0 = 0, 𝑢𝑘+1 = 𝑛.

8: Sample 𝜏 ∼Geom(𝜌) ⊲ Decide Truncation Index 𝜏

9: for 𝑖 = 1, 2, . . . , 𝑘 + 1 do ⊲ Stick-Breaking Procedure
10: for 𝑗 = 1, 2, . . . , 𝑡𝑛 + 𝜏 do
11: Sample 𝑉

(𝑖)
𝑗
∼Unif(0, 1)

12: Set 𝑙 (𝑖)
𝑗

=𝑉
(𝑖)
𝑗
(𝑢𝑖 − 𝑢𝑖+1 − 𝑙 (𝑖)1 − 𝑙 (𝑖)2 − . . . − 𝑙 (𝑖)

𝑗−1 )
13: Sample 𝜉

(𝑖)
𝑗
∼ P

(
𝑋<𝑛𝛾 (𝑙 (𝑖)

𝑗
) ∈ ·

)
14: end for
15: Set 𝑙 (𝑖)

𝑡𝑛+𝜏+1 = 𝑢𝑖 − 𝑢𝑖−1 − 𝑙 (𝑖)1 − 𝑙 (𝑖)2 − . . . − 𝑙 (𝑖)𝑡𝑛+𝜏
16: Sample 𝜉

(𝑖)
𝑡𝑛+𝜏+1 ∼ P

(
𝑋<𝑛𝛾 (𝑙 (𝑖)

𝑡𝑛+𝜏+1 ) ∈ ·
)

17: end for

18: for 𝑚 = 1, · · · , 𝜏 do ⊲ Evaluate 𝑌̂𝑚
𝑛

19: for 𝑖 = 1, 2, . . . , 𝑘 + 1 do
20: Set 𝑀̂ (𝑖) ,𝑚𝑛 =

∑𝑖−1
𝑞=1

∑𝑡𝑛+𝜏+1
𝑗=1 𝜉

(𝑞)
𝑗
+∑𝑖−1

𝑞=1 𝑧𝑞 +
∑𝑡𝑛+𝑚

𝑗=1 ( 𝜉
(𝑖)
𝑗
)+

21: end for
22: Set 𝑌̂𝑚

𝑛 = I
{

max𝑖=1,...,𝑘+1 𝑀̂
(𝑖) ,𝑚
𝑛 ≥ 𝑛𝑎

}
23: end for
24: Set 𝑍𝑛 = 𝑌̂1

𝑛 +
∑𝜏

𝑚=2 (𝑌̂
𝑚
𝑛 − 𝑌̂𝑚−1

𝑛 )
/
𝜌𝑚−1 ⊲ Return the Estimator 𝐿𝑛

25: if max𝑖=1, · · · ,𝑘 𝑧𝑖 > 𝑏 then
26: Return 𝐿𝑛 = 0.
27: else
28: Set 𝜆𝑛 = 𝑛𝜈 [𝑛𝛾,∞) , 𝑝𝑛 = 1 −∑𝑙∗−1

𝑙=0 𝑒−𝜆𝑛 𝜆𝑙𝑛
𝑙! , 𝐼𝑛 = I{𝐽𝑛 ∈ 𝐵𝛾

𝑛 }
29: Return 𝐿𝑛 = 𝑍𝑛/(𝑤 + 1−𝑤

𝑝𝑛
𝐼𝑛 )

30: end if

3.6. Construction of 𝑌𝑚
𝑛 with ARA As stressed earlier, implementing Algorithm 3.5 requires the

ability to sample from P(𝑋<𝑛𝛾 (𝑡) ∈ · ). The goal of this section is to address the challenge when the exact

simulation of 𝑋<𝑛𝛾 (𝑡) is not available. The plan is to incorporate the Asmussen-Rosiński approximation

(ARA) in Asmussen and Rosiński (2001) into the design of the approximation 𝑌𝑚
𝑛 proposed in Section 3.3.

To be specific, let

𝜅𝑛,𝑚 =
Δ 𝜅𝑚

𝑛𝑟
∀𝑛 ≥ 1, 𝑚 ≥ 0 (31)

where 𝜅 ∈ (0,1) and 𝑟 > 0 are two additional parameters of our algorithm. As a convention, we set 𝜅𝑛,−1 ≡ 1.

Without loss of generality, we consider 𝑛 large enough such that 𝑛𝛾 > 1 = 𝜅𝑛,−1. For the Lévy process
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Ξ𝑛 = 𝑋<𝑛𝛾 with the generating triplet (𝑐𝑋, 𝜎, 𝜈 | (−∞,𝑛𝛾) ), consider the following decomposition (with 𝐵(𝑡)

being a standard Brownian motion)

Ξ𝑛 (𝑡) = 𝑐𝑋𝑡 +𝜎𝐵(𝑡) +
∑︁
𝑠≤𝑡

Δ𝑋 (𝑠)I
(
Δ𝑋 (𝑠) ∈ (−∞,−1] ∪ [1, 𝑛𝛾)

)
︸                                                 ︷︷                                                 ︸

=
Δ
𝐽𝑛,−1 (𝑡 )

(32)

+
∑︁
𝑚≥0

[∑︁
𝑠≤𝑡

Δ𝑋 (𝑠)I
(
|Δ𝑋 (𝑠) | ∈ [𝜅𝑛,𝑚, 𝜅𝑛,𝑚−1)

)
− 𝑡 · 𝜈

(
(−𝜅𝑛,𝑚−1,−𝜅𝑛,𝑚] ∪ [𝜅𝑛,𝑚, 𝜅𝑛,𝑚−1)

)
︸                                                                                                        ︷︷                                                                                                        ︸

=
Δ
𝐽𝑛,𝑚 (𝑡 )

]
.

Here, for any 𝑚 ≥ 0, 𝐽𝑛,𝑚 is a martingale with 𝑣𝑎𝑟 [𝐽𝑛,𝑚(1)] = 𝜎̄2(𝜅𝑛,𝑚−1) − 𝜎̄2(𝜅𝑛,𝑚) where

𝜎̄2(𝑐) =Δ
∫
(−𝑐,𝑐)

𝑥2𝜈(𝑑𝑥) ∀𝑐 ∈ (0,1] . (33)

Generally speaking, the difficulty of implementing Algorithm 3.5 lies in the exact simulation of the martingale∑
𝑚≥0 𝐽𝑛,𝑚. In particular, whenever we have 𝜈((−∞,0) ∪ (0,∞)) =∞ for the Lévy measure 𝜈, the expected

number of jumps in
∑

𝑚≥0 𝐽𝑛,𝑚 (and hence 𝑋<𝑛𝛾 and 𝑋) will be infinite over any time interval with positive

length. By applying ARA, our goal is to approximate the jump martingale 𝐽𝑛,𝑚’s using Brownian motions,

which yields a process that is amenable to exact simulation. To do so, let (𝑊𝑚)𝑚≥1 be a sequence of iid

copies of standard Brownian motions, which are also independent of 𝐵(𝑡). For each 𝑚 ≥ 0, define

Ξ̆𝑚
𝑛 (𝑡) =

Δ
𝑐𝑋𝑡 +𝜎𝐵(𝑡) +

𝑚∑︁
𝑞=−1

𝐽𝑛,𝑞 (𝑡) +
∑︁

𝑞≥𝑚+1

√︃
𝜎̄2(𝜅𝑛,𝑞−1) − 𝜎̄2(𝜅𝑛,𝑞) ·𝑊𝑞 (𝑡). (34)

Here, the process Ξ̆𝑚
𝑛 can be interpreted as an approximation to Ξ𝑛, where the jump martingale (with jump

sizes under 𝜅𝑛,𝑚) is substituted by a standard Brownian motion with the same variance. Note that for any

𝑡 > 0, the random variable Ξ̆𝑚
𝑛 (𝑡) is exactly simulatable, as it is a convolution of a compound Poisson process

with constant drift and a Gaussian random variable.
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Based on the approximations Ξ̆𝑚
𝑛 in (34), we apply SBA and reconstruct 𝑀̂ (𝑖) ,𝑚𝑛 (originally defined in (29))

and 𝑌𝑚
𝑛 (originally defined in (30)) as follows. Let 𝜁𝑘 (𝑡) =

∑𝑘
𝑖=1 𝑧𝑖I[𝑢𝑖 ,𝑛] (𝑡) be a piece-wise step function

with 𝑘 jumps over (0, 𝑛], i.e., admitting the form in (22). Recall that the jump times in 𝜁𝑘 leads to a partition

of [0, 𝑛] of (𝐼𝑖)𝑖∈[𝑘+1] defined in (23). For any 𝐼𝑖, let the sequence 𝑙
(𝑖)
𝑗

’s be defined as in (26)–(27). Next,

conditioning on (𝑙 (𝑖)
𝑗
) 𝑗≥1, one can sample 𝜉

(𝑖) ,𝑚
𝑗

, 𝜉
(𝑖)
𝑗

as

(
𝜉
(𝑖)
𝑗
, 𝜉
(𝑖) ,0
𝑗

, 𝜉
(𝑖) ,1
𝑗

, 𝜉
(𝑖) ,2
𝑗

, . . .) =𝑑
(
Ξ𝑛 (𝑙 (𝑖)𝑗 ), Ξ̆

0
𝑛 (𝑙
(𝑖)
𝑗
), Ξ̆1

𝑛 (𝑙
(𝑖)
𝑗
), Ξ̆2

𝑛 (𝑙
(𝑖)
𝑗
), . . .

)
. (35)

The coupling in (10) then implies

(
Ξ𝑛 (𝑢𝑖) −Ξ𝑛 (𝑢𝑖−1), sup

𝑡∈𝐼𝑖
Ξ𝑛 (𝑡) −Ξ𝑛 (𝑢𝑖−1), Ξ̆0

𝑛 (𝑢𝑖) − Ξ̆0
𝑛 (𝑢𝑖−1), sup

𝑡∈𝐼𝑖
Ξ̆0
𝑛 (𝑡) − Ξ̆0

𝑛 (𝑢𝑖−1), (36)

Ξ̆1
𝑛 (𝑢𝑖) − Ξ̆1

𝑛 (𝑢𝑖−1), sup
𝑡∈𝐼𝑖

Ξ̆1
𝑛 (𝑡) − Ξ̆1

𝑛 (𝑢𝑖−1), . . .
)

=
𝑑

(∑︁
𝑗≥1

𝜉
(𝑖)
𝑗
,
∑︁
𝑗≥1
(𝜉 (𝑖)

𝑗
)+,

∑︁
𝑗≥1

𝜉
(𝑖) ,0
𝑗

,
∑︁
𝑗≥1
(𝜉 (𝑖) ,0

𝑗
)+,

∑︁
𝑗≥1

𝜉
(𝑖) ,1
𝑗

,
∑︁
𝑗≥1
(𝜉 (𝑖) ,1

𝑗
)+, . . .

)
.

Now, we define

𝑀̂
(𝑖) ,𝑚
𝑛 (𝜁𝑘) =

𝑚+⌈log2 (𝑛𝑑 ) ⌉∑︁
𝑗=1

(𝜉 (𝑖) ,𝑚
𝑗
)+ (37)

as an approximation to 𝑀
(𝑖) ,∗
𝑛 (𝜁𝑘) = sup𝑡∈𝐼𝑖 Ξ𝑛 (𝑡) − Ξ𝑛 (𝑢𝑖−1) =

∑
𝑗≥1(𝜉

(𝑖)
𝑗
)+ using both ARA and SBA.

Compared to the original design in (29), the main difference in (37) is that we substitute 𝜉 (𝑖)
𝑗

with 𝜉
(𝑖) ,𝑚
𝑗

, and

the latter is exactly simulatable as, conditioning on the values of 𝑙 (𝑖)
𝑗

’s, it admits the law of Ξ̆𝑚
𝑛 . Similarly, let

𝑌𝑚
𝑛 (𝜁𝑘) = max

𝑖∈[𝑘+1]
I
( 𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞) ,𝑚
𝑗

+
𝑖−1∑︁
𝑞=1

𝑧𝑞 + 𝑀̂ (𝑖) ,𝑚𝑛 (𝜁𝑘) ≥ 𝑛𝑎
)
; (38)
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Again, the main difference between (38) and (30) is that we incorporate ARA and substitute 𝜉
(𝑖)
𝑗

’s with

𝜉
(𝑖) ,𝑚
𝑗

’s.

Plugging the design of𝑌𝑚
𝑛 (𝜁𝑘) in (38) into the estimator 𝑍𝑛 in (19), we propose Algorithm 3 for rare-event

simulation of P(𝐴𝑛) when exact simulation of 𝑋<𝑛𝛾 is not available. Below is a summary of the parameters

of the algorithm.

• 𝛾 ∈ (0, 𝑏): the threshold in 𝐵𝛾 defined in (14),

• 𝑤 ∈ (0,1): the weight of the defensive mixture in Q𝑛; see (15),

• 𝜌 ∈ (0,1): the geometric rate of decay for P(𝜏 ≥ 𝑚) in (19),

• 𝜅 ∈ [0,1), 𝑟 > 0: determining the truncation threshold 𝜅𝑛,𝑚 in (31),

• 𝑑 > 0: determining the log2(𝑛𝑑) term in (37).

Theorem 2 justifies that, under proper parametrization, Algorithm 3 is unbiased and strongly efficient.

THEOREM 2. Let 𝜇 > 2𝑙∗(𝛼 − 1) and 𝛽+ ∈ (𝛽,2) where 𝛼 > 1 is the heavy-tail index and 𝛽 ∈ (0,2) is

the Blumenthal-Getoor index in Assumption 1. Let 𝑤 ∈ (0,1) and

𝜅2−𝛽+ <
1
2
, 𝑟 (2− 𝛽+) > max{2, 𝜇 − 1}, 𝑑 > max{2,2𝜇 − 1}. (39)

There exists 𝜌0 ∈ (0,1) such that the following claim holds: Given 𝜌 ∈ (𝜌0,1), there exists 𝛾̄ ∈ (0, 𝑏) such

that Algorithm 3 is unbiased and strongly efficient under any 𝛾 ∈ (0, 𝛾̄).

In Section 6.2 we provide the proof, the key arguments of which are the verification of conditions (20) and (21)

in Proposition 1. Here, we specify the choices of the parameters. First, pick 𝛼3 ∈ (0, 1
𝜆
), 𝛼4 ∈ (0, 1

2𝜆 ) where

𝜆 > 0 is the constant in Assumption 2. Next, pick 𝛼2 ∈ (0, 𝛼3
2 ∧ 1) and 𝛼1 ∈ (0, 𝛼2

𝜆
). Also, fix 𝛿 ∈ (1/

√
2,1).

This allows us to pick 𝜌0 ∈ (0,1) such that

𝜌0 > max
{
𝛿𝛼1 ,

𝜅2−𝛽+

𝛿2 ,
1
√

2𝛿
, 𝛿𝛼2−𝜆𝛼1 , 𝛿1−𝜆𝛼3 , 𝛿−𝛼2+

𝛼3
2

}
.

After picking 𝜌 ∈ (𝜌0,1), one can find some 𝑞 > 1 such that 𝜌1/𝑞
0 < 𝜌. Let 𝑝 > 1 be such that 1

𝑝
+ 1

𝑞
= 1. Let

Δ > 0 be small enough such that 𝑎 −Δ > (𝑙∗ − 1)𝑏. Then, we pick 𝛾̄ ∈ (0, 𝑏) small enough such that

𝑎 −Δ− (𝑙∗ − 1)𝑏
𝛾̄

+ 𝑙∗ − 1 > 2𝑙∗𝑝.
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Again, the details of the parameter choices can be found at the beginning of Section 6. It is also worth

mentioning that, by setting 𝜅 = 0, Algorithm 3 would reduce to Algorithm 2, as 𝜉
(𝑖) ,𝑚
𝑗

’s in (36) would

reduce to 𝜉
(𝑖)
𝑗

’s in (28); in other words, the ARA mechanism is effective only if the truncation threshold

𝜅𝑛,𝑚 = 𝜅𝑚/𝑛𝑟 > 0. As a result, Theorem 1 follows directly from Theorem 2 by setting 𝜅 = 0.

REMARK 4. While Algorithm 3 terminates within finite steps almost surely, its computational complex-

ity may not be finite in expectation. This is partially due to the implementation of ARA as we approximate

the jump martingale 𝐽𝑛,𝑚(𝑡) in (32) using a independent Brownian motion term in (34). In theory, a poten-

tial remedy is to identify a better coupling between the jump martingales and Brownian motions; see, for

instance, Theorem 9 of Mariucci and Reiß (2018). This would allow us to pick a larger 𝜅 for the truncation

threshold 𝜅𝑛,𝑚 in ARA, under which the simulation algorithm generates significantly fewer jumps when

sampling 𝜉
(𝑖) ,𝑚
𝑗

’s. However, to the best of our knowledge, there is no practical implementation of the cou-

pling in Mariucci and Reiß (2018). We note that similar issues arise in works such as González Cázares

and Mijatović (2022), where the coupling in Mariucci and Reiß (2018) imply a much tighter error bound in

theory but cannot be implemented in practice.

4. Lipschitz Continuity of the Distribution of 𝑋<𝑧 (𝑡) This section investigates the sufficient

conditions for Assumption 2. That is, there exist 𝑧0, 𝐶, 𝜆 > 0 such that

P
(
𝑋<𝑧 (𝑡) ∈ [𝑥, 𝑥 + 𝛿]

)
≤ 𝐶𝛿

𝑡𝜆 ∧ 1
∀𝑧 ≥ 𝑧0, 𝑡 > 0, 𝑥 ∈ R, 𝛿 > 0. (40)

Here, recall that 𝑋>𝑧 is the Lévy process with generating triplet (𝑐𝑋, 𝜎, 𝜈 | (−∞,𝑧) ). In other words, this is a

modulated version of 𝑋 where any the upward jump larger than 𝑧 is removed.
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Algorithm 3 Strongly Efficient Estimation of P(𝐴𝑛) with ARA
Require: 𝑤 ∈ (0, 1) , 𝛾 > 0, 𝑟 > 0, 𝑑 > 0, 𝜅 ∈ [0, 1) , 𝜌 ∈ (0, 1) as the parameters in the algorithm; 𝑎, 𝑏 > 0 as the characterization of the set

𝐴; (𝑐𝑋 , 𝜎, 𝜈) as the generating triplet of 𝑋 (𝑡 ); 𝜎̄ ( ·) is defined in (33).

1: Set 𝑡𝑛 = ⌈log2 (𝑛𝑑 ) ⌉ and 𝜅𝑛,𝑚 = 𝜅𝑚/𝑛𝑟

2: if Unif(0, 1) < 𝑤 then ⊲ Sample 𝐽𝑛 from Q𝑛

3: Sample 𝐽𝑛 =
∑𝑘

𝑖=1 𝑧𝑖I[𝑢𝑖 ,𝑛] from P
4: else
5: Sample 𝐽𝑛 =

∑𝑘
𝑖=1 𝑧𝑖I[𝑢𝑖 ,𝑛] from P( · |𝐵𝛾

𝑛 ) using Algorithm 1
6: end if
7: Set 𝑢0 = 0, 𝑢𝑘+1 = 𝑛.

8: Sample 𝜏 ∼𝐺𝑒𝑜𝑚(𝜌) ⊲ Decide Truncation Index 𝜏

9: for 𝑖 = 1, 2, . . . , 𝑘 + 1 do ⊲ Stick-Breaking Procedure
10: for 𝑗 = 1, 2, . . . , 𝑡𝑛 + 𝜏 do
11: Sample 𝑉

(𝑖)
𝑗
∼Unif(0, 1)

12: Set 𝑙 (𝑖)
𝑗

=𝑉
(𝑖)
𝑗
(𝑢𝑖 − 𝑢𝑖+1 − 𝑙 (𝑖)1 − 𝑙 (𝑖)2 − . . . − 𝑙 (𝑖)

𝑗−1 )
13: end for
14: Set 𝑙 (𝑖)

𝑡𝑛+𝜏+1 = 𝑢𝑖 − 𝑢𝑖−1 − 𝑙 (𝑖)1 − 𝑙 (𝑖)2 − . . . − 𝑙 (𝑖)𝑡𝑛+𝜏
15: end for

16: for 𝑖 = 1, · · · , 𝑘 + 1 do ⊲ Sample 𝜉
(𝑖) ,𝑚
𝑗

17: for 𝑗 = 1, 2, · · · , 𝑡𝑛 + 𝜏 + 1 do
18: Sample 𝑥

(𝑖)
𝑗
∼ 𝑁 (0, 𝜎2 · 𝑙 (𝑖)

𝑗
)

19: Sample 𝑦
(𝑖) ,−1
𝑗

∼ P(𝐽𝑛,−1 (𝑙 (𝑖)𝑗 ) ∈ · )
20: for 𝑚 = 0, 1, . . . , 𝜏 do
21: Sample 𝑦

(𝑖) ,𝑚
𝑗

∼ P(𝐽𝑛,𝑚 (𝑙 (𝑖)𝑗 ) ∈ · )
22: Sample 𝑤

(𝑖) ,𝑚
𝑗

∼ 𝑁 (0, ( 𝜎̄2 (𝜅𝑛,𝑚−1 ) − 𝜎̄2 (𝜅𝑛,𝑚 ) ) · 𝑙 (𝑖)𝑗 )
23: end for
24: Sample 𝑤

(𝑖) ,𝜏+1
𝑗

∼ 𝑁 (0, 𝜎̄2 (𝜅𝑛,𝜏 ) · 𝑙 (𝑖)𝑗 )
25: for 𝑚 = 0, . . . , 𝜏 do
26: Set 𝜉 (𝑖) ,𝑚

𝑗
= 𝑐𝑋 · 𝑙 (𝑖)𝑗 + 𝑥

(𝑖)
𝑗
+∑𝑚

𝑞=−1 𝑦
(𝑖) ,𝑞
𝑗
+∑𝜏+1

𝑞=𝑚+1 𝑤
(𝑖) ,𝑞
𝑗

27: end for
28: end for
29: end for

30: for 𝑚 = 1, · · · , 𝜏 do ⊲ Evaluate 𝑌̂𝑚
𝑛

31: for 𝑖 = 1, 2, . . . , 𝑘 + 1 do
32: Set 𝑀̂ (𝑖) ,𝑚𝑛 =

∑𝑖−1
𝑞=1

∑𝑡𝑛+𝜏+1
𝑗=1 𝜉

(𝑞) ,𝑚
𝑗

+∑𝑖−1
𝑞=1 𝑧𝑞 +

∑𝑡𝑛+𝑚
𝑗=1 ( 𝜉

(𝑖) ,𝑚
𝑗

)+
33: end for
34: Set 𝑌̂𝑚

𝑛 = I
{

max𝑖=1,...,𝑘+1 𝑀̂
(𝑖) ,𝑚
𝑛 ≥ 𝑛𝑎

}
35: end for

36: Set 𝑍𝑛 = 𝑌̂1
𝑛 +

∑𝜏
𝑚=2 (𝑌̂

𝑚
𝑛 − 𝑌̂𝑚−1

𝑛 )
/
𝜌𝑚−1 ⊲ Return the Estimator 𝐿𝑛

37: if max𝑖=1, · · · ,𝑘 𝑧𝑖 > 𝑏 then
38: Return 𝐿𝑛 = 0.
39: else
40: Set 𝜆𝑛 = 𝑛𝜈 [𝑛𝛾,∞) , 𝑝𝑛 = 1 −∑𝑙∗−1

𝑙=0 𝑒−𝜆𝑛 𝜆𝑙𝑛
𝑙! , 𝐼𝑛 = I{𝐽𝑛 ∈ 𝐵𝛾

𝑛 }
41: Return 𝐿𝑛 = 𝑍𝑛/(𝑤 + 1−𝑤

𝑝𝑛
𝐼𝑛 )

42: end if

To demonstrate our approach for establishing condition (40), we start by considering a simple case where

the Lévy process 𝑋 (𝑡) has generating tripet (𝑐𝑋, 𝜎, 𝜈) with 𝜎 > 0. This leads to the decomposition

𝑋<𝑧 (𝑡) =𝑑 𝜎𝐵(𝑡) +𝑌<𝑧 (𝑡) ∀𝑡, 𝑧 > 0



Wang and Rhee: Rare-Event Simulation for Regularly Varying Lévy Processes with Infinite Activities
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where 𝐵 is a standard Brownian motion, 𝑌<𝑧 is a Lévy process with generating triplet (𝑐𝑋,0, 𝜈 | (−∞,𝑧) ), and

the two processes are independent. Now, for any 𝑥 ∈ R, 𝑡 > 0 and 𝛿 ∈ (0,1),

P(𝑋<𝑧 (𝑡) ∈ [𝑥, 𝑥 + 𝛿]) =
∫
R

P(𝜎𝐵(𝑡) ∈ [𝑥 − 𝑦, 𝑥 − 𝑦 + 𝛿]) ·P(𝑌<𝑧 (𝑡) ∈ 𝑑𝑦)

=

∫
R

P
(
𝐵(𝑡)
√
𝑡
∈

[𝑥 − 𝑦
𝜎
√
𝑡
,
𝑥 − 𝑦 + 𝛿
𝜎
√
𝑡

] )
·P(𝑌<𝑧 (𝑡) ∈ 𝑑𝑦)

≤ 1
𝜎
√

2𝜋
· 𝛿√

𝑡
. (41)

The last inequality follows from the fact that a standard Normal distribution admits a density function

bounded by 1/
√

2𝜋. Therefore, we verified Assumption 2 under 𝜆 = 1/2,𝐶 = 1
𝜎
√

2𝜋
, and any 𝑧0 > 0. The

simple idea behind (41) is that continuity conditions such as (40) can be passed from one distribution to

another through convolutional structures. To generalize this approach to the scenarios where 𝜎 = 0 in the

generating triplet of the Lévy process 𝑋 , we introduce the following definition.

DEFINITION 3. Let 𝜇1 and 𝜇2 be Borel measures on R. For any Borel set 𝐴 ⊂ R, we say that 𝜇1

majorizes 𝜇2 when restricted on 𝐴 (denoted as (𝜇1 − 𝜇2) |𝐴 ≥ 0) if 𝜇(𝐵∩ 𝐴) = 𝜇1(𝐵∩ 𝐴) − 𝜇2(𝐵∩ 𝐴) ≥ 0

for any Borel set 𝐵 ⊂ R. In other words 𝜇 |𝐴 = (𝜇1 − 𝜇2) |𝐴 is a positive measure.

Now, let us consider the case where the generating triplet of 𝑋 is (𝑐𝑋,0, 𝜈). For the Lévy measure 𝜈,

if we can find some 𝑧0 > 0, some Borel set 𝐴 ⊆ (−∞, 𝑧0) and some (positive) Borel measure 𝜇 such that

(𝜈 − 𝜇) |𝐴 ≥ 0, then through a straightforward superposition of Poisson random measures, we obtain the

decomposition (let 𝜇𝐴 = 𝜇 |𝐴)

𝑋<𝑧 (𝑡) =𝑑 𝑌 (𝑡) + 𝑋<𝑧,−𝐴(𝑡) ∀𝑧 ≥ 𝑧0 (42)

where 𝑌 (𝑡) is a Lévy process with generating triplet (0,0, 𝜇𝐴), 𝑋<𝑧,−𝐴(𝑡) is a Lévy process with generating

triplet (𝑐𝑋,0, 𝜈 − 𝜇𝐴), and the two processes are independent. Furthermore, if Assumption 2 (conditions of

form (40)) holds for the process 𝑌 (𝑡) with generating triplet (0,0, 𝜇𝐴), then by repeating the arguments in

(41) we can show that Assumption 2 holds in 𝑋<𝑧 (𝑡) for any 𝑧 ≥ 𝑧0.
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Recall our running assumption that the Lévy process 𝑋 (𝑡) is of infinite activities (see Assumption 1). In

case that 𝜎 = 0, we must have 𝜈((−∞,0) ∪ (0,∞)) =∞ for 𝑋 to have infinite activity. Therefore, the key step

is to identify the majorized measure 𝜇 such that

• (𝜈 − 𝜇) |𝐴 ≥ 0 holds for 𝜈 with infinite mass and some set 𝐴,

• condition (40) holds for the Lévy process 𝑌 (𝑡) in (42) with generating triplet (0,0, 𝜇 |𝐴).

In the first main result of this section, we show that measures of form 𝜇[𝑥,∞) that roughly increase

at a power-law rate 1/𝑥𝛼 (as 𝑥 ↓ 0) provide ideal choices for such majorized measures. In particular, the

corresponding Lévy process 𝑌 (𝑡) in (42) is intimately related to 𝛼-stable processes that naturally satisfy

continuity properties of form (40). The nature of the proof is less probabilistic and is independent of the main

results of the paper (i.e., strong efficiency), so we collect it in Section A of the Supplementary Materials.

PROPOSITION 2. Let 𝛼 ∈ (0,2), 𝑧0 > 0, and 𝜖 ∈ (0, (2 − 𝛼)/2). Suppose that 𝜇[𝑥,∞) is regularly

varying as 𝑥 ↓ 0 with index −(𝛼 + 2𝜖). Then the Lévy process 𝑌 (𝑡) with generating triplet (0,0, 𝜇 | (0,𝑧0 ) ) has

a continuous density function 𝑓𝑌 (𝑡 ) for each 𝑡 > 0. Furthermore, there exists a constant 𝐶 <∞ such that



 𝑓𝑌 (𝑡 )

∞ ≤ 𝐶

𝑡1/𝛼 ∧ 1
∀𝑡 > 0.

where ∥ 𝑓 ∥∞ = sup𝑥∈R | 𝑓 (𝑥) |.

Equipped with Proposition 2, we obtain the following set of sufficient conditions for Assumption 2.

THEOREM 3. Let (𝑐𝑋, 𝜎, 𝜈) be the generating triplet of Lévy process 𝑋 .

(i) If 𝜎 > 0, then Assumption 2 holds for 𝜆 = 1/2 and any 𝑧0 > 0.

(ii) If there exist Borel measure 𝜇, some 𝑧0 > 0, and some 𝛼′ ∈ (0,2) such that (𝜈 − 𝜇) | (0,𝑧0 ) ≥ 0 (resp.,

(𝜈 − 𝜇) | (−𝑧0,0) ≥ 0) and 𝜇[𝑥,∞) (resp., 𝜇(−∞, 𝑥]) is regularly varying with index −𝛼′ as 𝑥 ↓ 0, then

Assumption 2 holds with 𝜆 = 1/𝛼 for any 𝛼 ∈ (0, 𝛼′).

Proof Part (𝑖) follows immediately from the calculations in (41). To prove part (𝑖𝑖), we fix some

𝛼 ∈ (0, 𝛼′), and without loss of generality assume that (𝜈 − 𝜇) | (0,𝑧0 ) ≥ 0 and 𝜇[𝑥,∞) is regularly varying

with index 𝛼′ as 𝑥 ↓ 0. This allows us to fix some 𝜖 = (𝛼′ −𝛼)/2 ∈
(
0, (2−𝛼)/2

)
.
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For any 𝑧 ≥ 𝑧0, let 𝑌 (𝑡) and 𝑋<𝑧,−𝐴(𝑡) be defined as in (42) with 𝐴 = (0, 𝑧0). First of all, applying

Proposition 2, we can find 𝐶 > 0 such that


 𝑓𝑌 (𝑡 )

∞ ≤ 𝐶

𝑡1/𝛼∧1 ∀𝑡 > 0. Next, due to the independence between

𝑌 and 𝑋<𝑧,−𝐴(𝑡), it holds for all 𝑥 ∈ R, 𝛿 ≥ 0, and 𝑡 > 0 that

P(𝑋<𝑧 (𝑡) ∈ [𝑥, 𝑥 + 𝛿]) =
∫
R

P(𝑌 (𝑡) ∈ [𝑥 − 𝑦, 𝑥 − 𝑦 + 𝛿]) ·P(𝑋<𝑧,−𝐴(𝑡) ∈ 𝑑𝑦) ≤ 𝐶

𝑡1/𝛼 ∧ 1
· 𝛿.

This concludes the proof. □

REMARK 5. It is worth noting that the conditions stated in Theorem 3 are mild for Lévy process 𝑋 (𝑡)

with infinite activities. In particular, for 𝑋 to exhibit infinite activity, we must have either 𝜎 > 0 or 𝜈(R) =∞.

Theorem 3 (i) deals with the case where 𝜎 > 0. On the other hand, when 𝜎 = 0 we must have either

lim𝜖 ↓0 𝜈[𝜖,∞) =∞ or lim𝜖 ↓0 𝜈(−∞,−𝜖] =∞. To satisfy the conditions in part (ii) of Theorem 3, the only

other requirement is that 𝜈[𝜖,∞) (or 𝜈(−∞,−𝜖]) approaches infinity at a rate that is at least comparable to

some power-law functions.

The next set of sufficient conditions for Assumption 2 revolves around another type of self-similarity

structure in the Lévy measure 𝜈.

DEFINITION 4. Given 𝛼 ∈ (0,2) and 𝑏 > 1, a Lévy process 𝑋 is 𝛼-semi-stable with span 𝑏 if its Lévy

measure 𝜈 satisfies

𝜈 = 𝑏−𝛼𝑇𝑏𝜈 (43)

where the transformation 𝑇𝑟 (∀𝑟 > 0) onto a Borel measure 𝜌 on R is given by (𝑇𝑟 𝜌) (𝐵) = 𝜌(𝑟−1𝐵).

As a special case of semi-stable processes, note that 𝑋 is 𝛼-stable if

𝜈(𝑑𝑥) = 𝑐1 ·
𝑑𝑥

𝑥1+𝛼 I{𝑥 > 0} + 𝑐2 ·
𝑑𝑥

|𝑥 |1+𝛼
I{𝑥 < 0}

where 𝑐1, 𝑐2 ≥ 0, 𝑐1 + 𝑐2 > 0. See Theorem 14.3 in Sato et al. (1999) for details. However, it is worth

noting that the Lévy processes with regularly varying Lévy measures 𝜈 studied in Proposition 2 are not

strict subsets of the semi-stable processes introduced in Definition 4. For instance, given a Borel measure

𝜈, suppose that 𝑓 (𝑥) = 𝜈
(
(−∞,−𝑥] ∪ [𝑥,∞)

)
is regularly varying at 0 with index 𝛼 > 0. Even if 𝜈 satisfies
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the scaling-invariant property in (43) for some 𝑏 > 1, we can fix a sequence of points {𝑥𝑛 = 1
𝑏𝑛 }𝑛≥1 and

assign an extra mass of ln𝑛 onto 𝜈 at each point 𝑥𝑛. In doing so, we break the scaling-invariant property

but still maintain the regular variation of 𝜈. On the other hand, to show that semi-stable processes may not

have regularly varying Lévy measure (when restricted on some neighborhood of the origin), let us consider

a simple example. For some 𝑏 > 1 and 𝛼 ∈ (0,2), define the following measure:

𝜈({𝑏−𝑛}) = 𝑏𝑛𝛼 ∀𝑛 ≥ 0; 𝜈
(
R\{𝑏𝑛 : 𝑛 ∈N}

)
= 0.

Clearly, 𝜈 can be seen as the restriction of the Lévy measure (restricted on (−1,1)) of some 𝛼-semi-stable

process. Now define function 𝑓 (𝑥) = 𝜈[𝑥,∞) on (0,∞). For any 𝑡 > 0,

𝑓 (𝑡𝑥)
𝑓 (𝑥) =

∑⌊log𝑏 (1/𝑡 𝑥 ) ⌋
𝑛=0 𝑏𝑛𝛼∑⌊log𝑏 (1/𝑥 ) ⌋
𝑛=0 𝑏𝑛𝛼

=
𝑏⌊log𝑏 (1/𝑡 𝑥 ) ⌋+1 − 1
𝑏⌊log𝑏 (1/𝑥 ) ⌋+1 − 1

.

As 𝑥→ 0, we see that 𝑓 (𝑡𝑥)/ 𝑓 (𝑥) will be very close to

𝑏𝛼( ⌊log𝑏 (1/𝑡 𝑥 ) ⌋−⌊log𝑏 (1/𝑥 ) ⌋ ) .

As long as we didn’t pick 𝑡 = 𝑏𝑘 for some 𝑘 ∈ Z, asymptotically, the value of 𝑓 (𝑡𝑥)/ 𝑓 (𝑥) will repeatedly

cycle through the following three different values

{𝑏𝛼⌊log𝑏 (1/𝑡 ) ⌋ , 𝑏𝛼⌊log𝑏 (1/𝑡 ) ⌋+𝛼, 𝑏𝛼⌊log𝑏 (1/𝑡 ) ⌋−𝛼},

thus implying that 𝑓 (𝑡𝑥)/ 𝑓 (𝑥) does not converge as 𝑥 approaches 0. This confirms that 𝜈[𝑥,∞) is not

regularly varying as 𝑥 ↓ 0.

In Proposition 3, we show that semi-stable processes, as well as their truncated counterparts, satisfy

continuity conditions of form (40). We say that the process 𝑌 (𝑡) is non-trivial if it is not a deterministic

linear function (i.e., 𝑌 (𝑡) ≡ 𝑐𝑡 for some 𝑐 ∈ R). The proof is again detailed in Section A.

PROPOSITION 3. Let 𝛼 ∈ (0,2) and 𝑁 ∈ Z. Suppose that 𝜇 is the Lévy measure of a non-trivial 𝛼-semi-

stable process 𝑌 ′(𝑡) of span 𝑏 > 1. Then under 𝑧0 = 𝑏𝑁 , the Lévy process {𝑌 (𝑡) : 𝑡 > 0} with generating

triplet (0,0, 𝜇 | (−𝑧0,𝑧0 ) ) has a continuous density function 𝑓𝑌 (𝑡 ) for any 𝑡 > 0. Furthermore, there exists some

𝐶 ∈ (0,∞) such that 

 𝑓𝑌 (𝑡 )

∞ ≤ 𝐶

𝑡1/𝛼 ∧ 1
∀𝑡 > 0.
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Lastly, by applying Proposition 3, we yield another set of sufficient conditions for Assumption 2.

THEOREM 4. Let (𝑐𝑋, 𝜎, 𝜈) be the generating triplet of Lévy process 𝑋 . Suppose that there exist some

Borel measure 𝜇 and some 𝑧′ > 0, 𝛼 ∈ (0,2) such that (𝜈 − 𝜇) | (−𝑧′ ,𝑧′ ) ≥ 0, and 𝜇 is the Lévy measure of

some 𝛼-semi-stable process. Then Assumption 2 holds for 𝜆 = 1/𝛼.

Proof Let 𝑏 > 1 be the span of the 𝛼-semi-stable process. Fix some 𝑁 ∈ Z such that 𝑧0 =
Δ
𝑏𝑁 ≤ 𝑧′. For

any 𝑧 ≥ 𝑧0, let 𝑌 (𝑡) and 𝑋<𝑧,−𝐴(𝑡) be defined as in (42) with 𝐴 = (−𝑧0, 𝑧0). First of all, applying Proposition

3, we can find 𝐶 > 0 such that


 𝑓𝑌 (𝑡 )

∞ ≤ 𝐶

𝑡1/𝛼∧1 ∀𝑡 > 0. Next, due to the independence between 𝑌 and

𝑋<𝑧,−𝐴(𝑡), it holds for all 𝑥 ∈ R, 𝛿 ≥ 0, and 𝑡 > 0 that

P(𝑋<𝑧 (𝑡) ∈ [𝑥, 𝑥 + 𝛿]) =
∫
R

P(𝑌 (𝑡) ∈ [𝑥 − 𝑦, 𝑥 − 𝑦 + 𝛿]) ·P(𝑋<𝑧,−𝐴(𝑡) ∈ 𝑑𝑦) ≤ 𝐶

𝑡1/𝛼 ∧ 1
· 𝛿.

This concludes the proof. □

5. Numerical Experiments In this section, we apply the importance sampling strategy outlined in

Algorithms 2 and 3 and demonstrate that (𝑖) the performance of the importance sampling estimators under

different scaling factors and tail distributions, and (𝑖𝑖) the strong efficiency of the proposed algorithms when

compared to crude Monte Carlo methods. Specifically, consider a Lévy process 𝑋 (𝑡) = 𝐵(𝑡) +∑𝑁 (𝑡 )
𝑖=1 𝑊𝑖,

where 𝐵(𝑡) is the standard Brownian motion, 𝑁 is a Poisson process with arrival rate 0.5, and {𝑊𝑖}𝑖≥1 is a

sequence of iid random variables with law (for some 𝛼 > 1)

P(𝑊1 > 𝑥) = P(−𝑊1 > 𝑥) = 0.5
(1+ 𝑥)𝛼 , ∀𝑥 > 0.

For each 𝑛 ≥ 1, we define the scaled process 𝑋̄𝑛 (𝑡) = 𝑋 (𝑛𝑡 )
𝑛

. The goal is to estimate the probability of

𝐴𝑛 = {𝑋𝑛 ∈ 𝐴}, where the set 𝐴 is defined as in (12) with 𝑎 = 2 and 𝑏 = 1.15. Note that this is a case with

𝑙∗ = ⌈𝑎/𝑏⌉ = 2.

To evaluate the performance of the importance sampling estimator under different scaling factors and tail

distributions, we run experiments under 𝛼 ∈ {1.45,1.6,1.75}, and 𝑛 ∈ {100,200, · · · ,1000}. The efficiency

is evaluated by the relative error of the algorithm, namely the ratio between the standard deviation and the

estimated mean. In Algorithm 2, we set 𝛾 = 0.25, 𝑤 = 0.05, 𝜌 = 0.97, and 𝑑 = 4. In Algorithm 3, we further
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Figure 1. Relative errors of the proposed importance sampling estimator.
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Note. Results are plotted under log scale. Dashed lines: the importance sampling estimator in Algorithm 2, Dotted lines: the

importance sampling estimator with ARA in Algorithm 3, Solid lines: the crude Monte-Carlo methods (solid lines).

set 𝜅 = 0.5 and 𝑟 = 1.5. For both algorithms, we generate 10,000 independent samples for each combination

of 𝛼 ∈ {1.45,1.6,1.75} and 𝑛 ∈ {1000,2000, · · · ,10000}. For the number of samples in crude Monte Carlo

estimation, we ensure that at least 64/𝑝𝛼,𝑛 samples are generated, where 𝑝𝛼,𝑛 is the probability estimated

by Algorithm 2.

The results are summarized in Table 1 and Figure 1. In Table 1, we see that for a fixed 𝛼, the relative error

of the importance sampling estimators stabilizes around a constant level as 𝑛 increases. This aligns with the

strong efficiency established in Theorems 1 and 2. In comparison, the relative error of crude Monte Carlo

estimators continues to increase as 𝑛 tends to infinity. Figure 1 further highlights that our importance sampling

estimators significantly outperform crude Monte Carlo methods by orders of magnitude. In summary, when

Algorithms 2 and 3 are appropriately parameterized, their efficiency becomes increasingly evident when

compared against the crude Monte Carlo approach as the scaling factor 𝑛 grows larger and the target

probability approaches 0.

6. Proofs of Section 3



Wang and Rhee: Rare-Event Simulation for Regularly Varying Lévy Processes with Infinite Activities
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Table 1. Relative errors of Algorithm 2 (first row), Algorithm 3 (second row), and crude Monte Carlo (third row).

n 200 400 600 800 1000

𝛼 = 1.45

11.70 13.65 14.40 15.33 15.82

10.74 13.57 13.57 15.98 14.11

97.86 136.03 195.40 238.81 273.13

𝛼 = 1.6

15.03 17.53 19.06 20.12 20.98

15.59 18.23 19.59 21.30 21.30

237.82 386.35 526.13 681.79 866.02

𝛼 = 1.75

19.03 22.54 23.94 25.97 25.77

18.23 19.22 22.92 28.85 31.61

524.78 1091.29 1298.98 1965.22 2089.82

6.1. Proof of Proposition 1 We first prepare two technical lemmas using the sample-path large

deviations for heavy-tailed Lévy processes reviewed in Section 2.2.

LEMMA 1. For the set 𝐴 ⊂ D defined in (12) and the quantity 𝑙∗ defined in (13),

0 < lim inf
𝑛→∞

P( 𝑋̄𝑛 ∈ 𝐴)
(𝑛𝜈[𝑛,∞))𝑙∗

≤ lim sup
𝑛→∞

P( 𝑋̄𝑛 ∈ 𝐴)
(𝑛𝜈[𝑛,∞))𝑙∗

<∞.

Proof In this proof, we focus on the two-sided case in Assumption 1. It is worth noticing that analysis for

the one-sided case is almost identical, with the only major difference being that we apply Result 1 (i.e., the

one-sided version of the large deviations of 𝑋̄𝑛) instead of Result 2 (i.e., the two-sided version). Specifically,

we claim that

(𝑖)
(
𝑙∗,0

)
∈ argmin
( 𝑗 ,𝑘 ) ∈N2, D 𝑗,𝑘∩𝐴≠∅

𝑗 (𝛼− 1) + 𝑘 (𝛼′ − 1);

(𝑖𝑖) C𝑙∗,0(𝐴◦) > 0;

(𝑖𝑖𝑖) the set 𝐴 is bounded away from D<𝑙∗,0.

Then by applying Result 2, we yield

0 < C𝑙∗,0(𝐴◦) ≤ lim inf
𝑛→∞

P( 𝑋̄𝑛 ∈ 𝐴)
(𝑛𝜈[𝑛,∞))𝑙∗

≤ lim sup
𝑛→∞

P( 𝑋̄𝑛 ∈ 𝐴)
(𝑛𝜈[𝑛,∞))𝑙∗

≤ C𝑙∗,0(𝐴−) <∞
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and conclude the proof. Now, it remains to prove claims (𝑖), (𝑖𝑖), and (𝑖𝑖𝑖).

Proof of Claim (𝑖). By definitions of D 𝑗 ,𝑘 , for any 𝜉 ∈ D 𝑗 ,𝑘 there exist (𝑢𝑖) 𝑗𝑖=1 ∈ (0,∞)
𝑗 , (𝑡𝑖) 𝑗𝑖=1 ∈ (0,1]

𝑗

and (𝑣𝑖)𝑘𝑖=1 ∈ (0,∞)
𝑘 , (𝑠𝑖)𝑘𝑖=1 ∈ (0,1]

𝑘 such that

𝜉 (𝑡) =
𝑗∑︁

𝑖=1
𝑢𝑖I[𝑡𝑖 ,1] (𝑡) −

𝑘∑︁
𝑖=1

𝑣𝑖I[𝑠𝑖 ,1] (𝑡) ∀𝑡 ∈ [0,1] . (44)

First, from Assumption 3, one can choose 𝜖 > 0 small enough such that 𝑙∗(𝑏−𝜖) > 𝑎. Then for the case with

( 𝑗 , 𝑘) = (𝑙∗,0) in (44), by picking 𝑢𝑖 = 𝑏 − 𝜖 for all 𝑖 ∈ [𝑙∗], we have sup𝑡∈[0,1] 𝜉 (𝑡) =
∑𝑙∗

𝑖=1 𝑢𝑖 = 𝑙∗(𝑏 − 𝜖) > 𝑎,

and hence 𝜉 ∈ 𝐴. This verifies D𝑙∗,0 ∩ 𝐴 ≠ ∅.

Next, suppose we can show that 𝑗 ≥ 𝑙∗ is a necessary condition for D 𝑗 ,𝑘 ∩ 𝐴 ≠ ∅. Then we get

{
( 𝑗 , 𝑘) ∈N2 : D 𝑗 ,𝑘 ∩ 𝐴 ≠ ∅

}
⊆

{
( 𝑗 , 𝑘) ∈N2 : 𝑗 ≥ 𝑙∗, 𝑘 ≥ 0

}
,

which immediately verifies claim (𝑖) due to 𝛼, 𝛼′ > 1; see Assumption 1. Now, to show that 𝑗 ≥ 𝑙∗ is a nec-

essary condition for D 𝑗 ,𝑘 ∩ 𝐴 ≠ ∅, note that from (44), it holds for any 𝜉 ∈D 𝑗 ,𝑘 ∩ 𝐴 that 𝑎 < sup𝑡∈[0,1] 𝜉 (𝑡) ≤∑ 𝑗

𝑖=1 𝑢𝑖 < 𝑗𝑏. As a result, we must have 𝑗 > 𝑎/𝑏 and hence 𝑗 ≥ 𝑙∗ = ⌈𝑎/𝑏⌉ due to 𝑎/𝑏 ∉ Z; see Assumption 3.

This concludes the proof of claim (𝑖).

Proof of Claim (𝑖𝑖). Again, choose some 𝜖 > 0 small enough such that 𝑙∗(𝑏−𝜖) > 𝑎. Given any 𝑢𝑖 ∈ (𝑏−𝜖, 𝑏)

and 0 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑙∗ < 1, the step function 𝜉 (𝑡) =∑𝑙∗

𝑖=1 𝑢𝑖I[𝑡𝑖 ,1] (𝑡) satisfies sup𝑡∈[0,1] 𝜉 (𝑡) ≥ 𝑙∗(𝑏−𝜖) > 𝑎,

thus implying 𝜉 ∈ 𝐴. Therefore, (for the definition of C 𝑗 ,𝑘 , see (6))

C𝑙∗,0(𝐴◦) ≥ 𝜈𝑙
∗
𝛼

(
(𝑏 − 𝜖, 𝑏)𝑙∗

)
=

1
𝑙∗!

[
1

(𝑏 − 𝜖)𝛼 −
1
𝑏𝛼

] 𝑙∗
> 0.

Proof of Claim (𝑖𝑖𝑖). Assumption 3 implies that 𝑎 > (𝑙∗ − 1)𝑏, allowing us to choose 𝜖 > 0 small enough

that 𝑎 − 𝜖 > (𝑙∗ − 1) (𝑏 + 𝜖). It suffices to show that

𝒅(𝜉, 𝜉′) ≥ 𝜖 ∀𝜉 ∈D<𝑙∗,0, 𝜉
′ ∈ 𝐴. (45)
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Here, 𝒅 is the Skorokhod 𝐽1 metric; see (4) for the definition. To prove (45), we start with the following

observation: due to claim (𝑖), for any ( 𝑗 , 𝑘) ∈ N2 with ( 𝑗 , 𝑘) ∈ I<𝑙∗,0, we must have 𝑗 ≤ 𝑙∗ − 1. Now, we

proceed with a proof by contradiction. Suppose there is some 𝜉 ∈D 𝑗 ,𝑘 with 𝑗 ≤ 𝑙∗ − 1 and some 𝜉′ ∈ 𝐴 such

that 𝒅(𝜉, 𝜉′) < 𝜖 . Due to 𝜉′ ∈ 𝐴 (and hence no upward jump in 𝜉′ is larger than 𝑏) and 𝒅(𝜉, 𝜉′) < 𝜖 , under

the representation (44) we must have 𝑢𝑖 < 𝑏 + 𝜖 ∀𝑖 ∈ [ 𝑗]. This implies sup𝑡∈[0,1] 𝜉 (𝑡) ≤
∑ 𝑗

𝑖=1 𝑢𝑖 < 𝑗 (𝑏 + 𝜖) ≤

(𝑙∗−1) (𝑏+𝜖). Due to 𝒅(𝜉, 𝜉′) < 𝜖 again, we yield the contradiction that sup𝑡∈[0,1] 𝜉′(𝑡) < (𝑙∗−1) (𝑏+𝜖) +𝜖 <

𝑎 (and hence 𝜉′ ∉ 𝐴). This concludes the proof of claim (𝑖𝑖𝑖). □

LEMMA 2. Let 𝑝 > 1. Let Δ > 0 be such that 𝑎 −Δ > (𝑙∗ − 1)𝑏 and [𝑎 −Δ− (𝑙∗ − 1)𝑏]/𝛾 ∉ Z. Suppose

that (𝐽𝛾 + 𝑙∗ − 1)/𝑝 > 2𝑙∗ holds for

𝐽𝛾 =
Δ ⌈𝑎 −Δ− (𝑙

∗ − 1)𝑏
𝛾

⌉ . (46)

Then

P
(
𝑋̄𝑛 ∈ 𝐴Δ ∩ 𝐸, D(𝐽𝑛) ≤ 𝑙∗ − 1

)
= 𝒐

( (
𝑛𝜈[𝑛,∞)

)2𝑝𝑙∗
)

as 𝑛→∞

where 𝐴Δ = {𝜉 ∈ D : sup𝑡∈[0,1] 𝜉 (𝑡) ≥ 𝑎 − Δ}, 𝐸 =
Δ {𝜉 ∈ D : sup𝑡∈ (0,1] 𝜉 (𝑡) − 𝜉 (𝑡−) < 𝑏} and the function

D(𝜉) counts the number of discontinuities in 𝜉 ∈D.

Proof Similar to the proof of Lemma 1, we focus on the two-sided case in Assumption 1. Still, it is

worth noticing that the proof of the one-sided case is almost identical, with the only major difference being

that we apply Result 1 instead of Result 2.

First, observe that P( 𝑋̄𝑛 ∈ 𝐴Δ ∩ 𝐸, D(𝐽𝑛) ≤ 𝑙∗ − 1) = P( 𝑋̄𝑛 ∈ 𝐹) where

𝐹 =
Δ
{
𝜉 ∈D : sup

𝑡∈[0,1]
𝜉 (𝑡) ≥ 𝑎 −Δ; sup

𝑡∈ (0,1]
𝜉 (𝑡) − 𝜉 (𝑡−) < 𝑏,

#{𝑡 ∈ [0,1] : 𝜉 (𝑡) − 𝜉 (𝑡−) ≥ 𝛾} ≤ 𝑙∗ − 1
}
.

Furthermore, we claim that
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(𝑖) (𝐽𝛾 + 𝑙∗ − 1,0) ∈ argmin
( 𝑗 ,𝑘 ) ∈N2, D 𝑗,𝑘∩𝐹≠∅

𝑗 (𝛼− 1) + 𝑘 (𝛼′ − 1);

(𝑖𝑖) the set 𝐹 is bounded away from D<𝐽𝛾+𝑙∗−1,0.

Then we are able to apply Result 2 and obtain

P( 𝑋̄𝑛 ∈ 𝐴Δ ∩ 𝐸, D(𝐽𝑛) ≤ 𝑙∗ − 1) = P( 𝑋̄𝑛 ∈ 𝐹) =𝑶
(
(𝑛𝜈[𝑛,∞))𝐽𝛾+𝑙∗−1) as 𝑛→∞.

Lastly, by our assumption (𝐽𝛾 + 𝑙∗ − 1)/𝑝 > 2𝑙∗, we get (𝑛𝜈[𝑛,∞))𝑙∗−1+𝐽𝛾 = 𝒐
( (
𝑛𝜈[𝑛,∞)

)2𝑝𝑙∗ ) and conclude

the proof. Now, it remains to prove claims (𝑖) and (𝑖𝑖).

Proof of Claim (𝑖). By definition of D 𝑗 ,𝑘 , given any 𝜉 ∈ D 𝑗 ,𝑘 there exist (𝑢𝑖) 𝑗𝑖=1 ∈ (0,∞)
𝑗 , (𝑡𝑖) 𝑗𝑖=1 ∈ (0,1]

𝑗

and (𝑣𝑖)𝑘𝑖=1 ∈ (0,∞)
𝑘 , (𝑠𝑖)𝑘𝑖=1 ∈ (0,1]

𝑘 such that the representation (44) holds. By assumption [𝑎 −Δ− (𝑙∗ −

1)𝑏]/𝛾 ∉ Z, for 𝐽𝛾 defined in (46) we have

(𝐽𝛾 − 1)𝛾 < 𝑎 −Δ− (𝑙∗ − 1)𝑏 < 𝐽𝛾 · 𝛾. (47)

It then holds for all 𝜖 > 0 small enough that 𝑎 − Δ < 𝐽𝛾 (𝛾 − 𝜖) + (𝑙∗ − 1) (𝑏 − 𝜖). As a result, for the

case with ( 𝑗 , 𝑘) = (𝑙∗ − 1 + 𝐽𝛾 ,0) in (44), by picking 𝑢𝑖 = 𝑏 − 𝜖 for all 𝑖 ∈ [𝑙∗ − 1], and 𝑢𝑖 = 𝛾 − 𝜖 for all

𝑖 = 𝑙∗, 𝑙∗ + 1, · · · , 𝑙∗ − 1 + 𝐽𝛾 , we get sup𝑡∈[0,1] 𝜉 (𝑡) = 𝐽𝛾 (𝛾 − 𝜖) + (𝑙∗ − 1) (𝑏 − 𝜖) > 𝑎 − Δ. This proves that

𝜉 ∈D𝑙∗−1+𝐽𝛾 ,0 ∩ 𝐹, and hence D𝑙∗−1+𝐽𝛾 ,0 ∩ 𝐹 ≠ ∅.

Next, suppose we can show that 𝑗 ≥ 𝑙∗ − 1+ 𝐽𝛾 is the necessary condition for D 𝑗 ,𝑘 ∩ 𝐹 ≠ ∅. Then, we get

{( 𝑗 , 𝑘) ∈N2 : D 𝑗 ,𝑘 ∩ 𝐹 ≠ ∅} ⊆ {( 𝑗 , 𝑘) ∈N2 : 𝑗 ≥ 𝑙∗ − 1+ 𝐽𝛾 , 𝑘 ≥ 0},

which immediately verifies claim (𝑖) due to 𝛼, 𝛼′ > 1; see Assumption 1. Now, to show that 𝑗 ≥ 𝑙∗−1+ 𝐽𝛾 is a

necessary condition, note that, from (44), it holds for any 𝜉 ∈D 𝑗 ,𝑘 ∩𝐹 that 𝑎−Δ < sup𝑡∈[0,1] 𝜉 (𝑡) ≤
∑ 𝑗

𝑖=1 𝑢𝑖 .

Furthermore, by the definition of the set 𝐹, we must have (here, w.l.o.g., we order 𝑢𝑖’s by 𝑢1 ≥ 𝑢2 ≥ . . . ≥ 𝑢 𝑗)

𝑢𝑖 < 𝑏 for all 𝑖 ∈ [𝑙∗ − 1] and 𝑢𝑖 < 𝛾 for all 𝑖 = 𝑙∗, 𝑙∗ + 1, · · · , 𝑗 . This implies (𝑙∗ − 1)𝑏 + ( 𝑗 − 𝑙∗ + 1)𝛾 > 𝑎 −Δ,

and hence 𝑗 >
𝑎−Δ−(𝑙∗−1)𝑏

𝛾
+ 𝑙∗ − 1, which is equivalent to 𝑗 ≥ 𝐽𝛾 + 𝑙∗ − 1.
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Proof of Claim (𝑖𝑖). From (47), we can fix some 𝜖 > 0 small enough such that

𝑎 −Δ− 𝜖 > (𝑙∗ − 1) (𝑏 + 𝜖) + (𝐽𝛾 − 1) (𝛾 + 𝜖). (48)

It suffices to show that

𝒅(𝜉, 𝜉′) ≥ 𝜖 ∀𝜉 ∈D<𝐽𝛾+𝑙∗−1,0, 𝜉
′ ∈ 𝐹. (49)

Here, 𝒅 is the Skorokhod 𝐽1 metric; see (4) for the definition. To prove (49), we start with the following

observation: using claim (𝑖), for any ( 𝑗 , 𝑘) ∈N2 with ( 𝑗 , 𝑘) ∈ I<𝐽𝛾+𝑙∗−1,0, we must have 𝑗 ≤ 𝐽𝛾 + 𝑙∗−2. Next,

we proceed with a proof by contradiction. Suppose there is some 𝜉 ∈ D 𝑗 ,𝑘 with 𝑗 ≤ 𝐽𝛾 + 𝑙∗ − 2 and some

𝜉′ ∈ 𝐹 such that 𝒅(𝜉, 𝜉′) < 𝜖 . By the definition of the set 𝐹 above, any upward jump in 𝜉′ is bounded by 𝑏,

and at most 𝑙∗ − 1 of them is larger than 𝛾. Then from 𝒅(𝜉, 𝜉′) < 𝜖 , we know that any upward jump in 𝜉 is

bounded by 𝑏 + 𝜖 , and at most 𝑙∗ − 1 of them is larger than 𝛾 + 𝜖 . Through (44), we now have

sup
𝑡∈[0,1]

𝜉 (𝑡) ≤
𝑗∑︁

𝑖=1
𝑢𝑖 ≤ (𝑙∗ − 1) (𝑏 + 𝜖) + (𝐽𝛾 − 1) (𝛾 + 𝜖) < 𝑎 −Δ− 𝜖 .

The last inequality follows from (48). Using 𝒅(𝜉, 𝜉′) < 𝜖 again, we yield the contraction that sup𝑡∈[0,1] 𝜉′(𝑡) <

𝑎 −Δ and hence 𝜉′ ∉ 𝐹. This concludes the proof of (49). □

Now, we are ready to prove Proposition 1.

Proof of Proposition 1 We start by proving the unbiasedness of the importance sampling estimator

𝐿𝑛 = 𝑍𝑛

𝑑P
𝑑Q𝑛

=

𝜏∑︁
𝑚=0

𝑌𝑚
𝑛 I𝐸𝑛

𝑑P
𝑑Q𝑛
−𝑌𝑚−1

𝑛 I𝐸𝑛

𝑑P
𝑑Q𝑛

P(𝜏 ≥ 𝑚) .

under Q𝑛. Note that under both P and Q𝑛, we have 𝜏 ∼ Geom(𝜌) (i.e., P(𝜏 ≥ 𝑚) = 𝜌𝑚−1) and that 𝜏 is

independent of everything else. In light of Result 4, it suffices to verify lim𝑚→∞EQ𝑛 [𝑌𝑚] = EQ𝑛 [𝑌 ] and

condition (11) (under Q𝑛) with the choice of 𝑌𝑚 =𝑌𝑚
𝑛 I𝐸𝑛

𝑑P
𝑑Q𝑛

and 𝑌 =𝑌 ∗𝑛I𝐸𝑛

𝑑P
𝑑Q𝑛

. In particular, it suffices to

show that (for any 𝑛 ≥ 1)

∑︁
𝑚≥1

EQ𝑛

[����𝑌𝑚−1
𝑛 I𝐸𝑛

𝑑P
𝑑Q𝑛

−𝑌 ∗𝑛I𝐸𝑛

𝑑P
𝑑Q𝑛

����2]/P(𝜏 ≥ 𝑚) <∞. (50)
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To see why, note that (50) directly verifies condition (11). Furthermore, it implies

lim𝑚→∞EQ𝑛
��𝑌𝑚−1
𝑛 I𝐸𝑛

𝑑P
𝑑Q𝑛
−𝑌 ∗𝑛I𝐸𝑛

𝑑P
𝑑Q𝑛

��2 = 0. The L2 convergence then implies the L1 convergence, i.e.,

lim𝑚→∞EQ𝑛 [𝑌𝑚−1
𝑛 I𝐸𝑛

𝑑P
𝑑Q𝑛
] = EQ𝑛 [𝑌 ∗𝑛I𝐸𝑛

𝑑P
𝑑Q𝑛
] .

To prove claim (50), observe that

EQ𝑛

[����𝑌𝑚−1
𝑛 I𝐸𝑛

𝑑P
𝑑Q𝑛

−𝑌 ∗𝑛I𝐸𝑛

𝑑P
𝑑Q𝑛

����2] ≤ EQ𝑛

[
|𝑌𝑚−1

𝑛 −𝑌 ∗𝑛 |2 ·
(
𝑑P
𝑑Q𝑛

)2]
= E

[
|𝑌𝑚−1

𝑛 −𝑌 ∗𝑛 |2 ·
𝑑P
𝑑Q𝑛

]
≤ 1
𝑤

E|𝑌𝑚−1
𝑛 −𝑌 ∗𝑛 |2 due to

𝑑P
𝑑Q𝑛

≤ 1
𝑤

, see (16).

In particular, since 𝑌𝑚
𝑛 and 𝑌 ∗𝑛 only take values in {0,1}, we have E|𝑌𝑚

𝑛 −𝑌 ∗𝑛 |2 = P(𝑌𝑚
𝑛 ≠𝑌 ∗𝑛), and

P(𝑌𝑚
𝑛 ≠𝑌 ∗𝑛) =

∑︁
𝑘≥0

P(𝑌 ∗𝑛 ≠𝑌𝑚
𝑛 | D(𝐽𝑛) = 𝑘)P(D(𝐽𝑛) = 𝑘)

≤
∑︁
𝑘≥0

𝐶0𝜌
𝑚
0 · (𝑘 + 1) ·P(D(𝐽𝑛) = 𝑘) for all 𝑚 ≥ 𝑚̄ due to (20)

=𝐶0𝜌
𝑚
0 ·E

[
1+Poisson

(
𝑛𝜈[𝑛𝛾,∞)

) ]
=𝐶0𝜌

𝑚
0 ·

(
1+ 𝑛𝜈[𝑛𝛾,∞)

)
. (51)

The last line in the display above follows from the definition of 𝐽𝑛 (𝑡) = 1
𝑛
𝐽 (𝑛𝑡) in (17). To conclude, note that

𝜈(𝑥) ∈ RV−𝛼 (𝑥) and hence 𝑛𝜈[𝑛𝛾,∞) ∈ RV−(𝛼−1) (𝑛) with 𝛼 > 1, thus implying sup𝑛≥1 𝑛𝜈[𝑛𝛾,∞) <∞;

also, as prescribed in Proposition 1 we have 𝜌 ∈ (𝜌0,1).

The rest of the proof is devoted to establishing the strong efficiency of 𝐿𝑛. Observe that

EQ𝑛 [𝐿2
𝑛] =

∫
𝑍2
𝑛

𝑑P
𝑑Q𝑛

𝑑P
𝑑Q𝑛

𝑑Q𝑛 =

∫
𝑍2
𝑛

𝑑P
𝑑Q𝑛

𝑑P =

∫
𝑍2
𝑛I𝐵𝛾

𝑛

𝑑P
𝑑Q𝑛

𝑑P+
∫

𝑍2
𝑛I(𝐵𝛾

𝑛 )𝑐
𝑑P
𝑑Q𝑛

𝑑P.

By definitions in (16), on event (𝐵𝛾
𝑛)𝑐 we have 𝑑P

𝑑Q𝑛
≤ 1

𝑤
, while on event 𝐵𝛾

𝑛 we have 𝑑P
𝑑Q𝑛
≤ P(𝐵𝛾

𝑛 )
1−𝑤 . As a

result,

EQ𝑛 [𝐿2
𝑛] ≤

P(𝐵𝛾
𝑛)

1−𝑤 E[𝑍2
𝑛I𝐵𝛾

𝑛
] + 1

𝑤
E[𝑍2

𝑛I(𝐵𝛾
𝑛 )𝑐 ] . (52)
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Meanwhile, Lemma 1 implies that

0 < lim inf
𝑛→∞

P(𝐴𝑛)
(𝑛𝜈[𝑛,∞))𝑙∗

≤ lim sup
𝑛→∞

P(𝐴𝑛)
(𝑛𝜈[𝑛,∞))𝑙∗

<∞. (53)

Let 𝑍𝑛,1 =
Δ
𝑍𝑛I𝐵𝛾

𝑛
and 𝑍𝑛,2 =

Δ
𝑍𝑛I(𝐵𝛾

𝑛 )𝑐 . Furthermore, given 𝜌 ∈ (𝜌0,1), we claim the existence of some

𝛾̄ = 𝛾̄(𝜌) ∈ (0, 𝑏) such that for any 𝛾 ∈ (0, 𝛾̄),

P(𝐵𝛾
𝑛) =𝑶

(
(𝑛𝜈[𝑛,∞))𝑙∗

)
, (54)

E[𝑍2
𝑛,1] =𝑶

(
(𝑛𝜈[𝑛,∞))𝑙∗

)
, (55)

E[𝑍2
𝑛,2] = 𝒐

(
(𝑛𝜈[𝑛,∞))2𝑙∗

)
, (56)

as 𝑛 → ∞. Then, using (54) and (55) we get P(𝐵𝛾
𝑛)E[𝑍2

𝑛I𝐵𝛾
𝑛
] = 𝑶

(
(𝑛𝜈[𝑛,∞))2𝑙∗

)
= 𝑶

(
P2(𝐴𝑛)

)
. The

last equality follows from (53). Similarly, from (53) and (56) we get E[𝑍2
𝑛I(𝐵𝛾

𝑛 )𝑐 ] = 𝒐
(
(𝑛𝜈[𝑛,∞))2𝑙∗

)
=

𝒐
(
P2(𝐴𝑛)

)
. Therefore, in (52) we have EQ𝑛 [𝐿2

𝑛] =𝑶
(
P2(𝐴𝑛)

)
, thus establishing the strong efficiency. Now,

it remains to prove claims (54), (55), and (56).

Proof of Claim (54). We show that the claim holds for all 𝛾 ∈ (0, 𝑏). For any 𝑐 > 0 and 𝑘 ∈N, note that

P
(
Poisson(𝑐) ≥ 𝑘

)
=

∑︁
𝑗≥𝑘

exp(−𝑐) 𝑐
𝑗

𝑗!
= 𝑐𝑘

∑︁
𝑗≥𝑘

exp(−𝑐) 𝑐
𝑗−𝑘

𝑗!
≤ 𝑐𝑘

∑︁
𝑗≥𝑘

exp(−𝑐) 𝑐 𝑗−𝑘

( 𝑗 − 𝑘)! = 𝑐𝑘 . (57)

Recall that 𝐵𝛾
𝑛 = {𝑋̄𝑛 ∈ 𝐵𝛾} and 𝐵𝛾 =

Δ {𝜉 ∈D : #{𝑡 ∈ [0,1] : 𝜉 (𝑡) − 𝜉 (𝑡−) ≥ 𝛾} ≥ 𝑙∗}. Therefore,

P(𝐵𝛾
𝑛) = P

(
#{𝑡 ∈ [0, 𝑛] : 𝑋 (𝑡) − 𝑋 (𝑡−) ≥ 𝑛𝛾} ≥ 𝑙∗

)
due to 𝑋̄𝑛 (𝑡) = 𝑋 (𝑛𝑡)/𝑛

=
∑︁
𝑘≥𝑙∗

exp
(
− 𝑛𝜈[𝑛𝛾,∞)

) (𝑛𝜈[𝑛𝛾,∞)) 𝑘
𝑘!

≤
(
𝑛𝜈[𝑛𝛾,∞)

) 𝑙∗ due to (57).
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44 Article submitted to Mathematics of Operations Research

Lastly, the regularly varying nature of 𝜈[𝑥,∞) (see Assumption 1) implies lim𝑛→∞
(𝑛𝜈 [𝑛𝛾,∞))𝑙∗

(𝑛𝜈 [𝑛,∞))𝑙∗ = 1/𝛾𝛼𝑙∗ ∈

(0,∞), and hence P(𝐵𝛾
𝑛) =𝑶

(
(𝑛𝜈[𝑛,∞))𝑙∗

)
.

Proof of Claim (55). Again, we prove the claim for all 𝛾 ∈ (0, 𝑏). By the definition of 𝑍𝑛 in (19),

𝑍𝑛,1 = 𝑍𝑛I𝐵𝛾
𝑛
=

𝜏∑︁
𝑚=0

𝑌𝑚
𝑛 I𝐸𝑛∩𝐵𝛾

𝑛
−𝑌𝑚−1

𝑛 I𝐸𝑛∩𝐵𝛾
𝑛

P(𝜏 ≥ 𝑚) .

Meanwhile, by the definition of 𝐵𝛾
𝑛 , we have I𝐵𝛾

𝑛
= 0 on {D(𝐽𝑛) < 𝑙∗}, where D(𝜉) counts the number of

discontinuities for any 𝜉 ∈ D. By applying Result 4 under the choice of 𝑌𝑚 =𝑌𝑚
𝑛 I𝐸𝑛∩𝐵𝛾

𝑛
and 𝑌 =𝑌 ∗𝑛I𝐸𝑛∩𝐵𝛾

𝑛
,

we yield

E𝑍2
𝑛,1 ≤

∑︁
𝑚≥1

E
[��𝑌 ∗𝑛I𝐸𝑛∩𝐵𝛾

𝑛
−𝑌𝑚−1

𝑛 I𝐸𝑛∩𝐵𝛾
𝑛

��2]
P(𝜏 ≥ 𝑚)

≤
∑︁
𝑚≥1

∑︁
𝑘≥𝑙∗

E
[
I
(
𝑌 ∗𝑛 ≠𝑌𝑚−1

𝑛

) ��� {D(𝐽𝑛) = 𝑘}
]

P(𝜏 ≥ 𝑚) ·P
(
D(𝐽𝑛) = 𝑘

)
due to I𝐵𝛾

𝑛
= 0 on {D(𝐽𝑛) < 𝑙∗}

≤
∑︁
𝑘≥𝑙∗

P
(
D(𝐽𝑛) = 𝑘

)
·
∑︁
𝑚≥1

P
(
𝑌 ∗𝑛 ≠𝑌𝑚−1

𝑛

��� {D(𝐽𝑛) = 𝑘}
)

P(𝜏 ≥ 𝑚)

≤
∑︁
𝑘≥𝑙∗

P
(
D(𝐽𝑛) = 𝑘

)
·
[ 𝑚̄∑︁
𝑚=1

1
𝜌𝑚−1 +

∑︁
𝑚≥𝑚̄+1

𝐶0𝜌
𝑚−1
0 · (𝑘 + 1)
𝜌𝑚−1

]
by condition (20)

≤
∑︁
𝑘≥𝑙∗

P
(
D(𝐽𝑛) = 𝑘

)
· (𝑘 + 1) ·

[ 𝑚̄∑︁
𝑚=1

1
𝜌𝑚−1 +

∑︁
𝑚≥𝑚̄+1

𝐶0𝜌
𝑚−1
0

𝜌𝑚−1︸                              ︷︷                              ︸
=
Δ
𝐶𝜌,1

]
. (58)
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In particular, given 𝜌 ∈ (𝜌0,1), we have 𝐶𝜌,1 <∞, and hence

E𝑍2
𝑛,1 ≤ 𝐶𝜌,1

∑︁
𝑘≥𝑙∗
(𝑘 + 1) ·P

(
D(𝐽𝑛) = 𝑘

)
=𝐶𝜌,1

∑︁
𝑘≥𝑙∗
(𝑘 + 1) · exp

(
− 𝑛𝜈[𝑛𝛾,∞)

) (𝑛𝜈[𝑛𝛾,∞)) 𝑘
𝑘!

≤ 2𝐶𝜌,1
∑︁
𝑘≥𝑙∗

𝑘 · exp
(
− 𝑛𝜈[𝑛𝛾,∞)

) (𝑛𝜈[𝑛𝛾,∞)) 𝑘
𝑘!

due to 𝑙∗ ≥ 1 =⇒ 𝑘 + 1
𝑘
≤ 2 ∀𝑘 ≥ 𝑙∗

≤ 2𝐶𝜌,1 ·
(
𝑛𝜈[𝑛𝛾,∞)

) 𝑙∗ ∑︁
𝑘≥𝑙∗

exp
(
− 𝑛𝜈[𝑛𝛾,∞)

) (𝑛𝜈[𝑛𝛾,∞)) 𝑘−𝑙∗
(𝑘 − 𝑙∗)! due to 𝑙∗ ≥ 1

= 2𝐶𝜌,1 ·
(
𝑛𝜈[𝑛𝛾,∞)

) 𝑙∗
.

Again, the regular varying nature of 𝜈[𝑥,∞) allows us to conclude that E𝑍2
𝑛,1 =𝑶

(
(𝑛𝜈[𝑛,∞))𝑙∗

)
.

Proof of Claim (56). Fix some 𝜌 ∈ (𝜌0,1) and some 𝑞 > 1 such that 𝜌
1/𝑞
0 < 𝜌. Let 𝑝 > 1 be such that

1
𝑝
+ 1

𝑞
= 1. By Assumption 3, we can pick some Δ0 > 0 small enough such that 𝑎 −Δ0 > (𝑙∗1)𝑏. This allows

us to pick 𝛾̄ ∈ (0, 𝑏) small enough such that (𝐽 + 𝑙∗ − 1)/𝑝 > 2𝑙∗ where

𝐽 =
Δ 𝑎 −Δ0 − (𝑙∗ − 1)𝑏

𝛾̄
. (59)

We prove the claim for all 𝛾 ∈ (0, 𝛾̄). Specifically, given any 𝛾 ∈ (0, 𝛾̄), one can pick Δ ∈ (0,Δ0) such that

[𝑎−Δ− (𝑙∗−1)𝑏]/𝛾 ∉ Z. Due to our choice of 𝛾 and Δ, it follows from (59) that (𝐽𝛾 + 𝑙∗−1)/𝑝 > 2𝑙∗ where

𝐽𝛾 =
Δ ⌈𝑎 −Δ− (𝑙

∗ − 1)𝑏
𝛾

⌉ .

Let 𝐴Δ = {𝜉 ∈D : sup𝑡∈[0,1] 𝜉 (𝑡) ≥ 𝑎 −Δ} and 𝐴Δ
𝑛 = {𝑋̄𝑛 ∈ 𝐴Δ}. Also, note that

𝑍𝑛,2 = 𝑍𝑛I(𝐵𝛾
𝑛 )𝑐 = 𝑍𝑛I𝐴Δ

𝑛∩(𝐵
𝛾
𝑛 )𝑐︸         ︷︷         ︸

=
Δ
𝑍𝑛,3

+ 𝑍𝑛I(𝐴Δ
𝑛 )𝑐∩(𝐵

𝛾
𝑛 )𝑐︸             ︷︷             ︸

=
Δ
𝑍𝑛,4

.
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Specifically, 𝑍𝑛,3 =
∑𝜏

𝑚=0
𝑌̂𝑚
𝑛 I

𝐴Δ𝑛∩𝐸𝑛∩(𝐵
𝛾
𝑛 )𝑐
−𝑌̂𝑚−1

𝑛 I
𝐴Δ𝑛∩𝐸𝑛∩(𝐵

𝛾
𝑛 )𝑐

P(𝜏≥𝑚) . Analogous to the calculations in (58), by applying

Result 4 under the choice of 𝑌𝑚 =𝑌𝑚
𝑛 I𝐴Δ

𝑛∩𝐸𝑛∩(𝐵𝛾
𝑛 )𝑐 and 𝑌 =𝑌 ∗𝑛I𝐴Δ

𝑛∩𝐸𝑛∩(𝐵𝛾
𝑛 )𝑐 , we yield

E𝑍2
𝑛,3 ≤

∑︁
𝑚≥1

E
[��𝑌 ∗𝑛 −𝑌𝑚−1

𝑛

��2I𝐴Δ
𝑛∩𝐸𝑛∩(𝐵𝛾

𝑛 )𝑐
]

P(𝜏 ≥ 𝑚)

=
∑︁
𝑚≥1

E
[
I
(
𝑌 ∗𝑛 ≠𝑌𝑚−1

𝑛

)
· I𝐴Δ

𝑛∩𝐸𝑛∩(𝐵𝛾
𝑛 )𝑐

]
P(𝜏 ≥ 𝑚) because 𝑌𝑚

𝑛 and 𝑌 ∗𝑛 only take values in {0,1}

≤
∑︁
𝑚≥1

(
P
(
𝑌 ∗𝑛 ≠𝑌𝑚−1

𝑛

) )1/𝑞
·
(
P
(
𝐴Δ
𝑛 ∩ 𝐸𝑛 ∩ (𝐵𝛾

𝑛)𝑐
) )1/𝑝

P(𝜏 ≥ 𝑚) by Hölder’s inequality.

Applying Lemma 2, we get
(
P(𝐴Δ

𝑛 ∩ 𝐸𝑛 ∩ (𝐵𝛾
𝑛)𝑐)

)1/𝑝
= 𝒐

(
(𝑛𝜈[𝑛,∞))2𝑙∗

)
. On the other hand, it has been

shown in (51) that for any 𝑛 ≥ 1 and 𝑚 ≥ 𝑚̄, we have P(𝑌 ∗𝑛 ≠𝑌𝑚
𝑛 ) ≤ 𝐶0𝐶𝛾𝜌

𝑚
0 where 𝐶𝛾 =

Δ sup𝑛≥1 𝑛𝜈[𝑛𝛾,∞) +

1 <∞. In summary,

E𝑍2
𝑛,3 ≤ 𝒐

(
(𝑛𝜈[𝑛,∞))2𝑙∗

)
·
[ 𝑚̄∑︁
𝑚=1

1
𝜌𝑚−1 +

∑︁
𝑚≥𝑚̄+1

(𝐶0𝐶𝛾)1/𝑞 · (𝜌1/𝑞
0 )

𝑚−1

𝜌𝑚−1︸                                                  ︷︷                                                  ︸
=
Δ
𝐶𝜌,2

]
. (60)

Note that 𝐶𝜌,2 <∞ due to our choice of 𝜌1/𝑞
0 < 𝜌.
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Similarly, to bound the second-order moment of 𝑍𝑛,4 =
∑𝜏

𝑚=0
𝑌̂𝑚
𝑛 I(𝐴Δ𝑛 )𝑐∩𝐸𝑛∩(𝐵

𝛾
𝑛 )𝑐
−𝑌̂𝑚−1

𝑛 I(𝐴Δ𝑛 )𝑐∩𝐸𝑛∩(𝐵
𝛾
𝑛 )𝑐

P(𝜏≥𝑚) , we

apply Result 4 again and get

E𝑍2
𝑛,4 ≤

∑︁
𝑚≥1

E
[��𝑌 ∗𝑛 −𝑌𝑚−1

𝑛

��2I(𝐴Δ
𝑛 )𝑐∩𝐸𝑛∩(𝐵𝛾

𝑛 )𝑐
]

P(𝜏 ≥ 𝑚)

=
∑︁
𝑚≥1

E
[
I
(
𝑌 ∗𝑛 ≠𝑌𝑚−1

𝑛

)
· I(𝐴Δ

𝑛 )𝑐∩𝐸𝑛∩(𝐵𝛾
𝑛 )𝑐

]
P(𝜏 ≥ 𝑚) because 𝑌𝑚

𝑛 and 𝑌 ∗𝑛 only take values in {0,1}

≤
∑︁
𝑚≥1

P
({
𝑌 ∗𝑛 ≠𝑌𝑚−1

𝑛 , 𝑋̄𝑛 ∉ 𝐴Δ
}
∩ (𝐵𝛾

𝑛)𝑐
)

P(𝜏 ≥ 𝑚) due to 𝐴Δ
𝑛 = {𝑋̄𝑛 ∈ 𝐴Δ}

=
∑︁
𝑚≥1

P
({
𝑌 ∗𝑛 ≠𝑌𝑚−1

𝑛 , 𝑋̄𝑛 ∉ 𝐴Δ
}
∩ {D(𝐽𝑛) < 𝑙∗}

)
P(𝜏 ≥ 𝑚) due to 𝐵

𝛾
𝑛 = {D(𝐽𝑛) ≥ 𝑙∗}

=
∑︁
𝑚≥1

𝑙∗−1∑︁
𝑘=0

P
(
𝑌 ∗𝑛 ≠𝑌𝑚−1

𝑛 , 𝑋̄𝑛 ∉ 𝐴Δ
�� {D(𝐽𝑛) = 𝑘}

)
P(𝜏 ≥ 𝑚) ·P

(
D(𝐽𝑛) = 𝑘

)
≤

∑︁
𝑚≥1

𝑙∗−1∑︁
𝑘=0

𝐶0𝜌
𝑚−1
0

Δ2𝑛𝜇 · 𝜌𝑚−1 due to (21)

= 𝑙∗
∑︁
𝑚≥1

𝐶0𝜌
𝑚−1
0

Δ2𝑛𝜇 · 𝜌𝑚−1 =
𝐶0𝑙
∗

Δ · (1− 𝜌0
𝜌
)
· 1
𝑛𝜇

= 𝒐
( (
𝑛𝜈[𝑛,∞)

)2𝑙∗
)
. (61)

The last equality follows from the condition 𝜇 > 2𝑙∗(𝛼 − 1) prescribed in Proposition 1 and the fact that

𝑛𝜈[𝑛,∞) ∈ RV−(𝛼−1) (𝑛) as 𝑛→ ∞. Combining (60) and (61) with the preliminary bound (𝑥 + 𝑦)2 ≤

2𝑥2 + 2𝑦2, we yield E𝑍2
𝑛,2 ≤ 2E𝑍2

𝑛,3 + 2E𝑍2
𝑛,4 = 𝒐

(
(𝑛𝜈[𝑛,∞))2𝑙∗

)
and conclude the proof of (56). □

6.2. Proof of Theorems 1 and 2 We stress again that Theorem 1 follows directly from Theorem 2

with 𝜅 = 0 (i.e., by disabling ARA from Algorithm 3). We devote the remainder of this section to proving

Theorem 2.

Throughout Section 6.2, we fix the following constants and parameters. First, let 𝛽 ∈ [0,2) be the

Blumenthal-Getoor index of 𝑋 (𝑡) and 𝛼 > 1 be the regularly varying index of 𝜈[𝑥,∞); see Assumption 1.

Fix some

𝛽+ ∈ (𝛽,2), 𝜇 > 2𝑙∗(𝛼− 1). (62)
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48 Article submitted to Mathematics of Operations Research

This allows us to pick 𝑑, 𝑟 large enough such that

𝑟 (2− 𝛽+) > max{2, 𝜇 − 1}, 𝑑 > max{2,2𝜇 − 1} (63)

for 𝑑 in (37) and 𝑟 in (31). Let 𝜆 > 0 be the constant in Assumption 2. Choose

𝛼3 ∈ (0,
1
𝜆
), 𝛼4 ∈ (0,

1
2𝜆
). (64)

Next, fix

𝛼2 ∈ (0,
𝛼3
2
∧ 1). (65)

Based on the chosen value of 𝛼2, fix

𝛼1 ∈ (0,
𝛼2
𝜆
). (66)

Pick

𝛿 ∈ (1/
√

2,1). (67)

Since we require 𝛼2 to be strictly less than 1, there is some integer 𝑚̄ such that

𝛿𝑚𝛼2 − 𝛿𝑚 ≥ 𝛿𝑚𝛼2

2
and 𝛿𝑚𝛼2 < 𝑎 ∀𝑚 ≥ 𝑚̄ (68)

where 𝑎 > 0 is the parameter in set 𝐴; see Assumption 3. Based on the values of 𝛿 and 𝛽+, it holds for all

𝜅 ∈ [0,1) small enough that

𝜅2−𝛽+ <
1
2
< 𝛿2 (69)
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Then, based on all previous choices, it holds for all 𝜌1 ∈ (0,1) close enough to 1 such that

𝛿𝛼1 < 𝜌1, (70)

𝜅2−𝛽+

𝛿2 < 𝜌1 (71)

1
√

2𝛿
< 𝜌1 (72)

𝛿𝛼2−𝜆𝛼1 < 𝜌1 (73)

𝛿1−𝜆𝛼3 < 𝜌1 (74)

𝛿−𝛼2+
𝛼3
2 < 𝜌1, (75)

(1/
√

2) ∨ 𝜅2−𝛽+ < 𝜌1. (76)

Lastly, pick 𝜌0 ∈ (𝜌1,1). By picking a larger 𝑚̄ if necessary, we can ensure that

𝑚2𝜌𝑚1 ≤ 𝜌𝑚0 ∀𝑚 ≥ 𝑚̄. (77)

Next, we make a few observations. Given some non-negative integer 𝑘 , let

𝜁𝑘 (𝑡) =
𝑘∑︁
𝑖=1

𝑧𝑖I[𝑢𝑖 ,𝑛] (𝑡) (78)

where 0 < 𝑢1 < 𝑢2 < . . . < 𝑢𝑘 < 𝑛 are the order statistics of 𝑘 iid samples of Unif(0, 𝑛), and 𝑧𝑖’s are iid

samples from 𝜈(· ∩ [𝑛𝛾,∞))/𝜈[𝑛𝛾,∞). We adopt the convention that 𝑢0 ≡ 0 and 𝑢𝑘+1 ≡ 1. Note that when

𝑘 = 0, we set 𝜁0(𝑡) ≡ 0 as the zero function, and set 𝐼1 = [0, 𝑛], 𝑢0 = 0, and 𝑢1 = 𝑛.

For 𝑌 ∗𝑛 (·) defined in (25) and 𝑌𝑚
𝑛 (·) defined in (38), note that

𝑌 ∗𝑛 (𝜁𝑘) = max
𝑖∈[𝑘+1]

I{𝑊 (𝑖) ,∗𝑛 (𝜁𝑘) ≥ 𝑛𝑎}, 𝑌𝑚
𝑛 (𝜁𝑘) = max

𝑖∈[𝑘+1]
I{𝑊̂ (𝑖) ,𝑚𝑛 (𝜁𝑘) ≥ 𝑛𝑎} (79)
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where

𝑊
(𝑖) ,∗
𝑛 (𝜁𝑘) =Δ

𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞)
𝑗
+

𝑖−1∑︁
𝑞=1

𝑧𝑞 +
∑︁
𝑗≥1
(𝜉 (𝑖)

𝑗
)+, (80)

𝑊̂
(𝑖) ,𝑚
𝑛 (𝜁𝑘) =Δ

𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞) ,𝑚
𝑗

+
𝑖−1∑︁
𝑞=1

𝑧𝑞 +
𝑚+⌈log2 (𝑛𝑑 ) ⌉∑︁

𝑗=1
(𝜉 (𝑖) ,𝑚

𝑗
)+. (81)

See (26)–(28) and (35) for the definitions 𝜉 (𝑖)
𝑗

’s and 𝜉
(𝑖) ,𝑚
𝑗

’s, respectively. Also, define

𝑊
(𝑖) ,𝑚
𝑛 (𝜁𝑘) =Δ

𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞)
𝑗
+

𝑖−1∑︁
𝑞=1

𝑧𝑞 +
𝑚+⌈log2 (𝑛𝑑 ) ⌉∑︁

𝑗=1
(𝜉 (𝑖)

𝑗
)+. (82)

As intermediate steps for the proof of Theorem 2, we present the following two results. Proposition 4 states

that, using 𝑊
(𝑖) ,𝑚
𝑛 (𝜁𝑘) as an anchor, we see that 𝑊 (𝑖) ,∗𝑛 (𝜁𝑘) and 𝑊̂

(𝑖) ,𝑚
𝑛 (𝜁𝑘) would stay close enough with

high probability, especially for large 𝑚. Proposition 5 then shows that it is unlikely for the law of 𝑊 (𝑖) ,𝑚𝑛 (𝜁𝑘)

to concentrate around any 𝑦 ∈ R.

PROPOSITION 4. There exists some constant 𝐶1 ∈ (0,∞) such that the inequality

P
(���𝑊 (𝑖) ,∗𝑛 (𝜁𝑘) −𝑊 (𝑖) ,𝑚𝑛 (𝜁𝑘)

���∨ ���𝑊̂ (𝑖) ,𝑚𝑛 (𝜁𝑘) −𝑊 (𝑖) ,𝑚𝑛 (𝜁𝑘)
��� > 𝑥

)
≤ 𝐶1𝜅

𝑚(2−𝛽+ )

𝑥2 · 𝑛𝑟 (2−𝛽+ )−1 +
𝐶1
𝑥

√︂
1

𝑛𝑑−1 · 2𝑚

holds for any 𝑘 ∈N, 𝑖 ∈ [𝑘 + 1], 𝑛 ≥ 1, 𝑚 ∈N, and 𝑥 > 0.

PROPOSITION 5. There exists some constant 𝐶2 ∈ (0,∞) such that the inequality

P
(
𝑊
(𝑖) ,𝑚
𝑛 (𝜁𝑘) ∈

[
𝑦 − 𝛿𝑚
√
𝑛
, 𝑦 + 𝛿

𝑚

√
𝑛

]
for some 𝑖 ∈ [𝑘 + 1]

)
≤ (𝑘 + 1) ·𝐶2𝜌

𝑚
0

holds for any 𝑘 ∈N, 𝑖 ∈ [𝑘 + 1], 𝑛 ≥ 1, 𝑚 ≥ 𝑚̄, and 𝑦 > 𝛿𝑚𝛼2 .

Equipped with Propositions 4 and 5, we are able to prove the main results of Section 3.6, i.e., Theorem 2.

Proof of Theorem 2 In light of Proposition 1, it suffices to verify conditions (20) and (21).
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Verification of (20). Conditioning on {D(𝐽𝑛) = 𝑘}, the conditional law of 𝐽𝑛 = {𝐽𝑛 (𝑡) : 𝑡 ∈ [0, 𝑛]} is

the same as the law of the process 𝜁𝑘 specified in (78). This implies P
(
𝑌 ∗𝑛 (𝐽𝑛) ≠ 𝑌𝑚

𝑛 (𝐽𝑛)
�� D(𝐽𝑛) = 𝑘

)
=

P
(
𝑌 ∗𝑛 (𝜁𝑘) ≠𝑌𝑚

𝑛 (𝜁𝑘)
)
. Next, on event

⋂
𝑖∈[𝑘+1]

({���𝑊 (𝑖) ,∗𝑛 (𝜁𝑘) −𝑊 (𝑖) ,𝑚𝑛 (𝜁𝑘)
���∨ ���𝑊̂ (𝑖) ,𝑚𝑛 (𝜁𝑘) −𝑊 (𝑖) ,𝑚𝑛 (𝜁𝑘)

��� ≤ 𝛿𝑚
√
𝑛

}
∩

{
𝑊
(𝑖) ,𝑚
𝑛 (𝜁𝑘) ∉

[
𝑛𝑎 − 𝛿𝑚

√
𝑛
, 𝑛𝑎 + 𝛿

𝑚

√
𝑛

]})
,

we must have (for any 𝑖 ∈ [𝑘 + 1]) 𝑊 (𝑖) ,∗𝑛 (𝜁𝑘) ∨ 𝑊̂ (𝑖) ,𝑚𝑛 (𝜁𝑘) < 𝑛𝑎 or 𝑊 (𝑖) ,∗𝑛 (𝜁𝑘) ∧ 𝑊̂ (𝑖) ,𝑚𝑛 (𝜁𝑘) > 𝑛𝑎. It then

follows from (79) that, on this event, we have 𝑌 ∗𝑛 (𝜁𝑘) =𝑌𝑚
𝑛 (𝜁𝑘). Therefore,

P
(
𝑌 ∗𝑛 (𝜁𝑘) ≠𝑌𝑚

𝑛 (𝜁𝑘)
)

(83)

≤
∑︁

𝑖∈[𝑘+1]
P
(���𝑊 (𝑖) ,∗𝑛 (𝜁𝑘) −𝑊 (𝑖) ,𝑚𝑛 (𝜁𝑘)

���∨ ���𝑊̂ (𝑖) ,𝑚𝑛 (𝜁𝑘) −𝑊 (𝑖) ,𝑚𝑛 (𝜁𝑘)
��� > 𝛿𝑚
√
𝑛

)
+P

(
𝑊
(𝑖) ,𝑚
𝑛 (𝜁𝑘) ∈

[
𝑛𝑎 − 𝛿𝑚

√
𝑛
, 𝑛𝑎 + 𝛿

𝑚

√
𝑛

]
for some 𝑖 ∈ [𝑘 + 1]

)
.

Applying Proposition 4 (with 𝑥 = 𝛿𝑚/
√
𝑛), we get (for any 𝑖 ∈ [𝑘 + 1])

P
(���𝑊 (𝑖) ,∗𝑛 (𝜁𝑘) −𝑊 (𝑖) ,𝑚𝑛 (𝜁𝑘)

���∨ ���𝑊̂ (𝑖) ,𝑚𝑛 (𝜁𝑘) −𝑊 (𝑖) ,𝑚𝑛 (𝜁𝑘)
��� > 𝛿𝑚
√
𝑛

)
≤ 𝐶1 ·

[
𝜅𝑚(2−𝛽+ ) · 𝑛

𝛿2𝑚 · 𝑛𝑟 (2−𝛽+ )−1 +
√
𝑛

(
√

2𝛿)𝑚 ·
√
𝑛𝑑−1

]
=𝐶1 ·

[(
𝜅2−𝛽+

𝛿2

)𝑚
· 1
𝑛𝑟 (2−𝛽+ )−2 +

(
1
√

2𝛿

)𝑚
·
√︂

1
𝑛𝑑−2

]
≤ 𝐶1 ·

[(
𝜅2−𝛽+

𝛿2

)𝑚
+

(
1
√

2𝛿

)𝑚]
due to the choices of 𝑑 and 𝑟 in (63)

≤ 2𝐶1𝜌
𝑚
0 due to the choices in (71) and (72), and 𝜌0 ∈ (𝜌1,1). (84)
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On the other hand, due to (68), we have 𝑛𝑎 − 𝛿𝑚𝛼2 ≥ 𝑎 − 𝛿𝑚𝛼2 > 0. for all 𝑛 ≥ 1 and 𝑚 ≥ 𝑚̄. This allows us

to apply Proposition 5 (with 𝑦 = 𝑛𝑎) and yield (for any 𝑖 ∈ [𝑘 + 1])

P
(
𝑊
(𝑖) ,𝑚
𝑛 (𝜁𝑘) ∈

[
𝑛𝑎 − 𝛿𝑚

√
𝑛
, 𝑛𝑎 + 𝛿

𝑚

√
𝑛

]
for some 𝑖 ∈ [𝑘 + 1]

)
≤ (𝑘 + 1) ·𝐶2𝜌

𝑚
0 ∀𝑚 ≥ 𝑚̄. (85)

Plugging (84) and (85) into (83), we conclude the proof by setting 𝐶0 = 2𝐶1 +𝐶2.

Verification of (21). Fix some Δ ∈ (0,1) and 𝑘 = 0,1, . . . , 𝑙∗ − 1. Again, conditioning on {D(𝐽𝑛) = 𝑘}, the

conditional law of 𝐽𝑛 = {𝐽𝑛 (𝑡) : 𝑡 ∈ [0, 𝑛]} is the same as the law of the process 𝜁𝑘 specified in (78). This

implies

P
(
𝑌 ∗𝑛 (𝐽𝑛) ≠𝑌𝑚

𝑛 (𝐽𝑛), 𝑋̄𝑛 ∉ 𝐴Δ
��� D(𝐽𝑛) = 𝑘

)
= P

(
𝑌 ∗𝑛 (𝐽𝑛) ≠𝑌𝑚

𝑛 (𝐽𝑛), sup
𝑡∈[0,𝑛]

𝑋 (𝑡) < 𝑛(𝑎 −Δ)
��� D(𝐽𝑛) = 𝑘

)
by definition of set 𝐴Δ

= P
(

max
𝑖∈[𝑘+1]

𝑊̂
(𝑖) ,𝑚
𝑛 (𝜁𝑘) ≥ 𝑛𝑎, max

𝑖∈[𝑘+1]
𝑊
(𝑖) ,∗
𝑛 (𝜁𝑘) < 𝑛(𝑎 −Δ)

)
≤

∑︁
𝑖∈[𝑘+1]

P
(��𝑊̂ (𝑖) ,𝑚𝑛 (𝜁𝑘) −𝑊 (𝑖) ,∗𝑛 (𝜁𝑘)

�� > 𝑛Δ

)
≤

∑︁
𝑖∈[𝑘+1]

P
(���𝑊 (𝑖) ,∗𝑛 (𝜁𝑘) −𝑊 (𝑖) ,𝑚𝑛 (𝜁𝑘)

���∨ ���𝑊̂ (𝑖) ,𝑚𝑛 (𝜁𝑘) −𝑊 (𝑖) ,𝑚𝑛 (𝜁𝑘)
��� > 𝑛Δ

2

)
≤ (𝑘 + 1) ·

[
4𝐶1

Δ2𝑛2 ·
𝜅𝑚(2−𝛽+ )

𝑛𝑟 (2−𝛽+ )−1 +
2𝐶1
Δ
· 1
𝑛

√︂
1

𝑛𝑑−1 · 2𝑚

]
by Proposition 4

= (𝑘 + 1) ·
[
4𝐶1

Δ2 ·
𝜅𝑚(2−𝛽+ )

𝑛𝑟 (2−𝛽+ )+1
+ 2𝐶1

Δ
· (1/
√

2)𝑚

𝑛
𝑑+1

2

]
≤ 𝑘 + 1

𝑛𝜇
·
[
4𝐶1

Δ2 · 𝜅
𝑚(2−𝛽+ ) + 2𝐶1

Δ
· (1/
√

2)𝑚
]

by the choices of 𝑟 and 𝑑 in (63)

≤ 𝑘 + 1
𝑛𝜇
·
[
4𝐶1

Δ2 · 𝜌
𝑚
0 +

2𝐶1
Δ
· 𝜌𝑚0

]
due to the choice of 𝜌1 in (76) and 𝜌0 ∈ (𝜌1,1).

Due to Δ ∈ (0,1) (and hence 1
Δ
< 1

Δ2 ) and 𝑘 ≤ 𝑙∗ − 1, we conclude the proof by setting 𝐶0 = 6𝑙∗𝐶1. □

The rest of this section is devoted to proving Propositions 4 and 5. First, we collect a useful result.



Wang and Rhee: Rare-Event Simulation for Regularly Varying Lévy Processes with Infinite Activities
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Result 5 (Lemma 1 of González Cázares et al. (2022)) Let 𝜈 be the Lévy measure of a Lévy process 𝑋 . Let

𝐼
𝑝

0 (𝜈) =
Δ
∫
(−1,1) |𝑥 |

𝑝𝜈(𝑑𝑥). Suppose that 𝛽 < 2 for the Blumenthal-Getoor index 𝛽 =
Δ inf{𝑝 > 0 : 𝐼

𝑝

0 (𝜈) <∞}.

Then ∫
(−𝜅,𝜅 )

𝑥2𝜈(𝑑𝑥) ≤ 𝜅2−𝛽+ 𝐼𝛽+0 (𝜈) ∀𝜅 ∈ (0,1], 𝛽+ ∈ (𝛽,2).

Next, we prepare two lemmas regarding the expectations of the supremum ofΞ𝑛 (see (17) for the definition)

and the difference between Ξ𝑛 and Ξ̆𝑚
𝑛 (see (34)).

LEMMA 3. There exists a constant 𝐶𝑋 <∞ (depending only on the law of Lévy process 𝑋 (𝑡)) such that

E
[

sup
𝑠∈[0,𝑡 ]

Ξ𝑛 (𝑡)
]
≤ 𝐶𝑋 (

√
𝑡 + 𝑡) ∀𝑡 > 0, 𝑛 ≥ 1.

Proof Recall that the generating triplet of 𝑋 is (𝑐𝑋, 𝜎, 𝜈) and for the Blumenthal-Getoor index 𝛽 =
Δ

inf{𝑝 > 0 :
∫
(−1,1) |𝑥 |

𝑝𝜈(𝑑𝑥) <∞} we have 𝛽 < 2; see Assumption 1. Fix some 𝛽+ ∈ (1∨ 𝛽,2) in this proof.

We prove the lemma for

𝐶𝑋 =
Δ max

{
|𝜎 |

√︂
2
𝜋
+ 2

√︃
𝐼
𝛽+
0 (𝜈), (𝑐𝑋)

+ + 𝐼1
+ (𝜈) + 2𝐼𝛽+0 (𝜈)

}
where (𝑥)+ = 𝑥 ∨ 0, 𝐼1

+ (𝜈) =
∫
[1,∞) 𝑥𝜈(𝑑𝑥), and 𝐼

𝑝

0 (𝜈) =
∫
(−1,1) |𝑥 |

𝑝𝜈(𝑑𝑥).

Recall that Ξ𝑛 is a Lévy process with generating triplet (𝑐𝑋, 𝜎, 𝜈 | (−∞,𝑛𝛾) ). Let 𝜈𝑛 =Δ 𝜈 | (−∞,𝑛𝛾) . It follows

from Lemma 2 of González Cázares et al. (2022) (specifically, by setting 𝑡 =𝑇 in equation (26)) that, for all

𝑡 > 0 and 𝑛 ≥ 1,

E sup
𝑠∈[0,𝑡 ]

Ξ𝑛 (𝑡) ≤
(
|𝜎 |

√︂
2
𝜋
+ 2

√︃
𝐼
𝛽+
0 (𝜈𝑛)

)√
𝑡 +

(
(𝑐𝑋)+ + 𝐼1

+ (𝜈𝑛) + 2𝐼𝛽+0 (𝜈𝑛)
)
𝑡. (86)

Note that 𝐼𝛽+0 (𝜈𝑛) =
∫
(−1,1) |𝑥 |

𝑝𝜈𝑛 (𝑑𝑥) =
∫
(−1,1)∩(−∞,𝑛𝛾) |𝑥 |

𝑝𝜈(𝑑𝑥) ≤ 𝐼
𝛽+
0 (𝜈) and 𝐼1

+ (𝜈𝑛) =
∫
[1,∞) 𝑥𝜈𝑛 (𝑑𝑥) =∫

[1,∞)∩(−∞,𝑛𝛾) 𝑥𝜈(𝑑𝑥) ≤ 𝐼1
+ (𝜈). Plugging these two bounds into (86), we conclude the proof. □

LEMMA 4. There exists some 𝐶 ∈ (0,∞) (only depending on the choice of 𝛽+ ∈ (𝛽,2) in (62) and the

law of Lévy process 𝑋) such that

P
(

sup
𝑡∈[0,𝑛]

���Ξ𝑛 (𝑡) − Ξ̆𝑚
𝑛 (𝑡)

��� > 𝑥

)
≤ 𝐶𝜅𝑚(2−𝛽+ )

𝑥2𝑛𝑟 (2−𝛽+ )−1 ∀𝑥 > 0, 𝑛 ≥ 1, 𝑚 ∈N

where 𝑟 is the parameter in the truncation threshold 𝜅𝑛,𝑚 = 𝜅𝑚/𝑛𝑟 (see (31)).
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Proof From the definitions of Ξ𝑛 and Ξ̆𝑚
𝑛 in (32) and (34), respectively, we have

Ξ𝑛 (𝑡) − Ξ̆𝑚
𝑛 (𝑡) =

𝑑
𝑋 (−𝜅𝑛,𝑚,𝜅𝑛,𝑚 ) (𝑡) − 𝜎̄(𝜅𝑛,𝑚)𝐵(𝑡)

where 𝑋 (−𝑐,𝑐) is the Lévy process with generating triplet (0,0, 𝜈 | (−𝑐,𝑐) ), 𝜅𝑛,𝑚 = 𝜅𝑚/𝑛𝑟 , and 𝐵 is a standard

Brownian motion independent of 𝑋 (−𝜅𝑛,𝑚,𝜅𝑛,𝑚 ) . In particular, 𝑋 (−𝜅𝑛,𝑚,𝜅𝑛,𝑚 ) is a martingale with variance

𝑣𝑎𝑟
[
𝑋 (−𝜅𝑛,𝑚,𝜅𝑛,𝑚 ) (1)

]
= 𝜎̄2(𝜅𝑛,𝑚); see (33) for the definition of 𝜎̄2(·). Therefore,

P
(

sup
𝑡∈[0,𝑛]

���Ξ𝑛 (𝑡) − Ξ̆𝑚
𝑛 (𝑡)

��� > 𝑥

)
≤ 1
𝑥2 E

���𝑋 (−𝜅𝑛,𝑚,𝜅𝑛,𝑚 ) (𝑛) − 𝜎̄(𝜅𝑛,𝑚)𝐵(𝑛)
���2 using Doob’s inequality

=
2𝑛
𝑥2 𝜎̄

2(𝜅𝑛,𝑚) due to the independence between 𝑋 (−𝜅𝑛,𝑚,𝜅𝑛,𝑚 ) and 𝐵

≤ 2𝑛
𝑥2 · 𝜅

2−𝛽+
𝑛,𝑚 𝐼

𝛽+
0 (𝜈) using Result 5

=
2𝐼𝛽+0 (𝜈)

𝑥2 · 𝑛𝜅
𝑚(2−𝛽+ )

𝑛𝑟 (2−𝛽+ )
=

2𝐼𝛽+0 (𝜈)
𝑥2 · 𝜅𝑚(2−𝛽+ )

𝑛𝑟 (2−𝛽+ )−1 due to 𝜅𝑛,𝑚 = 𝜅𝑚/𝑛𝑟 .

To conclude the proof, we set 𝐶 = 2𝐼𝛽+0 (𝜈) = 2
∫
(−1,1)

∫
|𝑥 |𝛽+𝜈(𝑑𝑥). □

To facilitate the presentation of the next few lemmas, consider a slightly more general version of the

stick-breaking procedure in (26)–(35) to account for arbitrary stick lengths. Specifically, for any 𝑙 > 0, let

𝑙1(𝑙) =𝑉1 · 𝑙, 𝑙 𝑗 (𝑙) =𝑉 𝑗 ·
(
𝑙 − 𝑙1(𝑙) − 𝑙2(𝑙) − · · · − 𝑙 𝑗−1(𝑙)

)
∀ 𝑗 ≥ 2, (87)

where 𝑉 𝑗’s are iid copies of Unif(0,1). Independent of 𝑉 𝑗’s, for any 𝑛 and 𝑚, let Ξ𝑛 and Ξ̆𝑚
𝑛 be Lévy

processes with joint law specified in (32) and (34), respectively. Conditioning on the values of 𝑙 𝑗 (𝑙), define

𝜉
[𝑛]
𝑗
(𝑙), 𝜉 [𝑛],𝑚

𝑗
(𝑙) using (for all 𝑗 ≥ 1)

(
𝜉
[𝑛]
𝑗
(𝑙), 𝜉 [𝑛],0

𝑗
(𝑙), 𝜉 [𝑛],1

𝑗
(𝑙), 𝜉 [𝑛],2

𝑗
(𝑙), . . .

)
=

(
Ξ𝑛

(
𝑙 𝑗 (𝑙)

)
, Ξ̆0

𝑛

(
𝑙 𝑗 (𝑙)

)
, Ξ̆1

𝑛

(
𝑙 𝑗 (𝑙)

)
, Ξ̆2

𝑛

(
𝑙 𝑗 (𝑙)

)
, . . .

)
. (88)
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LEMMA 5. There exists some 𝐶 ∈ (0,∞) (only depending on the choice of 𝛽+ ∈ (𝛽,2) in (62) and the

law of Lévy process 𝑋) such that, for all 𝑚 ∈N and 𝑛 ≥ 1,

P
(����𝑚+⌈log2 (𝑛𝑑 ) ⌉∑︁

𝑗=1

(
𝜉
[𝑛]
𝑗
(𝑙)

)+ − 𝑚+⌈log2 (𝑛𝑑 ) ⌉∑︁
𝑗=1

(
𝜉
[𝑛],𝑚
𝑗
(𝑙)

)+���� > 𝑦

)
≤ 𝐶𝜅𝑚(2−𝛽+ )

𝑦2𝑛𝑟 (2−𝛽+ )−1 ∀𝑦 > 0, 𝑙 ∈ [0, 𝑛]

where 𝑟 is the parameter in the truncation threshold 𝜅𝑛,𝑚 = 𝜅𝑚/𝑛𝑟 (see (31)) and (𝑥)+ = 𝑥 ∨ 0.

Proof For notational simplicity, set 𝑘 (𝑛) = ⌈log2(𝑛𝑑)⌉. Due to | (𝑥)+ − (𝑦)+ | ≤ |𝑥 − 𝑦 |,

P
(���𝑚+𝑘 (𝑛)∑︁

𝑗=1

(
𝜉
[𝑛]
𝑗
(𝑙)

)+ − 𝑚+𝑘 (𝑛)∑︁
𝑗=1

(
𝜉
[𝑛],𝑚
𝑗
(𝑙)

)+��� > 𝑦

)
≤ P

(𝑚+𝑘 (𝑛)∑︁
𝑗=1

��� (𝜉 [𝑛]𝑗
(𝑙)

)+ − (
𝜉
[𝑛],𝑚
𝑗
(𝑙)

)+��� > 𝑦

)
≤ P

(𝑚+𝑘 (𝑛)∑︁
𝑗=1

��� 𝜉 [𝑛]𝑗
(𝑙) − 𝜉 [𝑛],𝑚

𝑗
(𝑙)︸                 ︷︷                 ︸

=
Δ
𝑞 𝑗

��� > 𝑦

)
. (89)

Furthermore, we claim the existence of some constant 𝐶̃ ∈ (0,∞) such that (for any 𝑦, 𝑑 > 0, 𝑙 ∈ [0.𝑛], and

any 𝑛 ≥ 1, 𝑚 ∈N)

P(
𝑚+𝑘 (𝑛)∑︁

𝑗=1
|𝑞 𝑗 | > 𝑦) ≤ 𝐶̃ ·

𝑛𝜎̄2(𝜅𝑛,𝑚)
𝑦2 . (90)

Then using Result 5, we yield

𝑛𝜎̄2(𝜅𝑛,𝑚) ≤ 𝑛 · 𝜅2−𝛽+
𝑛,𝑚 𝐼

𝛽+
0 (𝜈) =

𝜅𝑚(2−𝛽+ )

𝑛𝑟 (2−𝛽+ )−1 · 𝐼
𝛽+
0 (𝜈)

where 𝐼
𝛽+
0 (𝜈) =

∫
(−1,1)

∫
|𝑥 |𝛽+𝜈(𝑑𝑥). Setting 𝐶 = 𝐶̃ 𝐼

𝛽+
0 (𝜈), we conclude the proof.

Now, it only remains to prove claim (90). Let 𝜒 = 21/4. Note that

1 = (𝜒 − 1)
∑︁
𝑗≥1

1
𝜒 𝑗
≥ (𝜒 − 1)

( 1
𝜒
+ 1
𝜒2 + · · · +

1
𝜒𝑚+𝑘 (𝑛)

)
.

As a result,

P
( 𝑘 (𝑛)+𝑚∑︁

𝑗=1
|𝑞 𝑗 | > 𝑦

)
≤P

( 𝑘 (𝑛)+𝑚∑︁
𝑗=1
|𝑞 𝑗 | > 𝑦(𝜒 − 1)

𝑘 (𝑛)+𝑚∑︁
𝑗=1

1
𝜒 𝑗

)
≤

𝑘 (𝑛)+𝑚∑︁
𝑗=1

P
(
|𝑞 𝑗 | > 𝑦 · 𝜒 − 1

𝜒 𝑗

)
(91)
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Next, we bound each P( |𝑞 𝑗 | > 𝑦
𝜒−1
𝜒 𝑗 ). Conditioning on 𝑙 𝑗 (𝑙) = 𝑡 (for any 𝑡 ∈ [0, 𝑙]), we get

P
(
|𝑞 𝑗 | > 𝑦

𝜒 − 1
𝜒 𝑗

���� 𝑙 𝑗 (𝑙) = 𝑡

)
= P

(���Ξ𝑛 (𝑡) − Ξ̆𝑚
𝑛 (𝑡)

��� > 𝑦
𝜒 − 1
𝜒 𝑗

)
due to (88)

≤ 𝜒2 𝑗

𝑦2(𝜒 − 1)2
E
���𝑋 (−𝜅𝑛,𝑚,𝜅𝑛,𝑚 ) (𝑡) − 𝜎̄(𝜅𝑛,𝑚)𝐵(𝑡)

���2
=

𝜒2 𝑗

𝑦2(𝜒 − 1)2
· 2𝜎̄2(𝜅𝑛,𝑚)𝑡

=⇒ P
(
|𝑞 𝑗 | > 𝑦

𝜒 − 1
𝜒 𝑗

)
≤ 𝜒2 𝑗

𝑦2(𝜒 − 1)2
· 2𝜎̄2(𝜅𝑛,𝑚) ·E[𝑙 𝑗 (𝑙)]

=

√
2 𝑗

𝑦2(21/4 − 1)2
· 2𝜎̄2(𝜅𝑚,𝑛) ·E[𝑙 𝑗 (𝑙)] due to 𝜒 = 21/4

=

√
2 𝑗

𝑦2(21/4 − 1)2
· 2𝜎̄2(𝜅𝑚,𝑛) ·

𝑙

2 𝑗
by definition of 𝑙 𝑗 (𝑙) in (87)

≤ 2
(21/4 − 1)2

√
2 𝑗
·
𝑛𝜎̄2(𝜅𝑚,𝑛)

𝑦2 due to 𝑙 ≤ 𝑛.

Therefore, in (91), we get

P
( 𝑘 (𝑛)+𝑚∑︁

𝑗=1
|𝑞 𝑗 | > 𝑦

)
≤
𝑛𝜎̄2(𝜅𝑚,𝑛)

𝑦2

∑︁
𝑗≥1

2
(21/4 − 1)2

√
2 𝑗

=
𝑛𝜎̄2(𝜅𝑚,𝑛)

𝑦2 · 2
√

2
(21/4 − 1)2(

√
2− 1)︸                   ︷︷                   ︸

=
Δ
𝐶̃

,

thus establishing claim (90). □

LEMMA 6. Let 𝑛 ∈ Z+ and 𝑙 ∈ [0, 𝑛]. Let 𝐶𝑋 <∞ be the constant characterized in Lemma 3 that only

depends on the law of Lévy process 𝑋 . The inequality

P
( ∑︁
𝑗>𝑚+⌈log2 (𝑛𝑑 ) ⌉

(
𝜉
[𝑛]
𝑗
(𝑙)

)+
> 𝑥

)
≤ 2𝐶𝑋

𝑥

√︂
1

𝑛𝑑−1 · 2𝑚

holds for all 𝑥 > 0, 𝑛 ≥ 1, and 𝑚 ≥ 0, where (𝑥)+ = 𝑥 ∨ 0.

Proof For this proof, we adopt the notation 𝑙𝑘 (𝑙) =Δ 𝑙 − 𝑙1(𝑙) − 𝑙2(𝑙) − . . . − 𝑙𝑘 (𝑙) for the remaining stick

length after the first 𝑘 sticks. Conditioning on 𝑙𝑚+⌈log2 (𝑛𝑑 ) ⌉ (𝑙) = 𝑡,

P
( ∑︁
𝑗>𝑚+⌈log2 (𝑛𝑑 ) ⌉

(
𝜉
[𝑛]
𝑗
(𝑙)

)+
> 𝑥

���� 𝑙𝑚+⌈log2 (𝑛𝑑 ) ⌉ (𝑙) = 𝑡

)
= P

(
sup

𝑠∈[0,𝑡 ]
Ξ𝑛 (𝑠) > 𝑥

)
by Result 3

≤ 𝐶𝑋

𝑥
(
√
𝑡 + 𝑡) using Lemma 3.
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Therefore, unconditionally,

P
( ∑︁
𝑗>𝑚+⌈log2 (𝑛𝑑 ) ⌉

(
𝜉
[𝑛]
𝑗
(𝑙)

)+
> 𝑥

)
≤ 𝐶𝑋

𝑥
E
[√︃

𝑙𝑚+⌈log2 (𝑛𝑑 ) ⌉ (𝑙) +E𝑙𝑚+⌈log2 (𝑛𝑑 ) ⌉ (𝑙)
]

≤ 𝐶𝑋

𝑥

[√︃
E𝑙𝑚+⌈log2 (𝑛𝑑 ) ⌉ (𝑙) +E𝑙𝑚+⌈log2 (𝑛𝑑 ) ⌉ (𝑙)

]

The last line follows from Jensen’s inequality. Lastly, by definition of 𝑙 𝑗 (𝑙)’s in (87), we have

E𝑙𝑚+⌈log2 (𝑛𝑑 ) ⌉ (𝑙) =
𝑙

2𝑚+⌈log2 (𝑛𝑑 ) ⌉
≤ 𝑙

2𝑚 · 𝑛𝑑
≤ 𝑛

2𝑚 · 𝑛𝑑
=

1
𝑛𝑑−1 · 2𝑚

due to 𝑙 ∈ [0, 𝑛] .

This concludes the proof. □

LEMMA 7. Let 𝑛 ∈ Z+ and 𝑙 ∈ [0, 𝑛]. Let 𝐶 and 𝜆 be the constants in Assumption 2. Let 𝐶𝑋 <∞ be the

constant characterized in Lemma 3 that only depends on the law of Lévy process 𝑋 . The inequality

P
(𝑚+⌈log2 (𝑛𝑑 ) ⌉∑︁

𝑗=1

(
𝜉
[𝑛]
𝑗
(𝑙)

)+ ∈ [𝑦, 𝑦 + 𝑐])
≤ 𝐶
(𝑚 + (⌈log2(𝑛𝑑)⌉)𝑛𝛼4𝜆

𝛿𝛼3𝜆
𝑐 + 4𝐶𝑋

(
𝑚2 + (⌈log2(𝑛𝑑)⌉)2

) 𝛿𝛼3/2

𝑦0 · 𝑛𝛼4/2
.

holds for all 𝑦 ≥ 𝑦0 > 0, 𝑐 > 0, 𝑛 ≥ 1, and 𝑚 ∈N.

Proof To simplify notations, in this proof we set 𝑘 (𝑛) = ⌈log2(𝑛𝑑)⌉ and write 𝑙 𝑗 = 𝑙 𝑗 (𝑙) when there

is no ambiguity. For the sequence of random variables (𝑙1, · · · , 𝑙𝑚+𝑘 (𝑛) ), let 𝑙1 ≥ 𝑙2 ≥ · · · ≥ 𝑙𝑚+𝑘 (𝑛) be its

order statistics. Given any ordered positive real sequence 𝑡1 ≥ 𝑡2 ≥ · · · ≥ 𝑡𝑚+𝑘 (𝑛) > 0, by conditioning on

𝑙 𝑗 = 𝑡 𝑗 ∀ 𝑗 ∈ [𝑚 + 𝑘 (𝑛)], it follows from (88) that

P
(𝑚+𝑘 (𝑛)∑︁

𝑗=1

(
𝜉
[𝑛]
𝑗
(𝑙)

)+ ∈ [𝑦, 𝑦 + 𝑐] ��� 𝑙 𝑗 = 𝑡 𝑗 ∀ 𝑗 ∈ [𝑚 + 𝑘 (𝑛)]
)
= P

(𝑚+𝑘 (𝑛)∑︁
𝑗=1

(
Ξ
( 𝑗 )
𝑛 (𝑡 𝑗)

)+ ∈ [𝑦, 𝑦 + 𝑐]) (92)
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58 Article submitted to Mathematics of Operations Research

where Ξ( 𝑗 )𝑛 ’s are iid copies of the Lévy processes Ξ𝑛 = 𝑋<𝑛𝛾 . Next, fix 𝜂 = 𝛿𝑚𝛼3/𝑛𝛼4 . Given the sequence of

real numbers 𝑡 𝑗’s, we define 𝐽 =
Δ #{ 𝑗 ∈ [𝑚 + 𝑘 (𝑛)] : 𝑡 𝑗 > 𝜂} as the number of elements in the sequence that

are larger than 𝜂. In case that 𝑡1 ≤ 𝜂, we set 𝐽 = 0. With 𝐽 defined, we consider a decomposition of events in

(92) based on the first 𝑗 ∈ [𝑚 + 𝑘 (𝑛)] such that Ξ( 𝑗 )𝑛 (𝑡 𝑗) > 0 (and hence
(
Ξ
( 𝑗 )
𝑛 (𝑡 𝑗)

)+
> 0), especially if such

𝑡 𝑗 is larger than 𝜂 or not. To be specific,

P
(𝑚+𝑘 (𝑛)∑︁

𝑗=1

(
Ξ
( 𝑗 )
𝑛 (𝑡 𝑗)

)+ ∈ [𝑦, 𝑦 + 𝑐])
=

𝐽∑︁
𝑗=1

P
(
Ξ
(𝑖)
𝑛 (𝑡𝑖) ≤ 0 ∀𝑖 ∈ [ 𝑗 − 1]; Ξ( 𝑗 )𝑛 (𝑡 𝑗) > 0;

𝑚+𝑘 (𝑛)∑︁
𝑖= 𝑗

(
Ξ
(𝑖)
𝑛 (𝑡𝑖)

)+ ∈ [𝑦, 𝑦 + 𝑐])︸                                                                                           ︷︷                                                                                           ︸
=
Δ
𝑝 𝑗

+P
(
Ξ
(𝑖)
𝑛 (𝑡𝑖) ≤ 0 ∀𝑖 ∈ [𝐽];

𝑚+𝑘 (𝑛)∑︁
𝑗=𝐽+1

(
Ξ
( 𝑗 )
𝑛 (𝑡 𝑗)

)+ ∈ [𝑦, 𝑦 + 𝑐])︸                                                                   ︷︷                                                                   ︸
=
Δ
𝑝∗

. (93)

We first bound terms 𝑝 𝑗’s. For any 𝑗 ∈ [𝐽], observe that

𝑝 𝑗 ≤ P
(
Ξ
( 𝑗 )
𝑛 (𝑡 𝑗) > 0;

𝑚+𝑘 (𝑛)∑︁
𝑖= 𝑗

(
Ξ
(𝑖)
𝑛 (𝑡𝑖)

)+ ∈ [𝑦, 𝑦 + 𝑐])
=

∫
R

P
(
Ξ
( 𝑗 )
𝑛 (𝑡 𝑗) ∈ [𝑦 − 𝑥, 𝑦 − 𝑥 + 𝑐] ∩ (0,∞)

)
P
(𝑚+𝑘 (𝑛)∑︁

𝑖= 𝑗+1

(
Ξ
(𝑖)
𝑛 (𝑡𝑖)

)+ ∈ 𝑑𝑥)
≤ 𝐶𝑐

𝑡𝜆
𝑗
∧ 1

by Assumption 2

≤ 𝐶𝑛𝛼4𝜆

𝛿𝑚𝛼3𝜆
· 𝑐 due to 𝑗 ≤ 𝐽, and hence 𝑡 𝑗 > 𝜂 = 𝛿𝑚𝛼3/𝑛𝛼4 . (94)
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On the other hand,

𝑝∗ ≤ P
(𝑚+𝑘 (𝑛)∑︁

𝑗=𝐽+1

(
Ξ
( 𝑗 )
𝑛 (𝑡 𝑗)

)+ ∈ [𝑦, 𝑦 + 𝑐]) ≤ P
(𝑚+𝑘 (𝑛)∑︁

𝑗=𝐽+1

(
Ξ
( 𝑗 )
𝑛 (𝑡 𝑗)

)+ ≥ 𝑦0

)
due to 𝑦 ≥ 𝑦0 > 0

≤
𝑚+𝑘 (𝑛)∑︁
𝑗=𝐽+1

P
(
Ξ
( 𝑗 )
𝑛 (𝑡 𝑗) ≥ 𝑦0/𝑁

)
with 𝑁 =

Δ
𝑚 + 𝑘 (𝑛) − 𝐽

≤
𝑚+𝑘 (𝑛)∑︁
𝑗=𝐽+1

𝐶𝑋 (
√
𝑡 𝑗 + 𝑡 𝑗) · 𝑁
𝑦0

by Lemma 3

≤
𝑚+𝑘 (𝑛)∑︁
𝑗=𝐽+1

𝐶𝑋 (
√
𝜂 + 𝜂) · 𝑁
𝑦0

due to 𝑗 > 𝐽, and hence 𝑡 𝑗 ≤ 𝜂 = 𝛿𝑚𝛼3/𝑛𝛼4

= 𝑁2 ·
𝐶𝑋 (
√
𝜂 + 𝜂)
𝑦0

≤
(
𝑚 + 𝑘 (𝑛)

)2 ·
𝐶𝑋 (
√
𝜂 + 𝜂)
𝑦0

due to 𝑁 ≤ 𝑚 + 𝑘 (𝑛)

≤ 2𝐶𝑋

(
𝑚2 + (⌈log2(𝑛𝑑)⌉)2

)√𝜂 + 𝜂
𝑦0

using (𝑢 + 𝑣)2 ≤ 2(𝑢2 + 𝑣2)

≤ 4𝐶𝑋

(
𝑚2 + (⌈log2(𝑛𝑑)⌉)2

)√𝜂
𝑦0

= 4𝐶𝑋

(
𝑚2 + (⌈log2(𝑛𝑑)⌉)2

) 𝛿𝑚𝛼3/2

𝑦0 · 𝑛𝛼4/2
. (95)

Plugging (94) and (95) into (93), we yield

P
(𝑚+𝑘 (𝑛)∑︁

𝑗=1

(
𝜉
[𝑛]
𝑗
(𝑙)

)+ ∈ [𝑦, 𝑦 + 𝑐] ��� 𝑙 𝑗 = 𝑡 𝑗 ∀ 𝑗 ∈ [𝑚 + 𝑘 (𝑛)]
)

≤ 𝐽 · 𝐶𝑛
𝛼4𝜆

𝛿𝑚𝛼3𝜆
𝑐 + 4𝐶𝑋

(
𝑚2 + (⌈log2(𝑛𝑑)⌉)2

) 𝛿𝑚𝛼3/2

𝑦0 · 𝑛𝛼4/2

≤ 𝐶
(𝑚 + (⌈log2(𝑛𝑑)⌉)𝑛𝛼4𝜆

𝛿𝑚𝛼3𝜆
𝑐 + 4𝐶𝑋

(
𝑚2 + (⌈log2(𝑛𝑑)⌉)2

) 𝑚𝛿𝛼3/2

𝑦0 · 𝑛𝛼4/2
due to 𝐽 ≤ 𝑚 + ⌈log2(𝑛𝑑)⌉ .

To conclude the proof, just note that the inequality above holds when conditioning on any sequence of

𝑡1 ≥ 𝑡2 ≥ · · · ≥ 𝑡𝑚+𝑘 (𝑛) > 0, so it would also hold unconditionally. □

Now, we are ready to prove Propositions 4 and 5.

Proof of Proposition 4 In this proof, we fix some 𝑘 ∈N, 𝑛 ≥ 1, and 𝑚 ∈N. Let the process 𝜁𝑘 be defined

as in (78). Recall the definitions of 𝑊 (𝑖) ,∗𝑛 (𝜁𝑘), 𝑊̂ (𝑖) ,𝑚𝑛 (𝜁𝑘), and 𝑊
(𝑖) ,𝑚
𝑛 (𝜁𝑘) in (80)–(82). See also (26)–(35)

for the definitions 𝜉 (𝑖)
𝑗

’s and 𝜉
(𝑖) ,𝑚
𝑗

’s.



Wang and Rhee: Rare-Event Simulation for Regularly Varying Lévy Processes with Infinite Activities
60 Article submitted to Mathematics of Operations Research

To simplify notations, define 𝑡 (𝑛) = ⌈log2(𝑛𝑑)⌉. Define events

𝐸
(𝑖)
1 (𝑥) =

Δ

{��� 𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞)
𝑗
−

𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞) ,𝑚
𝑗

��� ≤ 𝑥

2

}
,

𝐸
(𝑖)
2 (𝑥) =

Δ

{���𝑚+𝑡 (𝑛)∑︁
𝑗=1
(𝜉 (𝑖)

𝑗
)+ −

𝑚+𝑡 (𝑛)∑︁
𝑗=1
(𝜉 (𝑖) ,𝑚

𝑗
)+

��� ≤ 𝑥

2

}
,

𝐸
(𝑖)
3 (𝑥) =

Δ

{ ∑︁
𝑗≥𝑚+𝑡 (𝑛)+1

(𝜉 (𝑖)
𝑗
)+ ≤ 𝑥

}
.

Note that on event 𝐸 (𝑖)1 (𝑥) ∩𝐸
(𝑖)
2 (𝑥) ∩𝐸

(𝑖)
3 (𝑥), we must have |𝑊 (𝑖) ,∗𝑛 (𝜁𝑘) −𝑊 (𝑖) ,𝑚𝑛 (𝜁𝑘) | ≤ 𝑥 and |𝑊̂ (𝑖) ,𝑚𝑛 (𝜁𝑘) −

𝑊
(𝑖) ,𝑚
𝑛 (𝜁𝑘) | ≤ 𝑥. As a result,

P
(���𝑊 (𝑖) ,∗𝑛 (𝜁𝑘) −𝑊 (𝑖) ,𝑚𝑛 (𝜁𝑘)

���∨ ���𝑊̂ (𝑖) ,𝑚𝑛 (𝜁𝑘) −𝑊 (𝑖) ,𝑚𝑛 (𝜁𝑘)
��� > 𝑥

)
≤

3∑︁
𝑞=1

P
( (
𝐸
(𝑖)
𝑞 (𝑥)

)𝑐)
.

Furthermore, we claim the existence of constant (𝐶𝑞)𝑞=1,2,3, the values of which do not depend on 𝑥, 𝑘, 𝑛,

and 𝑚, such that (for any 𝑥 > 0 and 𝑖 ∈ [𝑘 + 1])

P
( (
𝐸
(𝑖)
1 (𝑥)

)𝑐)
= P

(��� 𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞)
𝑗
−

𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞) ,𝑚
𝑗

��� > 𝑥

2

)
≤ 𝐶1𝜅

𝑚(2−𝛽+ )

𝑥2𝑛𝑟 (2−𝛽+ )−1 , (96)

P
( (
𝐸
(𝑖)
2 (𝑥)

)𝑐)
= P

(���𝑚+𝑡 (𝑛)∑︁
𝑗=1
(𝜉 (𝑖)

𝑗
)+ −

𝑚+𝑡 (𝑛)∑︁
𝑗=1
(𝜉 (𝑖) ,𝑚

𝑗
)+

��� > 𝑥

2

)
≤ 𝐶2𝜅

𝑚(2−𝛽+ )

𝑥2𝑛𝑟 (2−𝛽+ )−1 , (97)

P
( (
𝐸
(𝑖)
3 (𝑥)

)𝑐)
= P

( ∑︁
𝑗≥𝑚+𝑡 (𝑛)+1

(𝜉 (𝑖)
𝑗
)+ > 𝑥

)
≤ 𝐶3

𝑥

√︂
1

𝑛𝑑−1 · 2𝑚
. (98)

This allows us to conclude the proof by setting 𝐶1 =
∑3

𝑞=1𝐶𝑞. Now, it remains to prove claims (96)–(98).

Proof of Claim (96). The claim is trivial if 𝑖 ≤ 1, so we only consider the case where 𝑖 ≥ 2. Due to the

coupling between 𝜉
(𝑖)
𝑗

and 𝜉
(𝑖) ,𝑚
𝑗

in (35)(36), we have( 𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞)
𝑗

,

𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞) ,𝑚
𝑗

)
=
𝑑 (

Ξ𝑛 (𝑢𝑖−1), Ξ̆𝑚
𝑛 (𝑢𝑖−1)

)
where the laws of processes Ξ𝑛, Ξ̆

𝑚
𝑛 are stated in (32) and (34), respectively. Applying Lemma 4, we yield

P
(���� 𝑖−1∑︁

𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞)
𝑗
−

𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞) ,𝑚
𝑗

���� > 𝑥

2

)
≤ P

(
sup

𝑡∈[0,𝑛]
|Ξ𝑛 (𝑡) − Ξ̆𝑚

𝑛 (𝑡) | >
𝑥

2

)
≤ 4𝐶𝜅𝑚(2−𝛽+ )

𝑥2𝑛𝑟 (2−𝛽+ )−1 ,
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Article submitted to Mathematics of Operations Research 61

where 𝐶 <∞ is the constant characterized in Lemma 4 that only depends on 𝛽+ and the law of the Lévy

process 𝑋 . To conclude the proof of claim (96), we pick 𝐶1 = 4𝐶.

Proof of Claim (97). It follows directly from Lemma 5 that

P
(����𝑚+𝑡 (𝑛)∑︁

𝑗=1
(𝜉 (𝑖)

𝑗
)+ −

𝑚+𝑡 (𝑛)∑︁
𝑗=1
(𝜉 (𝑖) ,𝑚

𝑗
)+

���� > 𝑥

2

)
≤ 4𝐶𝜅𝑚(2−𝛽+ )

𝑥2𝑛𝑟 (2−𝛽+ )−1 ,

where 𝐶 <∞ is the constant characterized in Lemma 5 that only depends on 𝛽+ and the law of the Lévy

process 𝑋 . To conclude the proof of claim (97), we pick 𝐶2 = 4𝐶.

Proof of Claim (98). Using Lemma 6,

P
( ∑︁
𝑗≥𝑚+𝑡 (𝑛)+1

(𝜉 (𝑖)
𝑗
)+ > 𝑥

)
≤ 2𝐶𝑋

𝑥
·
√︂

1
𝑛𝑑−1 · 2𝑚

where 𝐶𝑋 <∞ is the constant characterized in Lemma 6 that only depends on the law of the Lévy process

𝑋 . By setting 𝐶3 = 2𝐶𝑋, we conclude the proof of claim (98). □

Proof of Proposition 5 In this proof, we fix some 𝑘 ∈ N. Recall the representation 𝜁𝑘 (𝑡) =∑𝑘
𝑖=1 𝑧𝑖I[𝑢𝑖 ,𝑛] (𝑡) in (78) where 0 < 𝑢1 < 𝑢2 < . . . < 𝑢𝑘 < 𝑛 are the order statistics of 𝑘 iid samples of Unif(0, 𝑛).

Recall the definition of 𝑊 (𝑖) ,𝑚𝑛 (𝜁𝑘) in (82). See also (26)–(35) for the definitions 𝜉 (𝑖)
𝑗

’s and 𝜉
(𝑖) ,𝑚
𝑗

’s.

We start with the following decomposition of events:

P
(
∃𝑖 ∈ [𝑘 + 1] 𝑠.𝑡. 𝑊 (𝑖) ,𝑚𝑛 (𝜁𝑘) ∈

[
𝑦 − 𝛿𝑚
√
𝑛
, 𝑦 + 𝛿

𝑚

√
𝑛

] )
≤ P(𝑢1 < 𝑛𝛿𝑚𝛼1) +P

(
∃𝑖 ∈ [𝑘 + 1] 𝑠.𝑡. 𝑊 (𝑖) ,𝑚𝑛 (𝜁𝑘) ∈

[
𝑦 − 𝛿𝑚
√
𝑛
, 𝑦 + 𝛿

𝑚

√
𝑛

]
, 𝑢1 ≥ 𝑛𝛿𝑚𝛼1

)
.
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First, P(𝑢1 < 𝑛𝛿𝑚𝛼1) ≤ 𝑘 · P(Unif(0, 𝑛) < 𝑛𝛿𝑚𝛼1) = 𝑘 · 𝛿𝑚𝛼1 < 𝑘 · 𝜌𝑚0 . The last inequality follows from our

choice of 𝜌1 in (70) and 𝜌0 ∈ (𝜌1,1). Furthermore, for each 𝑖 ∈ [𝑘 + 1]

P
(
𝑊
(𝑖) ,𝑚
𝑛 (𝜁𝑘) ∈ [𝑦 −

𝛿𝑚
√
𝑛
, 𝑦 + 𝛿

𝑚

√
𝑛
], 𝑢1 ≥ 𝑛𝛿𝑚𝛼1

)
= P

( 𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞)
𝑗
+

𝑖−1∑︁
𝑞=1

𝑧𝑞 ∈ [𝑦 − 𝛿𝑚𝛼2 , 𝑦 + 𝛿𝑚𝛼2], 𝑊 (𝑖) ,𝑚𝑛 (𝜁𝑘) ∈ [𝑦 −
𝛿𝑚
√
𝑛
, 𝑦 + 𝛿

𝑚

√
𝑛
], 𝑢1 ≥ 𝑛𝛿𝑚𝛼1

)
+P

( 𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞)
𝑗
+

𝑖−1∑︁
𝑞=1

𝑧𝑞 ∉ [𝑦 − 𝛿𝑚𝛼2 , 𝑦 + 𝛿𝑚𝛼2], 𝑊 (𝑖) ,𝑚𝑛 (𝜁𝑘) ∈ [𝑦 −
𝛿𝑚
√
𝑛
, 𝑦 + 𝛿

𝑚

√
𝑛
], 𝑢1 ≥ 𝑛𝛿𝑚𝛼1

)
≤ P

( 𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞)
𝑗
+

𝑖−1∑︁
𝑞=1

𝑧𝑞 ∈ [𝑦 − 𝛿𝑚𝛼2 , 𝑦 + 𝛿𝑚𝛼2], 𝑢1 ≥ 𝑛𝛿𝑚𝛼1

)
+P

( 𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞)
𝑗
+

𝑖−1∑︁
𝑞=1

𝑧𝑞 ∉ [𝑦 − 𝛿𝑚𝛼2 , 𝑦 + 𝛿𝑚𝛼2], 𝑊 (𝑖) ,𝑚𝑛 ∈ [𝑦 − 𝛿𝑚
√
𝑛
, 𝑦 + 𝛿

𝑚

√
𝑛
]
)

≤ P
( 𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞)
𝑗
+

𝑖−1∑︁
𝑞=1

𝑧𝑞 ∈ [𝑦 − 𝛿𝑚𝛼2 , 𝑦 + 𝛿𝑚𝛼2], 𝑢1 ≥ 𝑛𝛿𝑚𝛼1
)

+
∫
R\[𝑦−𝛿𝑚𝛼2 ,𝑦+𝛿𝑚𝛼2 ]

P
(𝑚+𝑡 (𝑛)∑︁

𝑗=1
(𝜉 (𝑖)

𝑗
)+ ∈ [𝑦 − 𝑥 − 𝛿𝑚

√
𝑛
, 𝑦 − 𝑥 + 𝛿

𝑚

√
𝑛
]
)
P
( 𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞)
𝑗
+

𝑖−1∑︁
𝑞=1

𝑧𝑞 ∈ 𝑑𝑥
)

= P
( 𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞)
𝑗
+

𝑖−1∑︁
𝑞=1

𝑧𝑞 ∈ [𝑦 − 𝛿𝑚𝛼2 , 𝑦 + 𝛿𝑚𝛼2], 𝑢1 ≥ 𝑛𝛿𝑚𝛼1
)

+
∫
(−∞,𝑦−𝛿𝑚𝛼2 ]

P
(𝑚+𝑡 (𝑛)∑︁

𝑗=1
(𝜉 (𝑖)

𝑗
)+ ∈ [𝑦 − 𝑥 − 𝛿𝑚

√
𝑛
, 𝑦 − 𝑥 + 𝛿

𝑚

√
𝑛
]
)
P
( 𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞)
𝑗
+

𝑖−1∑︁
𝑞=1

𝑧𝑞 ∈ 𝑑𝑥
)
.

The last equality follows from the simple fact that
∑

𝑗≥1(𝜉
(𝑖)
𝑗
)+ ≥ 0. Furthermore, we claim the existence of

constants 𝐶1 and 𝐶2, the values of which do not vary with parameters 𝑛,𝑚, 𝑘, 𝑦, 𝑖, such that for all 𝑛 ≥ 1 and

𝑚 ≥ 𝑚̄,

P
( 𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞)
𝑗
+

𝑖−1∑︁
𝑞=1

𝑧𝑞 ∈ [𝑦 − 𝛿𝑚𝛼2 , 𝑦 + 𝛿𝑚𝛼2], 𝑢1 ≥ 𝑛𝛿𝑚𝛼1
)
≤ 𝐶1𝜌

𝑚
0 ∀𝑦 > 𝛿𝑚𝛼2 , (99)

P
(𝑚+𝑡 (𝑛)∑︁

𝑗=1
(𝜉 (𝑖)

𝑗
)+ ∈ [𝑤,𝑤 + 2𝛿𝑚

√
𝑛
]
)
≤ 𝐶2𝜌

𝑚
0 ∀𝑤 ≥ 𝛿𝑚𝛼2 − 𝛿𝑚

√
𝑛
. (100)

Then, we conclude the proof by setting 𝐶2 = 1+𝐶1 +𝐶2. Now, we prove claims (99) and (100)
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Proof of Claim (99). If 𝑖 ≤ 1, the claim is trivial due to 𝑦 > 𝛿𝑚𝛼 and hence 0 ∉ [𝑦 − 𝛿𝑚𝛼2 , 𝑦 + 𝛿𝑚𝛼2]. Now,

we consider the case where 𝑖 ≥ 2. Due to the independence between 𝑧𝑖 and 𝜉
(𝑖)
𝑗

,

P
( 𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞)
𝑗
+

𝑖−1∑︁
𝑞=1

𝑧𝑞 ∈ [𝑦 − 𝛿𝑚𝛼2 , 𝑦 + 𝛿𝑚𝛼2], 𝑢1 ≥ 𝑛𝛿𝑚𝛼1
)

=

∫
R

P
( 𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞)
𝑗
∈ [𝑦 − 𝑥 − 𝛿𝑚𝛼2 , 𝑦 − 𝑥 + 𝛿𝑚𝛼2], 𝑢1 ≥ 𝑛𝛿𝑚𝛼1

)
P(

𝑖−1∑︁
𝑞=1

𝑧𝑞 ∈ 𝑑𝑥)

≤
∫
R

P
( 𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞)
𝑗
∈ [𝑦 − 𝑥 − 𝛿𝑚𝛼2 , 𝑦 − 𝑥 + 𝛿𝑚𝛼2]

��� 𝑢1 ≥ 𝑛𝛿𝑚𝛼1
)
P(

𝑖−1∑︁
𝑞=1

𝑧𝑞 ∈ 𝑑𝑥)

=

∫
R

P
(
𝑋<𝑛𝛾 (𝑢𝑖−1) ∈ [𝑦 − 𝑥 − 𝛿𝑚𝛼2 , 𝑦 − 𝑥 + 𝛿𝑚𝛼2]

��� 𝑢1 ≥ 𝑛𝛿𝑚𝛼1
)
P(

𝑖−1∑︁
𝑞=1

𝑧𝑞 ∈ 𝑑𝑥)

where (𝑢𝑖)𝑘𝑖=1 are independent of the Lévy process 𝑋<𝑛𝛾 . In particular, recall that 0 = 𝑢0 < 𝑢1 < 𝑢2 < . . . <

𝑢𝑘 < 𝑛 are order statistics. Therefore, on event {𝑢1 ≥ 𝑛𝛿𝑚𝛼1} we must have 𝑢𝑖−1 ≥ 𝑢1 ≥ 𝑛𝛿𝑚𝛼1 . It then follows

directly from Assumption 2 that

P
(
𝑋<𝑛𝛾 (𝑢𝑖−1) ∈ [𝑦 − 𝑥 − 𝛿𝑚𝛼2 , 𝑦 − 𝑥 + 𝛿𝑚𝛼2]

��� 𝑢1 ≥ 𝑛𝛿𝑚𝛼1
)

≤ 𝐶

(𝑛𝜆𝛿𝑚𝛼1𝜆) ∧ 1
· 2𝛿𝑚𝛼2 ≤ 2𝐶 ·

(
𝛿𝛼2

𝛿𝜆𝛼1

)𝑚
≤ 2𝐶 · 𝜌𝑚0 due to (73) and 𝜌0 ∈ (𝜌1,1),

where 𝐶 and 𝜆 are the constants specified in Assumption 2. To conclude, it suffices to set 𝐶1 = 2𝐶.
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Proof of Claim (100). Applying Lemma 7 with 𝑦0 = 𝛿𝑚𝛼2 − 𝛿𝑚√
𝑛

and 𝑐 = 2𝛿𝑚√
𝑛

, we get (for all 𝑛 ≥ 1, 𝑚 ≥

𝑚̄, 𝑦 ≥ 𝑦0)

P
(𝑚+𝑡 (𝑛)∑︁

𝑗=1
(𝜉 (𝑖)

𝑗
)+ ∈ [𝑦, 𝑦 + 2𝛿𝑚

√
𝑛
]
)

≤ 𝐶
(𝑚 + (⌈log2(𝑛𝑑)⌉)𝑛𝛼4𝜆

𝛿𝑚𝛼3𝜆
· 2𝛿

𝑚

√
𝑛
+ 4𝐶𝑋

(
𝑚2 + (⌈log2(𝑛𝑑)⌉)2

) 𝛿𝑚𝛼3/2

(𝛿𝑚𝛼2 − 𝛿𝑚√
𝑛
) · 𝑛𝛼4/2

≤ 𝐶
(𝑚 + (⌈log2(𝑛𝑑)⌉)𝑛𝛼4𝜆

𝛿𝑚𝛼3𝜆
· 2𝛿

𝑚

√
𝑛
+ 8𝐶𝑋

(
𝑚2 + (⌈log2(𝑛𝑑)⌉)2

) 𝛿𝑚𝛼3/2

𝛿𝑚𝛼2 · 𝑛𝛼4/2
due to (68)

= 2𝐶 · 𝑚

𝑛
1
2−𝜆𝛼4

·
(

𝛿

𝛿𝜆𝛼3

)𝑚
︸                       ︷︷                       ︸

=
Δ
𝑝𝑛,𝑚,1

+2𝐶 ·
⌈log2(𝑛𝑑)⌉
𝑛

1
2−𝜆𝛼4

·
(

𝛿

𝛿𝜆𝛼3

)𝑚
︸                             ︷︷                             ︸

=
Δ
𝑝𝑛,𝑚,2

+ 8𝐶𝑋 ·
𝑚2

𝑛𝛼4/2
·
(
𝛿𝛼3/2

𝛿𝛼2

)𝑚
︸                        ︷︷                        ︸

=
Δ
𝑝𝑛,𝑚,3

+8𝐶𝑋 ·
(
⌈log2(𝑛𝑑)⌉

)2

𝑛𝛼4/2
·
(
𝛿𝛼3/2

𝛿𝛼2

)𝑚
.︸                                     ︷︷                                     ︸

=
Δ
𝑝𝑛,𝑚,4

Here, 𝐶𝑋 < ∞ is the constant in Lemma 3 that only depends on the law of Lévy process 𝑋 , and 𝐶 ∈

(0,∞), 𝜆 > 0 are the constants in Assumption 2. First, for any 𝑛 ≥ 1 and 𝑚 ≥ 𝑚̄,

𝑝𝑛,𝑚,1 ≤ 2𝐶 ·𝑚 ·
(

𝛿

𝛿𝜆𝛼3

)𝑚
due to

1
2
> 𝜆𝛼4; see (64)

≤ 2𝐶 ·𝑚𝜌𝑚1 due to (74)

≤ 2𝐶 · 𝜌𝑚0 due to (77).

For term 𝑝𝑛,𝑚,2, note that ⌈log2 (𝑛𝑑 ) ⌉

𝑛
1
2 −𝜆𝛼4

→ 0 as 𝑛→∞ due to 1
2 > 𝜆𝛼4. This allows us to fix some 𝐶𝑑,1 <∞ such

that sup𝑛=1,2, · · ·
⌈log2 (𝑛𝑑 ) ⌉

𝑛
1
2 −𝜆𝛼4

≤ 𝐶𝑑,1. As a result, for any 𝑛 ≥ 1, 𝑚 ≥ 0,

𝑝𝑛,𝑚,2 ≤ 2𝐶𝐶𝑑,1 ·
(

𝛿

𝛿𝜆𝛼3

)𝑚
≤ 2𝐶𝐶𝑑,1 · 𝜌𝑚0 due to (74) and 𝜌0 ∈ (𝜌1,1).
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Similarly, for all 𝑛 ≥ 1 and 𝑚 ≥ 𝑚̄,

𝑝𝑛,𝑚,3 ≤ 8𝐶𝑋 ·𝑚2 ·
(
𝛿𝛼3/2

𝛿𝛼2

)𝑚
≤ 8𝐶𝑋 ·𝑚2𝜌𝑚1 due to (75)

≤ 8𝐶𝑋 · 𝜌𝑚0 due to (77).

Besides, due to ( ⌈log2 (𝑛𝑑 ) ⌉ )2
𝑛𝛼4/2

→ 0 as 𝑛→∞, we can find 𝐶𝑑,2 <∞ such that sup𝑛=1,2, · · · ,
( ⌈log2 (𝑛𝑑 ) ⌉ )2

𝑛𝛼4/2
≤ 𝐶𝑑,2.

This leads to (for all 𝑛 ≥ 1, 𝑚 ≥ 0)

𝑝𝑛,𝑚,4 ≤ 8𝐶𝑋𝐶𝑑,2 ·
(
𝛿𝛼3/2

𝛿𝛼2

)𝑚
≤ 8𝐶𝑋𝐶𝑑,2 · 𝜌𝑚0 due to (74) and 𝜌0 ∈ (𝜌1,1).

To conclude the proof, we can simply set 𝐶2 = 2𝐶 + 2𝐶𝐶𝑑,1 + 8𝐶𝑋 + 8𝐶𝑋𝐶𝑑,2. □
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Online Companion (Appendix)
This online companion is organized as follows. In Section A, we provide the proofs for technical results in Section 4.

In Section B, we extend the algorithmic framework of the main paper to address rare-event simulation in the context

of barrier option pricing.

Appendix A: Proof of Propositions 2 and 3 The proof of Proposition 2 is based on the inversion formula of

the characteristic functions (see, e.g., Theorem 3.3.14 of Durrett (2019)). Specifically, we compare the characteristic

function of 𝑌 (𝑡) with an 𝛼-stable process to draw connections between their distributions.

Proof of Proposition 2 The Lévy-Khintchine formula (see e.g. Theorem 8.1 of Sato et al. (1999)) leads to the

following expression for the characteristic function of 𝜑𝑡 (𝑧) = E exp(𝑖𝑧𝑌 (𝑡)):

𝜑𝑡 (𝑧) = exp
(
𝑡

∫
(0,𝑧0 )

[
exp(𝑖𝑧𝑥) − 1− 𝑖𝑧𝑥I(0,1] (𝑥)︸                            ︷︷                            ︸

=
Δ
𝜙 (𝑧,𝑥 )

]
𝜇(𝑑𝑥)

)
∀𝑧 ∈ R, 𝑡 > 0.

Note that

𝜙(𝑧, 𝑥) = cos(𝑧𝑥) − 1+ 𝑖
(
sin(𝑧𝑥) − 𝑧𝑥I(0,1] (𝑥)

)
.

Then from |𝑒𝑥+𝑖𝑦 | = 𝑒𝑥 for all 𝑥, 𝑦 ∈ R,

|𝜑𝑡 (𝑧) | = exp
(
− 𝑡

∫
(0,𝑧0 )

(
1− cos(𝑧𝑥)

)
𝜇(𝑑𝑥)

)
∀𝑧 ∈ R, 𝑡 > 0. (101)

Furthermore, we claim the existence of some 𝑀,𝐶 ∈ (0,∞) such that

∫
(0,𝑧0 )

(
1− cos(𝑧𝑥)

)
𝜇(𝑑𝑥) ≥ 𝐶 |𝑧 |𝛼 ∀𝑧 ∈ R with |𝑧 | ≥ 𝑀. (102)

Plugging (102) into (101), we yield that for all |𝑧 | ≥ 𝑀 and 𝑡 > 0, |𝜑𝑡 (𝑧) | ≤ exp(−𝑡𝐶 |𝑧 |𝛼). It then follows directly

from the inversion formula (see Theorem 3.3.14 of Durrett (2019)) that, for all 𝑡 > 0, 𝑌 (𝑡) admits a continuous density



Wang and Rhee: Rare-Event Simulation for Regularly Varying Lévy Processes with Infinite Activities
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function 𝑓𝑌 (𝑡 ) with a uniform bound



 𝑓𝑌 (𝑡 )

∞ ≤ 1
2𝜋

∫
|𝜑𝑡 (𝑧) |𝑑𝑧

≤ 1
2𝜋

(
2𝑀 +

∫
|𝑧 | ≥𝑀̃

exp
(
− 𝑡𝐶 |𝑧 |𝛼

)
𝑑𝑧

)
≤ 1

2𝜋

(
2𝑀 + 1

𝑡1/𝛼

∫
R

exp(−𝐶 |𝑥 |𝛼)𝑑𝑥
)

by letting 𝑥 = 𝑧𝑡1/𝛼

=
𝑀

𝜋
+ 𝐶1

𝑡1/𝛼
where 𝐶1 =

1
2𝜋

∫
R

exp(−𝐶 |𝑥 |𝛼)𝑑𝑥 <∞.

To conclude the proof, pick 𝐶 = 𝑀
𝜋
+𝐶1. Now, it only remains to prove claim (102).

Proof of Claim (102). We start by fixing some constants.

𝐶0 =

∫ ∞

0
(1− cos 𝑦) 𝑑𝑦

𝑦1+𝛼 . (103)

For 𝑦 ∈ (0,1], note that 1 − cos 𝑦 ≤ 𝑦2/2, and hence |1−cos 𝑦 |
𝑦1+𝛼 ≤ 1

2𝑦𝛼−1 . For 𝑦 ∈ (1,∞), note that 1 − cos 𝑦 ∈ [0,1]

and hence |1−cos 𝑦 |
𝑦1+𝛼 ≤ 1/𝑦𝛼+1. Due to 𝛼 ∈ (0,2), we have 𝐶0 =

∫ ∞
0 (1− cos 𝑦) 𝑑𝑦

𝑦1+𝛼 ∈ (0,∞). Next, choose positive real

numbers 𝜃, 𝛿 such that

𝜃2−𝛼

2(2−𝛼) ≤
𝐶0
4
, (104)

𝛿

𝛼𝜃𝛼
≤ 𝐶0

4
. (105)

For any 𝑀 > 0 and 𝑧 ≠ 0, observe that (by setting 𝑦 = |𝑧 |𝑥 in the last step)∫
𝑥≥ 𝑀
|𝑧 |

(
1− cos(𝑧𝑥)

)
𝑑𝑥

𝑥1+𝛼

|𝑧 |𝛼 =

∫
𝑥≥ 𝑀
|𝑧 |

(
1− cos( |𝑧 |𝑥)

)
𝑑𝑥

𝑥1+𝛼

|𝑧 |𝛼 =

∫ ∞

𝑀

(
1− cos 𝑦

) 𝑑𝑦

𝑦1+𝛼 .

Therefore, by fixing some 𝑀 > 𝜃 large enough, we have

1
|𝑧 |𝛼

∫
𝑥≥𝑀/|𝑧 |

(
1− cos(𝑧𝑥)

) 𝑑𝑥

𝑥1+𝛼 ≤
𝐶0
4

∀𝑧 ≠ 0. (106)
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To proceed, we compare
∫
(0,𝑧0 )

(
1 − cos(𝑧𝑥)

)
𝜇(𝑑𝑥) with

∫ 𝑀/𝑧
0

(
1 − cos(𝑧𝑥)

)
𝑑𝑥

𝑥1+𝛼 . Recall that 𝑧0 is the constant

prescribed in the statement of Proposition 2. For any 𝑧 ∈ R such that |𝑧 | > 𝑀/𝑧0,

1
|𝑧 |𝛼

[ ∫
(0,𝑧0 )

(
1− cos(𝑧𝑥)

)
𝜇(𝑑𝑥) −

∫ ∞

0

(
1− cos(𝑧𝑥)

) 𝑑𝑥

𝑥1+𝛼

]
≥ 1
|𝑧 |𝛼

[ ∫
(𝜃/|𝑧 | ,𝑀/|𝑧 | )

(
1− cos(𝑧𝑥)

)
𝜇(𝑑𝑥) −

∫ ∞

0

(
1− cos(𝑧𝑥)

) 𝑑𝑥

𝑥1+𝛼

]
due to our choice of 𝑀 > 𝜃 and |𝑧 | > 𝑀/𝑧0

≥ − 1
|𝑧 |𝛼

∫ 𝜃/|𝑧 |

0

(
1− cos(𝑧𝑥)

) 𝑑𝑥

𝑥1+𝛼︸                                   ︷︷                                   ︸
=
Δ
𝐼1 (𝑧)

− 1
|𝑧 |𝛼

∫ ∞

𝑀/|𝑧 |

(
1− cos(𝑧𝑥)

) 𝑑𝑥

𝑥1+𝛼︸                                  ︷︷                                  ︸
=
Δ
𝐼2 (𝑧)

+ 1
|𝑧 |𝛼

[ ∫
[ 𝜃/|𝑧 | ,𝑀/|𝑧 | )

(
1− cos(𝑧𝑥)

)
𝜇(𝑑𝑥) −

∫
[ 𝜃/|𝑧 | ,𝑀/|𝑧 | )

(
1− cos(𝑧𝑥)

) 𝑑𝑥

𝑥1+𝛼

]
︸                                                                                                ︷︷                                                                                                ︸

=
Δ
𝐼3 (𝑧)

. (107)

We bound the terms 𝐼1 (𝑧), 𝐼2 (𝑧), and 𝐼3 (𝑧) separately. First, for any 𝑧 ≠ 0,

𝐼1 (𝑧) ≤
1
|𝑧 |𝛼

∫ 𝜃/|𝑧 |

0

𝑧2𝑥2

2
𝑑𝑥

𝑥1+𝛼 due to 1− cos𝑤 ≤ 𝑤2

2
∀𝑤 ∈ R

=
1
2

∫ 𝜃

0
𝑦1−𝛼𝑑𝑦 by setting 𝑦 = |𝑧 |𝑥

=
1
2
· 𝜃

2−𝛼

2−𝛼 ≤
𝐶0
4

due to (104). (108)

For 𝐼2 (𝑧), it follows immediately from (106) that

𝐼2 (𝑧) ≤
𝐶0
4

∀𝑧 ≠ 0. (109)

Next, in order to bound 𝐼3 (𝑧), we consider the function ℎ(𝑧) =Δ 1− cos 𝑧. Since ℎ(𝑧) is uniformly continuous on [𝜃, 𝑀],

we can find some 𝑁 ∈N, 𝑡0 > 1, and a sequence of real numbers 𝜃 = 𝑥0 > 𝑥1 > · · · > 𝑥𝑁 =𝑀 such that

𝑥 𝑗−1

𝑥 𝑗

= 𝑡0 ∀ 𝑗 = 1,2, · · · , 𝑁, (110)

|ℎ(𝑥) − ℎ(𝑦) | < 𝛿 ∀ 𝑗 = 1,2, · · · , 𝑁, 𝑥, 𝑦 ∈ [𝑥 𝑗 , 𝑥 𝑗−1] . (111)
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In other words, we use a geometric sequence {𝑥0, 𝑥1, · · · , 𝑥𝑁 } to partition [𝜃, 𝑀] into 𝑁 intervals. On any of these

intervals, the fluctuations of ℎ(𝑧) = 1− cos 𝑧 is bounded by the constant 𝛿 fixed in (105). Now fix some Δ > 0 such that

(recall that 𝜖 > 0 is prescribed in the statement of this proposition)

(1−Δ)𝑡𝛼+𝜖0 > 1. (112)

Since 𝜇[𝑥,∞) is regularly varying as 𝑥→ 0 with index −(𝛼 + 2𝜖), for 𝑔(𝑦) = 𝜇[1/𝑦,∞) we have 𝑔 ∈ RV𝛼+2𝜖 (𝑦) as

𝑦→∞. By Potter’s bound (see Proposition 2.6 in Resnick (2007)),there exists 𝑦̄1 > 0 such that

𝑔(𝑡𝑦)
𝑔(𝑦) ≥ (1−Δ)𝑡

𝛼+𝜖 ∀𝑦 ≥ 𝑦̄1, 𝑡 ≥ 1. (113)

Meanwhile, define

𝑔̃(𝑦) = 𝑦𝛼, 𝜈𝛼 (𝑑𝑥) = I(0,∞) (𝑥)
𝑑𝑥

𝑥1+𝛼

and note that 𝑔̃(𝑦) = 𝜈𝛼 (1/𝑦,∞). Due to 𝑔 ∈ RV𝛼+2𝜖 , we can find some 𝑦̄2 > 0 such that

𝑔(𝑦) ≥
𝑡𝛼0 − 1

(1−Δ)𝑡𝛼+𝜖0 − 1
· 𝑔̃(𝑦) ∀𝑦 ≥ 𝑦̄2. (114)

Let 𝑀 = max{𝑀/𝑧0, 𝑀 𝑦̄1, 𝑀 𝑦̄2}. For any |𝑧 | ≥ 𝑀 , we have |𝑧 | ≥ 𝑀/𝑧0 and |𝑧 |
𝑥 𝑗
≥ |𝑧 |

𝑀
≥ 𝑦̄1 ∨ 𝑦̄2 for any 𝑗 = 0,1, · · · , 𝑁 .

As a result, for 𝑧 ∈ R with |𝑧 | ≥ 𝑀 and any 𝑗 = 1,2, · · · , 𝑁 ,

𝜇[𝑥 𝑗/|𝑧 |, 𝑥 𝑗−1/|𝑧 |) = 𝑔( |𝑧 |/𝑥 𝑗 ) − 𝑔( |𝑧 |/𝑥 𝑗−1) by definition of 𝑔(𝑦) = 𝜇[1/𝑦,∞)

= 𝑔(𝑡0 |𝑧 |/𝑥 𝑗−1) − 𝑔( |𝑧 |/𝑥 𝑗−1) due to 𝑥 𝑗−1 = 𝑡0𝑥 𝑗 ; see (111)

≥ 𝑔( |𝑧 |/𝑥 𝑗−1) ·
(
(1−Δ)𝑡𝛼+𝜖0 − 1

)
due to

|𝑧 |
𝑥 𝑗

≥ 𝑦̄1 ∨ 𝑦̄2 and (113)

≥ 𝑔̃( |𝑧 |/𝑥 𝑗−1) · (𝑡𝛼0 − 1) due to (114).
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On the other hand, 𝜈𝛼 [𝑥 𝑗/|𝑧 |, 𝑥 𝑗−1/|𝑧 |) = 𝑔̃( |𝑧 |/𝑥 𝑗 ) − 𝑔̃( |𝑧 |/𝑥 𝑗−1) = 𝑔̃( |𝑧 |/𝑥 𝑗−1) · (𝑡𝛼0 − 1). Therefore, given any 𝑧 ∈ R

such that |𝑧 | ≥ 𝑀 , we have 𝜇
(
𝐸 𝑗 (𝑧)

)
≥ 𝜈𝛼

(
𝐸 𝑗 (𝑧)

)
for all 𝑗 ∈ [𝑁] where 𝐸 𝑗 (𝑧) = [𝑥 𝑗/|𝑧 |, 𝑥 𝑗−1/|𝑧 |). This leads to

𝐼3 (𝑧)

=
1
|𝑧 |𝛼

𝑁∑︁
𝑗=1

[ ∫
𝐸 𝑗 (𝑧)

(
1− cos(𝑧𝑥)

)
𝜇(𝑑𝑥) −

∫
𝐸 𝑗 (𝑧)

(
1− cos(𝑧𝑥)

) 𝑑𝑥

𝑥1+𝛼

]
≥ 1
|𝑧 |𝛼

𝑁∑︁
𝑗=1

[
𝑚

𝑗
· 𝜇

(
𝐸 𝑗 (𝑧)

)
− 𝑚̄ 𝑗 · 𝜈𝛼

(
𝐸 𝑗 (𝑧)

) ]
with 𝑚̄ 𝑗 = max{ℎ(𝑧) : 𝑧 ∈ [𝑥 𝑗 , 𝑥 𝑗−1]}, 𝑚 𝑗

= min{ℎ(𝑧) : 𝑧 ∈ [𝑥 𝑗 , 𝑥 𝑗−1]}

=
1
|𝑧 |𝛼

𝑁∑︁
𝑗=1

[
𝑚

𝑗
· 𝜇

(
𝐸 𝑗 (𝑧)

)
−𝑚

𝑗
· 𝜈𝛼

(
𝐸 𝑗 (𝑧)

) ]
+ 1
|𝑧 |𝛼

𝑁∑︁
𝑗=1

[
𝑚

𝑗
· 𝜈𝛼

(
𝐸 𝑗 (𝑧)

)
− 𝑚̄ 𝑗 · 𝜈𝛼

(
𝐸 𝑗 (𝑧)

) ]
≥ 0+ 1

|𝑧 |𝛼
𝑁∑︁
𝑗=1

[
𝑚

𝑗
· 𝜈𝛼

(
𝐸 𝑗 (𝑧)

)
− 𝑚̄ 𝑗 · 𝜈𝛼

(
𝐸 𝑗 (𝑧)

) ]
due to 𝜇

(
𝐸 𝑗 (𝑧)

)
≥ 𝜈𝛼

(
𝐸 𝑗 (𝑧)

)
≥ − 𝛿

|𝑧 |𝛼
𝑁∑︁
𝑗=1

𝜈𝛼
(
𝐸 𝑗 (𝑧)

)
= − 𝛿

|𝑧 |𝛼 𝜈𝑐 [𝜃/|𝑧 |, 𝑀/|𝑧 |) due to (111)

= − 𝛿

|𝑧 |𝛼
∫ 𝑀/|𝑧 |

𝜃/|𝑧 |

𝑑𝑥

𝑥1+𝛼

≥ − 𝛿

|𝑧 |𝛼
∫ ∞

𝜃/|𝑧 |

𝑑𝑥

𝑥1+𝛼 = − 𝛿

𝛼𝜃𝛼

≥ −𝐶0
4

due to (105). (115)

Plugging (108), (109), and (115) back into (107), we have shown that for all |𝑧 | ≥ 𝑀 ,

1
|𝑧 |𝛼

∫
(0,𝑧0 )

(
1− cos(𝑧𝑥)

)
𝜇(𝑑𝑥)

≥ −3𝐶0
4
+ 1
|𝑧 |𝛼

∫ ∞

0

(
1− cos(𝑧𝑥)

) 𝑑𝑥

𝑥1+𝛼

= −3𝐶0
4
+
∫ ∞

0

(
1− cos 𝑦

) 𝑑𝑦

𝑦1+𝛼 by setting 𝑦 = |𝑧 |𝑥

= −3𝐶0
4
+𝐶0 =

𝐶0
4

by definition of 𝐶0 =

∫ ∞

0
(1− cos 𝑦) 𝑑𝑦

𝑦1+𝛼 .

To conclude the proof of claim (102), we set 𝐶 =𝐶0/4. □

Again, the proof of Proposition 3 makes use of the inversion formula.
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Proof of Proposition 3 Let us denote the characteristic functions of 𝑌 ′ (𝑡) and 𝑌 (𝑡) by 𝜑𝑡 and 𝜑𝑡 , respectively.

Repeating the arguments using complex conjugates in (101), we obtain

|𝜑𝑡 (𝑧) | = exp
(
− 𝑡

∫
|𝑥 |<𝑏𝑁

(
1− cos(𝑧𝑥)

)
𝜇(𝑑𝑥)

)
.

As for 𝜑𝑡 , using proposition 14.9 in Sato et al. (1999), we get

|𝜑𝑡 (𝑧) | = exp
(
− 𝑡 |𝑧 |𝛼𝜂(𝑧)

)
(116)

where 𝜂(𝑧) is a non-negative function continuous on R\{0} satisfying 𝜂(𝑏𝑧) = 𝜂(𝑧) and

𝜂(𝑧) =
∫
R

(
1− cos(𝑧𝑥)

)
𝜇(𝑑𝑥)

|𝑧 |𝛼 ∀𝑧 ≠ 0.

This implies 𝜂(𝑧) = 𝜂(−𝑧) for all 𝑧 ≠ 0. Furthermore, we claim the existence of some 𝑐 > 0 such that

𝜂(𝑧) ≥ 𝑐 ∀𝑧 ∈ [1, 𝑏] . (117)

Then due to the self-similarity of 𝜇 (i.e., 𝜂(𝑏𝑧) = 𝜂(𝑧)), we have 𝜂(𝑧) ≥ 𝑐 for all 𝑧 ≠ 0. In the meantime, note that

1
|𝑧 |𝛼

∫
|𝑥 | ≥𝑏𝑁

(
1− cos(𝑧𝑥)

)
𝜇(𝑑𝑥) ≤ 𝜇{𝑥 : |𝑥 | ≥ 𝑏𝑁 }

|𝑧 |𝛼 .

By picking 𝑀 > 0 large enough, it holds for any |𝑧 | ≥ 𝑀 that

1
|𝑧 |𝛼

∫
|𝑥 | ≥𝑏𝑁

(
1− cos(𝑧𝑥)

)
𝜇(𝑑𝑥) ≤ 𝑐

2
. (118)

Therefore, for any |𝑧 | ≥ 𝑀 ,

∫
|𝑥 |<𝑏𝑁

(
1− cos(𝑧𝑥)

)
𝜇(𝑑𝑥) =

∫
𝑥∈R

(
1− cos(𝑧𝑥)

)
𝜇(𝑑𝑥) −

∫
|𝑥 | ≥𝑏𝑁

(
1− cos(𝑧𝑥)

)
𝜇(𝑑𝑥)

= 𝜂(𝑧) · |𝑧 |𝛼 −
∫
|𝑥 | ≥𝑏𝑁

(
1− cos(𝑧𝑥)

)
𝜇(𝑑𝑥)

≥ 𝑐 |𝑧 |𝛼 − 𝑐

2
|𝑧 |𝛼 =

𝑐

2
|𝑧 |𝛼 using (117) and (118),
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and hence |𝜑𝑡 (𝑧) | ≤ exp
(
− 𝑐

2 𝑡 |𝑧 |
𝛼
)

for all |𝑧 | ≥ 𝑀 . Applying inversion formula, we get (for any 𝑡 > 0)



 𝑓𝑌 (𝑡 )

∞ ≤ 1
2𝜋

∫
|𝜑𝑡 (𝑧) |𝑑𝑧

≤ 1
2𝜋

[
2𝑀 +

∫
|𝑧 | ≥𝑀

|𝜑𝑡 (𝑧) |𝑑𝑧
]

≤ 𝑀

𝜋
+ 1

2𝜋

∫
exp

(
− 𝑐

2
𝑡 |𝑧 |𝛼

)
𝑑𝑧

=
𝑀

𝜋
+ 1

2𝜋
· 1
𝑡1/𝛼

∫
exp

(
− 𝑐

2
|𝑥 |𝛼

)
𝑑𝑥 using 𝑥 = 𝑡1/𝛼 · 𝑧

≤ 𝑀

𝜋
+ 𝐶1

𝑡1/𝛼
where 𝐶1 =

1
2𝜋

∫
exp

(
− 𝑐

2
|𝑥 |𝛼

)
𝑑𝑥.

To conclude the proof, we set 𝐶 = 𝑀
𝜋
+𝐶1. Now it only remains to prove claim (117).

Proof of Claim (117)

We proceed with a proof by contradiction. If inf𝑧∈[1,𝑏] 𝜂(𝑧) = 0, then by continuity of 𝜂(𝑧), there exists some

𝑧 ∈ [1, 𝑏] such that

∫
R

(
1− cos(𝑧𝑥)

)
𝜇(𝑑𝑥) = 0.

Now for any 𝜖 > 0, define the following sets:

𝑆 = {𝑥 ∈ R : 1− cos(𝑧𝑥) > 0} =R\{2𝜋
𝑧
𝑘 : 𝑘 ∈ Z};

𝑆𝜖 = {𝑥 ∈ R : 1− cos(𝑧𝑥) ≥ 𝜖}.

Observe that

• For any 𝜖 > 0, we have 𝜖 · 𝜇(𝑆𝜖 ) ≤
∫
𝑆𝜖

(
1−cos(𝑧𝑥)

)
𝜇(𝑑𝑥) ≤

∫
R

(
1−cos(𝑧𝑥)

)
𝜇(𝑑𝑥) = 0, which implies 𝜇(𝑆𝜖 ) = 0;

• Meanwhile, lim𝜖→0 𝜇(𝑆𝜖 ) = 𝜇(𝑆) = 0.

Together with the fact that 𝜇(R) > 0 (so that the process is non-trivial), there must be some 𝑚 ∈ Z, 𝛿 > 0 such that

𝜇({2𝜋
𝑧
𝑚}) = 𝛿 > 0.
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Besides, from 𝜇(𝑆) = 0 we know that 𝜇
(
{− 2𝜋

𝑧
, 2𝜋

𝑧
} \ {0}

)
= 0. However, by definition of semi-stable processes in

(43) we know that 𝜇 = 𝑏−𝛼𝑇𝑏𝜇 where the transformation 𝑇𝑟 (∀𝑟 > 0) onto a Borel measure 𝜌 on R is defined as

(𝑇𝑟 𝜌) (𝐵) = 𝜌(𝑟−1𝐵). This implies

𝜇({2𝜋𝑚
𝑧

𝑏−𝑘}) > 0 ∀𝑘 = 1,2,3, · · ·

which would contradict 𝜇
(
{− 2𝜋

𝑧
, 2𝜋

𝑧
} \ {0}

)
= 0 eventually for 𝑘 large enough. This concludes the proof of 𝜂(𝑧) > 0 for

all 𝑧 ∈ [1, 𝑏]. □

Appendix B: Barrier Option Pricing

B.1. Problem Setting This section considers the estimation of probabilities 𝑃(𝐴𝑛) with 𝐴𝑛 = {𝑋̄𝑛 ∈ 𝐴} and

𝐴 =
Δ {𝜉 ∈D : 𝜉 (1) ≤ −𝑏, sup

𝑡≤1
𝜉 (𝑡) + 𝑐𝑡 ≥ 𝑎},

which corresponds to rare-event simulation in the context of down-and-in option. Here, we assume that 𝑎, 𝑏 > 0 and

𝑐 < 𝑎. We consider the two-sided case in Assumption 1. That is, 𝑋 (𝑡) is a centered Lévy process with Lévy measures

𝜈, and there exists some 𝛼, 𝛼′ > 1 such that 𝜈[𝑥,∞) ∈ RV−𝛼 (𝑥) and 𝜈(−∞,−𝑥] ∈ RV−𝛼′ (𝑥) as 𝑥→∞. Also, we

impose an alternative version of Assumption 2 throughout. Let 𝑋 (−𝑧,𝑧) (𝑡) be the Lévy process with with generating

triplet (𝑐𝑋, 𝜎, 𝜈 | (−𝑧,𝑧) ). That is, 𝑋 (−𝑧,𝑧) (𝑡) is a modulated version of 𝑋 where all jumps with size larger than 𝑧 are

removed.

ASSUMPTION 4. There exist 𝑧0, 𝐶, 𝜆 > 0 such that

P
(
𝑋 (−𝑧,𝑧) (𝑡) ∈ [𝑥, 𝑥 + 𝛿]

)
≤ 𝐶𝛿

𝑡𝜆 ∧ 1
∀𝑧 ≥ 𝑧0, 𝑡 > 0, 𝑥 ∈ R, 𝛿 > 0.

B.2. Importance Sampling Algorithm Below, we present the design of the importance sampling algorithm. For

any 𝜉 ∈D and 𝑡 ∈ (0,1], let Δ𝜉 (𝑡) = 𝜉 (𝑡) − 𝜉 (𝑡−) be the discontinuity in 𝜉 at time 𝑡, and we set Δ𝜉 (0) ≡ 0. Let

𝐵𝛾 =

{
𝜉 ∈D : #{𝑡 ∈ [0,1] : Δ𝜉 (𝑡) ≥ 𝛾} ≥ 1, #{𝑡 ∈ [0,1] : Δ𝜉 (𝑡) ≤ −𝛾} ≥ 1

}

and let 𝐵𝛾
𝑛 = {𝑋̄𝑛 ∈ 𝐵𝛾

𝑛}. Intuitively speaking, on event 𝐵𝛾
𝑛 there is at least one upward and one downward “large” jump

in 𝑋̄𝑛, where 𝛾 > 0 is understood as the threshold for jump sizes to be considered “large”.
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Fix some 𝑤 ∈ (0,1), and let

Q𝑛 (·) = 𝑤P(·) + (1−𝑤)P( · |𝐵𝛾
𝑛).

The algorithm samples

𝐿𝑛 = 𝑍𝑛

𝑑P
𝑑Q𝑛

=
𝑍𝑛

𝑤 + 1−𝑤
P(𝐵𝛾

𝑛 )
I𝐵𝛾

𝑛

under Q𝑛. Now, we discuss the design of 𝑍𝑛 to ensure the strong efficiency of 𝐿𝑛. Analogous to the decomposition in

(17), let

𝐽𝑛 (𝑡) =
∑︁

𝑠∈[0,𝑡 ]
Δ𝑋 (𝑠)I

(
|Δ𝑋 (𝑠) | ≥ 𝑛𝛾

)
,

Ξ𝑛 (𝑡) = 𝑋 (𝑡) − 𝐽𝑛 (𝑡) = 𝑋 (𝑡) −
∑︁

𝑠∈[0,𝑡 ]
Δ𝑋 (𝑠)I

(
|Δ𝑋 (𝑠) | ≥ 𝑛𝛾

)
.

Let 𝐽𝑛 (𝑡) = 1
𝑛
𝐽𝑛 (𝑛𝑡), 𝐽𝑛 = {𝐽𝑛 (𝑡) : 𝑡 ∈ [0,1]}, Ξ̄𝑛 (𝑡) = 1

𝑛
Ξ𝑛 (𝑛𝑡), and Ξ̄𝑛 = {Ξ̄𝑛 (𝑡) : 𝑡 ∈ [0,1]}. Meanwhile, set

𝑀𝑐 (𝑡) =Δ sup
𝑠≤𝑡

𝑋 (𝑠) + 𝑐𝑠, 𝑌 ∗𝑛;𝑐 =
Δ I

(
𝑀𝑐 (𝑛) ≥ 𝑛𝑎, 𝑋 (𝑛) ≤ −𝑛𝑏

)
,

We have I𝐴𝑛
=𝑌 ∗𝑛;𝑐. Under the convention 𝑌−1

𝑛 ≡ 0, consider estimators 𝑍𝑛 of form

𝑍𝑛 =

𝜏∑︁
𝑚=0

𝑌𝑚
𝑛;𝑐 −𝑌𝑚−1

𝑛;𝑐

P(𝜏 ≥ 𝑚) (119)

where 𝜏 is Geom(𝜌) for some 𝜌 ∈ (0,1) and is independent of everything else. Analogous to Proposition 1, the

following result provides sufficient conditions on 𝑌𝑚
𝑛;𝑐 for 𝐿𝑛 to attain strong efficiency.

PROPOSITION 6. Let 𝐶0 > 0, 𝜌0 ∈ (0,1), 𝜇 > 𝛼 +𝛼′ − 2, and 𝑚̄ ∈N. Suppose that

P
(
𝑌 ∗𝑛;𝑐 ≠𝑌𝑚

𝑛;𝑐

��� D+ (𝐽𝑛) = 𝑘, D− (𝐽𝑛) = 𝑘 ′
)
≤ 𝐶0𝜌

𝑚
0 · (𝑘 + 𝑘

′ + 1) ∀𝑘, 𝑘 ′ ≥ 0, 𝑛 ≥ 1, 𝑚 ≥ 𝑚̄ (120)

where D+ (𝜉) and D− (𝜉) count the number of discontinuities of positive and negative sizes in 𝜉, respectively. Besides,

suppose that for all Δ ∈ (0,1),

P
(
𝑌 ∗𝑛;𝑐 ≠𝑌𝑚

𝑛;𝑐, 𝑋̄𝑛 ∉ 𝐴Δ
��� D+ (𝐽𝑛) = 0 or D− (𝐽𝑛) = 0

)
≤
𝐶0𝜌

𝑚
0

Δ2𝑛𝜇
∀𝑛 ≥ 1, 𝑚 ≥ 0 (121)
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where 𝐴Δ =
{
𝜉 ∈D : sup𝑡∈[0,1] 𝜉 (𝑡) +𝑐𝑡 ≥ 𝑎−Δ, 𝜉 (1) ≤ −𝑏

}
. Then given 𝜌 ∈ (𝜌0,1), there exists some 𝛾̄ = 𝛾̄(𝜌) ∈ (0, 𝑏)

such that for all 𝛾 ∈ (0, 𝛾̄), the estimators (𝐿𝑛)𝑛≥1 are unbiased and strongly efficient for P(𝐴𝑛) = P( 𝑋̄𝑛 ∈ 𝐴) under

the importance sampling distribution Q𝑛.

The proof is almost identical to that of Proposition 1. In particular, the proof requires that

P(𝐴𝑛) =𝑶
(
𝑛𝜈[𝑛,∞) · 𝑛𝜈(−∞,−𝑛]

)
and that, for any 𝛽 > 0, it holds for all 𝛾 small enough that

P(𝐴Δ
𝑛 \ 𝐵

𝛾
𝑛) = 𝒐(𝑛𝛽)

where 𝐴Δ
𝑛 = {𝑋̄𝑛 ∈ 𝐴Δ}. These can be obtained directly using sample path large deviations for heavy-tailed Lévy

processes in Result 2. The Proposition 6 is then established by repeating the arguments in Proposition 1 using Result 4

for randomized debiasing technique.

B.3. Construction of𝑌𝑚
𝑛;𝑐 Next, we describe the construction of𝑌𝑚

𝑛;𝑐 that can satisfy the conditions in Proposition 6.

Specifically, we consider the case where ARA is involved. Let

Ξ𝑛;𝑐 (𝑡) =Δ Ξ𝑛 (𝑡) + 𝑐𝑡.

Under both P and Q𝑛, Ξ𝑛;𝑐 (𝑡) admits the law of a Lévy process with generating triplet (𝑐𝑋 + 𝑐, 𝜎, 𝜈 | (−𝑛𝛾,𝑛𝛾) ). This

leads to the Lévy-Ito decomposition

Ξ𝑛,𝑐 (𝑡) =𝑑 (𝑐𝑋 + 𝑐)𝑡 +𝜎𝐵(𝑡) +
∑︁
𝑠≤𝑡

Δ𝑋 (𝑠)I
(
Δ𝑋 (𝑠) ∈ (−𝑛𝛾,−1] ∪ [1, 𝑛𝛾)

)
︸                                                  ︷︷                                                  ︸

=
Δ
𝐽𝑛,−1 (𝑡 )

+
∑︁
𝑚≥0

[∑︁
𝑠≤𝑡

Δ𝑋 (𝑠)I
(
|Δ𝑋 (𝑠) | ∈ [𝜅𝑛,𝑚, 𝜅𝑛,𝑚−1)

)
− 𝑡 · 𝜈

(
(−𝜅𝑛,𝑚−1,−𝜅𝑛,𝑚] ∪ [𝜅𝑛,𝑚, 𝜅𝑛,𝑚−1)

)
︸                                                                                                        ︷︷                                                                                                        ︸

=
Δ
𝐽𝑛,𝑚 (𝑡 )

]

with 𝜅𝑛,𝑚 defined in (31). Besides, let 𝜎̄2 (·) be defined as in (33). For each 𝑛 ≥ 1 and 𝑚 ≥ 0, consider the approximation

Ξ̆𝑚
𝑛;𝑐 (𝑡) =

Δ (𝑐𝑋 + 𝑐)𝑡 +𝜎𝐵(𝑡) +
𝑚∑︁

𝑞=−1
𝐽𝑛,𝑞 (𝑡) +

∑︁
𝑞≥𝑚+1

√︃
𝜎̄2 (𝜅𝑛,𝑞−1) − 𝜎̄2 (𝜅𝑛,𝑞) ·𝑊𝑞 (𝑡)

where (𝑊𝑚)𝑚≥1 is a sequence of iid copies of standard Brownian motions independent of everything else.
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Next, we discuss how to apply SBA and construct approximators 𝑌𝑚
𝑛;𝑐’s in (119). Let 𝜁𝑘 (𝑡) =

∑𝑘
𝑖=1 𝑧𝑖I[𝑢𝑖 ,𝑛] (𝑡) be a

piece-wise step function with 𝑘 jumps over (0, 𝑛], where 0 < 𝑢1 < 𝑢2 < . . . < 𝑢𝑘 ≤ 𝑛, and 𝑧𝑖 ≠ 0 for each 𝑖 ∈ [𝑘]. Recall

that the jump times in 𝜁𝑘 leads to a partition of [0, 𝑛] of (𝐼𝑖)𝑖∈[𝑘+1] defined in (23). For any 𝐼𝑖 , let the sequence 𝑙
(𝑖)
𝑗

’s

be defined as in (26)–(27). Conditioning on (𝑙 (𝑖)
𝑗
) 𝑗≥1, one can then sample 𝜉

(𝑖) ,𝑚
𝑗;𝑐 , 𝜉

(𝑖)
𝑗;𝑐 using

(
𝜉
(𝑖)
𝑗;𝑐, 𝜉

(𝑖) ,0
𝑗;𝑐 , 𝜉

(𝑖) ,1
𝑗;𝑐 , 𝜉

(𝑖) ,2
𝑗;𝑐 , . . .) =𝑑

(
Ξ𝑛;𝑐 (𝑙 (𝑖)𝑗 ), Ξ̆

0
𝑛;𝑐 (𝑙

(𝑖)
𝑗
), Ξ̆1

𝑛;𝑐 (𝑙
(𝑖)
𝑗
), Ξ̆2

𝑛;𝑐 (𝑙
(𝑖)
𝑗
), . . .

)
.

The coupling in (10) then implies

(
Ξ𝑛;𝑐 (𝑢𝑖) −Ξ𝑛;𝑐 (𝑢𝑖−1), sup

𝑡∈𝐼𝑖
Ξ𝑛;𝑐 (𝑡) −Ξ𝑛;𝑐 (𝑢𝑖−1), Ξ̆0

𝑛;𝑐 (𝑢𝑖) − Ξ̆0
𝑛;𝑐 (𝑢𝑖−1), sup

𝑡∈𝐼𝑖
Ξ̆0
𝑛;𝑐 (𝑡) − Ξ̆0

𝑛;𝑐 (𝑢𝑖−1),

Ξ̆1
𝑛;𝑐 (𝑢𝑖) − Ξ̆1

𝑛;𝑐 (𝑢𝑖−1), sup
𝑡∈𝐼𝑖

Ξ̆1
𝑛;𝑐 (𝑡) − Ξ̆1

𝑛;𝑐 (𝑢𝑖−1), . . .
)

=
𝑑

(∑︁
𝑗≥1

𝜉
(𝑖)
𝑗;𝑐,

∑︁
𝑗≥1
(𝜉 (𝑖)

𝑗;𝑐)
+,

∑︁
𝑗≥1

𝜉
(𝑖) ,0
𝑗;𝑐 ,

∑︁
𝑗≥1
(𝜉 (𝑖) ,0

𝑗;𝑐 )
+,

∑︁
𝑗≥1

𝜉
(𝑖) ,1
𝑗;𝑐 ,

∑︁
𝑗≥1
(𝜉 (𝑖) ,1

𝑗;𝑐 )
+, . . .

)
.

Now, we define

𝑀̂
(𝑖) ,𝑚
𝑛;𝑐 (𝜁𝑘) =

𝑚+⌈log2 (𝑛𝑑 ) ⌉∑︁
𝑗=1

(𝜉 (𝑖) ,𝑚
𝑗;𝑐 )

+

as an approximation to 𝑀
(𝑖) ,∗
𝑛;𝑐 (𝜁𝑘) = sup𝑡∈𝐼𝑖 Ξ𝑛;𝑐 (𝑡) −Ξ𝑛;𝑐 (𝑢𝑖−1) =

∑
𝑗≥1 (𝜉

(𝑖)
𝑗;𝑐)+. Now, set

𝑌𝑚
𝑛;𝑐 (𝜁𝑘) =

[
max

𝑖∈[𝑘+1]
I
( 𝑖−1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞) ,𝑚
𝑗;𝑐 +

𝑖−1∑︁
𝑞=1

𝑧𝑞 + 𝑀̂ (𝑖) ,𝑚𝑛;𝑐 (𝜁𝑘) ≥ 𝑛𝑎
)]
· I

( 𝑘+1∑︁
𝑞=1

∑︁
𝑗≥0

𝜉
(𝑞) ,𝑚
𝑗;𝑐 +

𝑘∑︁
𝑞=1

𝑧𝑞 − 𝑐𝑛 ≤ −𝑛𝑏
)
.

In (119), we plug in 𝑌𝑚
𝑛;𝑐 =𝑌

𝑚
𝑛;𝑐 (𝐽𝑛).

The proof of the strong efficiency is almost identical to that of Theorem 2. The only major difference is that in

Lemma 7, we apply Assumption 4 instead of Assumption 2.


