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Abstract

Stochastic gradient descent (SGD) and its variants in deep neural networks (DNNs) are fundamen-
tal to the advancements of modern artificial intelligence. However, our theoretical understanding
lags far behind their empirical success. It is widely believed that SGD has a curious ability to
avoid sharp local minima in the loss landscape, whereas sharp minima are believed to lead to
poor generalization. To unravel this mystery and further enhance such capability of SGDs, it is
imperative to go beyond the traditional local convergence analysis and obtain a comprehensive
understanding of SGDs’ global dynamics. In this paper, we develop a set of technical machinery
based on the recent large deviations and metastability analysis in [34] and obtain sharp char-
acterization of the global dynamics of heavy-tailed SGDs. In particular, we reveal a fascinating
phenomenon in deep learning: by injecting and then truncating heavy-tailed noises during the
training phase, SGD can almost completely avoid sharp minima and hence achieve better gener-
alization performance for the test data. Simulation and deep learning experiments confirm our
theoretical prediction that heavy-tailed SGD with gradient clipping finds local minima with a
more flat geometry and achieves better generalization performance.
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1 Introduction
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Figure 1.1: (Left) Histograms of the locations visited by SGD. With truncated heavy-tailed noises,
SGD hardly ever visits the two sharp minima m1 and m3. The objective function f is plotted at the
bottom, and dashed lines are added as references for the locations of local minima. (Middle) Typical
trajectories of SGD in different cases: (a) Heavy-tailed noises, no gradient clipping; (b) Heavy-tailed
noises, gradient clipping at b = 0.5; (c) Light-tailed noises, no gradient clipping; (d) Light-tailed
noises, gradient clipping at b = 0.5. The objective function f is plotted at the right of each figure, and
dashed lines are added as references for locations of the local minima. (Right) First Exit Time from
Ω2 = (−1.3, 0.2). Each dot represents the average of 20 samples of first exit time. Each dahsed line
shows a polynomial function ci/η

β where β is predicted by Theorem 2 and ci is chosen to fit the dots.
The non-solid green dot indicates that for some of the 20 samples of the termination threshold 5×107

was reached, and hence, it is an underestimation. Results in (Left) and (Middle) are obtained under
learning rate η = 0.001 and initial value X0 = 0.3.

Stochastic gradient descent (SGD) and its variants have seen unprecedented empirical successes
in the training of deep neural networks. Specifically, the training of deep neural networks is typically
posed as a non-convex optimization problem, and even without explicit regularization the solutions
obtained by SGD often perform surprisingly well on test data. Such an unexpected generalization
performance of SGD in deep neural networks are often attributed to SGD’s ability to avoid sharp
local minima in the loss landscape, which tends to lead to poor generalization [8, 15, 18, 13]. Despite
significant efforts to explain such phenomena theoretically, understanding how SGD manages to avoid
sharp local minima and end up with flat local minima within a realistic training time still remains as
a central mystery of deep learning. Recently, the heavy-tailed dynamics of SGD received significant
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attention, and it was suggested that the heavy tails in the stochastic gradients may be a key ingredient
that facilitates SGD’s escape from sharp local minima: for example, [30, 31] report the empirical
evidence of heavy-tails in stochastic gradient noise in popular deep learning architectures (see also
[9, 32, 4]) and show that SGD can escape sharp local minima in polynomial time under the presence
of the heavy-tailed gradient noise. To be more specific, they view heavy-tailed SGDs as discrete
approximations of Lévy driven Langevin equations and argue that the amount of time SGD trajectory
spends in each local minimum is proportional to the width of the associated minimum according to
the metastability theory [27, 11, 12] for such heavy-tailed processes.

In this paper, we study the global dynamics and long-run behavior of heavy-tailed SGD and its
practical variant in depth. In particular, we consider an adaptive version of SGD, where the stochastic
gradient is truncated above a fixed threshold. Such truncation scheme is often called gradient clipping
and employed as default in various contexts [3, 20, 6, 26, 36, 5]. We uncover a rich mathematical
structure in the global dynamics of SGD under this scheme and prove that the asymptotic behavior of
such SGD is fundamentally different from that of the pure form of SGD: in particular, under a suitable
structural condition on the geometry of the loss landscape, gradient clipping completely eliminates
sharp minima from the trajectory of SGDs. This intriguing phenomenon leads to a new training
strategy in deep learning for finding local minima that achieve better generalization performance.
More precisely, the main contributions of this article can be summarized as follows.

• Theoretical Contributions: Characterization of Global Dynamics. We establish a
scaling limit of the heavy-tailed dynamical systems over a multi-well potential in R1 at the
process level. The scaling limit is a Markov jump process whose state space consists of the
local minima of the potential. In particular, our findings systematically characterize a curious
phenomenon that the truncated heavy-tailed processes avoid narrow local minima altoghether
in the limit. As a direct application, we prove an ergodic theorem, which shows that the fraction
of time such processes spend in the narrow attraction field converges to zero as the step-size
tends to zero.

• Algorithmic Contributions: Control of SGDs using Truncated Heavy Tails. Inspired
by the sharp characterization of the global behavior of heavy-tailed dynamical systems in R1, we
propose a new training strategy in deep learning that improves the generalization performance of
SGD. Specifically, by injecting and then truncating heavy-tailed noise in SGD, the new training
strategy manages to find local minima with a more flat geometry and better generalization
performance. We test the proposed algorithm with deep learning tasks and demonstrate its
superiority with an ablation study. This also suggests that the key phenomenon we characterize
in our theory— elimination of sharp local minima—manifests in real-world tasks.

Throughout this paper, we focus on the class of heavy tails captured by the notion of regular
variation. Let (Zi)i≥1 be a sequence of iid random variables such that EZ1 = 0 and P(|Z1| > x) is
regularly varying with index −α as x → ∞ for some α > 1. That is, there exists some slowly varying
function ϕ such that P(|Z1| > x) = ϕ(x)x−α. Let φb(·) : x 7→ x

|x| max{b, |x|} be the projection

operator from R onto [−b, b], where b > 0 is a truncation threshold. For any η > 0, x ∈ R, and
b ∈ (0,∞), we define

(
X

η|b
j (x)

)
j≥0 with the following recursion:

X
η|b
0 (x) = x; X

η|b
j+1(x) = X

η|b
j (x) + φb

(
− ηU ′

(
X

η|b
j (x)

)
+ ησ

(
X

η|b
j (x)

)
Zj+1

)
∀j ≥ 0. (1.1)

In other words,
(
X

η|b
j (x)

)
j≥0 solves a class of stochastic difference equations driven by truncated

heavy-tailed perturbations. Here, U ′(·) is the gradient field of some potential function U ∈ C1(R), x
dictates the initial condition of the stochastic difference equation, η is interpreted as the step-length,
and the distance traveled at each step is truncated under the threshold level b. Generalizating to the
scenario where the truncation threshold b is set as∞ (i.e., when we remove the truncation mechanism),
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we define X
η|∞
j (x) = Xη

j (x) as the solution of the following stochastic difference equation

Xη
0 (x) = x; Xη

j+1(x) = Xη
j (x)− ηU ′

(
Xη

j (x)
)
+ ησ

(
Xη

j (x)
)
Zj+1 ∀j ≥ 0. (1.2)

Below, we describe the main contributions in more detail.

Characterization of the Global Dynamics of Heavy-Tailed Systems: Our first contribution

is to provide a sharp characterization of the global behavior of X
η|b
j (x)’s when traversing a multi-well

potential U ; see Figure 3.1 for an illustration of a potential U and its attraction fields. Under suitable

conditions, Theorem 3.2 establishes that the stochastic process X
η|b
j (x) converges to a Markov jump

process that visits only the widest local minima with proper scaling. By considering an arbitrarily
large truncation threshold b ≈ ∞, we also recover the sample-path convergence of the untruncated
dynamics Xη

j (x) in Theorem 3.3. The modes of convergence are in finite dimensional distributions
and weakly w.r.t. the Lp norm in D[0,∞). See Section 3.2 for precise definitions and statements.

As a consequence of the sharp characterization of the global dynamics in Theorem 3.2, we also

obtain Corollary 3.4, which proves an ergodic theorem for the fraction of the times X
η|b
j (x) spends in

narrow attraction fields: roughly speaking,

1

T · λ∗b(η)

T ·λ∗b (η)∑
i=1

I

{
X

η|b
i (x) ∈

⋃
j: mj∈ wide minima

(mj − ϵ,mj + ϵ)

}
p→ 1 as η ↓ 0

where λ∗b(η) is a scaling function of η that is regularly varying with index J ∗b (V ) · (α − 1) + 1. Here
J ∗b (V ) is the maximal relative width of U ’s attraction fields. This uncovers an intriguing phenomenon:
combined with truncation, the heavy-tailed processes will avoid any local minimum of U that is not
the widest. The precise definitions of the widest attraction fields and the associated local minima are
given in Section 3, but here we note that the width is measured by the number of jumps (with sizes
bounded by b) required to exit the attraction field.

Figure 1.1 (Left, Middle) clearly illustrates these points with the histograms of the sample trajec-
tories of SGDs. Note first that SGDs with light-tailed gradient noise—(c) and (d) of Figure 1.1 (Left,
Middle)—never manages to escape a (sharp) minimum regardless of gradient clipping. In contrast,
SGDs with heavy-tailed gradient noise—(a) and (b) of Figure 1.1 (Left, Middle)—easily escapes from
local minima. Moreover, there is a clear difference between SGDs with gradient clipping and without
gradient clipping. In (a) of Figure 1.1 (Left), SGD without gradient clipping spends a significant
amount of time at each of all four local minima ({m1,m2,m3,m4}), although it spends more time
around the wide ones ({m2,m4}) than the sharp ones ({m1,m3}). On the other hand, in (b) of
Figure 1.1 (Left), SGD with gradient clipping not only escapes from local minima but also avoids
sharp minima ({m1,m3}) almost completely. This means that after we run SGD for long enough
(more precisely, the required run length λ∗b(η) that is roughly of polynomial order; see Section 3.2 for
details), it is almost guaranteed that it won’t be at a sharp minimum, effectively eliminating sharp
minima from its training trajectories.

The theoretical developments in our work hinge on the technical framework in [34] that connects
the large deviation and metastability analysis for heavy-tailed dynamical systems. Specifically,

• [34] establishes a new formulation of heavy-tailed large deviations that is locally uniform with
respect to the initial values. These results characterize the catastrophe principle that reveals
a discrete hierarchy governing the causes and probabilities of a wide variety of rare events
associated with heavy-tailed stochastic difference/differential equations. Moreover, this locally
uniform formulation of large deviations proves to be the right tool for the analysis of local
stability in [34] and the characterization of global dynamics in our work.

• In terms of local stability, [34] obtains sharp asymptotics of the joint law of the (scaled) exit-times
and exit-locations for heavy-tailed dynamical systems. In particular, the results reveal how the
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local stability of X
η|b
j within an attraction field varies with the truncation threshold b in (1.1).

Building on such exit-time and exit-location analyses, we establish a scaling limit of the heavy-
tailed dynamical systems over a multi-well potential at the process level. In particular, a key
step in our work is the development of a technical framework that elevates the characterization

of local behaviors to the global dynamics of X
η|b
j over a multi-well potential U .

Section 2 provides a review of the results in [34] that are most relevant to our work, and Section 3
presents our theoretical analysis of the global dynamics of heavy-tailed SGDs.

Control of Global Dynamics of SGDs using Truncated Heavy Tails: We also propose a
novel computational strategy that takes advantage of our newly discovered global dynamics of the
heavy-tailed SGD. While the evidence of heavy tails were reported in many deep learning tasks
[31, 30, 4, 7, 9, 24, 19, 32, 36], there seem to be plenty of deep learning contexts where the stochastic
gradient noises are light-tailed [25] as well. Guided by our new theory, we propose an algorithm that
injects heavy-tails to SGD by inflating the tail distribution of the gradient noise and facilitating the
discovery of a local minimum that generalizes better. Our experiments with image classification tasks,
reported in Tables 5.1 and 5.2, illustrate that the tail-inflation strategy we propose here can indeed
improve the generalization performance of the SGD as predicted by our theory.

Some of the results of this paper have been presented in a preliminary form at a conference [33].
However, the current paper provides significant extension and generalization of results in [33]. For
instance, we make much weaker assumptions, allowing for non-constant diffusion coefficient σ(·) and
eliminating the need for regularity conditions such as U ∈ C2(R) or the confinement of X

η|b
j within a

compact set. Besides, the global dynamics (i.e., sample path convergence results in Section 3.2) are
characterized not only in terms of finite-dimensional distributions but also w.r.t. the Lp topology of
the càdlàg space. Besides, compared to the brute force approach in [33], the current paper develops a
systematic framework for sample path convergence w.r.t. the Lp topology of the càdlàg space and for
elevating the local stability results to a characterization of the global dynamics.

The rest of the paper is organized as follows. Section 2 reviews results in [34] that are central to
the developments in this work. Section 3 provides theoretical characterization of the global dynamics
of the SGDs driven by heavy-tailed noises. Section 4 presents numerical experiments that confirm
our theory. Section 5 proposes a new algorithm that artificially injects heavy tailed gradient noise in
actual deep learning tasks and demonstrate the improved performance. In the Appendix, we collect
the technical proofs for results in Section 3 and the details of the experiments presented in Sections
4 and 5.

2 Preliminaries

In this section, we introduce notations and review results that will be frequently used throughout
this paper. Section 2.1 presents the sample-path large deviations for heavy-tailed stochastic difference

equations X
η|b
j (x)’s defined in (2.1), and Section 2.2 discusses the local stability of X

η|b
j (x). By

applying these mathematical machineries in Section 3, we are able to obtain a tight characterization
of the global dynamics of heavy-tailed SGDs over a multimodal potential (i.e., specializing to the case
where a(·) = −U ′(·) for some multimodal function U).

First, we set frequently used notations. Let Z be the set of integers, N = {1, 2, · · · } be the set of
positive integers, and Z+ = {0, 1, 2, · · · } be the set of non-negative integers. Let [n] = {1, 2, · · · , n}
for any positive integer n. Consider a metric space (S,d) with SS being the corresponding Borel
σ-algebra. For any E ⊆ S, let E◦ and E− be the interior and closure of E, respectively. For any
ϵ > 0, let Er =∆ {y ∈ S : d(E, y) ≤ ϵ} be the ϵ-enlargement of E. Here, for any set A ⊆ S and any
x ∈ S, we define d(A, x) =∆ inf{d(y, x) : y ∈ A}. Let Eϵ =∆ ((Ec)ϵ)c be the ϵ-shrinkage of E. It is
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worth noticing that, for any set E, the enlargement Er of E is closed, while the shrinkage Er of E is
open. We say that set A ⊆ S is bounded away from B ⊆ S under d if infx∈A,y∈B d(x, y) > 0.

Throughout this paper, we characterize heavy-tails using the notion of regular variation. For a
measurable function ϕ : (0,∞) → (0,∞), we say that ϕ is regularly varying as x → ∞ with index β
(denoted as ϕ(x) ∈ RVβ(x) as x → ∞) if limx→∞ ϕ(tx)/ϕ(x) = tβ for all t > 0. For details of the
properties of regularly varying functions, see, for example, Chapter 2 of [28]. We say that a measurable
function ϕ(η) is regularly varying as η ↓ 0 with index β if limη↓0 ϕ(tη)/ϕ(η) = tβ for any t > 0. We
denote this as ϕ(η) ∈ RVβ(η) as η ↓ 0.

2.1 Sample Path Large Deviations for Heavy-Tailed Dynamical Systems

In this section, we review the sample path large deviations developed in [34] for heavy-tailed dynamical
systems. Specifically, we consider the following form of stochastic difference equations driven by heavy-
tailed perturbations and potentially subject to truncation. Let

φc(w) =
∆ (w ∧ c) ∨ (−c) ∀w ∈ R, c > 0

be the projection operator onto [−c, c]. Given any η > 0, b > 0, and x ∈ R, define (X
η|b
j (x))j≥0

through the recursion

X
η|b
0 (x) = x, X

η|b
j (x) = X

η|b
j−1(x) + φb

(
ηa

(
X

η|b
j−1(x)

)
+ ησ

(
X

η|b
j−1(x)

)
Zj

)
∀j ≥ 1, (2.1)

Here, Zj ’s are iid copies of some random variable Z, and the coefficients a(·) and σ(·) are some
functions. In case that b = ∞, as a convention we set φ∞(w) = w as the identity mapping, and write

Xη
j (x) = X

η|∞
j (x). In other words, b = ∞ corresponds to the untruncated case where the recursion

degenerates to

Xη
0 (x) = x; Xη

j (x) = Xη
j−1(x) + ηa

(
Xη

j−1(x)
)
+ ησ

(
Xη

j−1(x)
)
Zj ∀j ≥ 1. (2.2)

Let

H(+)(x) =∆ P(Z > x), H(−)(x) =∆ P(Z < −x), H(x) =∆ H(+)(x) +H(−)(x) = P(|Z| > x). (2.3)

We focus on the case where Z is heavy-tailed.

Assumption 1 (Regularly Varying Noises). EZ = 0. Besides, there exist α > 1 and p(+), p(−) ∈ (0, 1)
with p(+) + p(−) = 1 such that

H(x) ∈ RV−α(x) as x → ∞; lim
x→∞

H(+)(x)

H(x)
= p(+); lim

x→∞

H(−)(x)

H(x)
= p(−) = 1− p(+).

Next, we introduce a few assumptions on a : R → R and σ : R → R. It is worth noticing that,
as we will see in Result 1 below, Assumption 4 can be safely dropped when b ∈ (0,∞) in (2.1), i.e.,
when truncation is in effect.

Assumption 2 (Lipschitz Continuity). There exists some D ∈ (0,∞) such that

|σ(x)− σ(y)| ∨ |a(x)− a(y)| ≤ D|x− y| ∀x, y ∈ R.

Assumption 3 (Nondegeneracy). σ(x) > 0 ∀x ∈ R.

Assumption 4 (Boundedness). There exists some C ∈ (0,∞) such that

|a(x)| ∨ |σ(x)| ≤ C ∀x ∈ R.
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Let (D[0, T ],d[0,T ]

J1
) be a metric space, where D[0, T ] is the space of all càdlàg functions on [0, T ]

and d[0,T ]

J1
is the Skorodkhod J1 metric

d[0,T ]

J1
(x, y) =∆ inf

λ∈ΛT

sup
t∈[0,T ]

|λ(t)− t| ∨ |x(λ(t))− y(t)|.

Here, ΛT is the set of homeomorphism on [0, T ]. Given any A ⊆ R, let Ak↑ =∆ {(t1, · · · , tk) ∈ Ak :
t1 < t2 < · · · < tk} be the set of ordered sequence of real numbers with length k on A. For any b,

T ∈ (0,∞) and k ∈ N, define the mapping h
(k)|b
[0,T ] : R × Rk × (0, T ]k↑ → D[0, T ] as follows. Given

x0 ∈ R, w = (w1, · · · , wk) ∈ Rk, and t = (t1, · · · , tk) ∈ (0, T ]k↑, let ξ = h
(k)|b
[0,T ](x0,w, t) solves

ξ0 = x0; (2.4)

dξs
ds

= a(ξs) ∀s ∈ [0, T ], s ̸= t1, t2, · · · , tk; (2.5)

ξs = ξs− + φb

(
σ(ξs−) · wj

)
if s = tj for some j ∈ [k] (2.6)

In other words, h
(k)|b
[0,T ](x0,w, t) returns an ODE path perturbed by k jumps, where the size of each jump

is modulated by σ(·) and truncated under b. For k = 0, we adopt the convention that ξ = h
(0)|b
[0,T ](x0)

is the solution to the ODE dξs/ds = a(ξs) ∀s ∈ [0, T ] under the initial condition ξ0 = x0. For any
T ∈ (0,∞), b ∈ (0,∞], A ⊆ R and k ∈ Z+, let

D(k)|b
A [0, T ] =∆ h

(k)|b
[0,T ]

(
A× Rk × (0, T ]k↑

)
(2.7)

be the set of all ODE paths with k jumps, where the size of each jump is modulated by the diffusion

coefficient σ(·) and then truncated under threshold b. We adopt the convention that D(−1)|b
A [0, T ] =∆ ∅.

Given any x ∈ R, k ∈ Z+, and b, T ∈ (0,∞), let

C
(k)|b
[0,T ]( · ;x) =

∆

∫
I
{
h
(k)|b
[0,T ]

(
x,w, t

)
∈ ·

}
νkα(dw)× Lk↑

T (dt). (2.8)

Here, νkβ(·) is the k-fold product measure of the (Borel) measure

νβ [x,∞) = p(+)x−β , νβ(−∞,−x] = p(−)x−β , ∀x > 0, β > 0, (2.9)

Lt is the Lebesgue measure restricted on (0, t), and Lk↑
t is the Lebesgue measure restricted on (0, t)k↑.

Let X
η|b
[0,T ](x) =

∆ {Xη|b
⌊t/η⌋(x) : t ∈ [0, T ]} be the time-scaled version of X

η|b
j (x) embedded in D[0, T ].

Similar notations are adopted for h
(k)
[0,T ] = h

(k)|∞
[0,T ] , D

(k)
A [0, T ] = D(k)|∞

A [0, T ], C
(k)
[0,T ] = C

(k)|∞
[0,T ] , and

Xη
[0,T ](x) = X

η|∞
[0,T ](x).

Let SD[0,T ] be the Borel σ-algebra of (D[0, T ],d[0,T ]

J1
). Let

λ(η) =∆ η−1H(η−1)

and λk(η) = (λ(η))k. By Assumption 1, λ(η) ∈ RVα−1(η) as η ↓ 0. As a summary of Theorems 2.3

and 2.4 in [34], Result 1 provides sharp asymptotics for rare events in X
η|b

j (x) driven by heavy-tailed
perturbations.

Result 1 (Sample Path Large Deviations). Let Assumptions 1, 2, and 3 hold. Let k ∈ Z+ and

T, b ∈ (0,∞). For any B ∈ SD[0,T ] that is bounded away from D(k−1)|b
A [0, T ] under d[0,T ]

J1
,

inf
x∈A

C
(k)|b
[0,T ]

(
B◦;x

)
≤ lim inf

η↓0

infx∈A P
(
X

η|b
[0,T ](x) ∈ B

)
λk(η)

≤ lim sup
η↓0

supx∈A P
(
X

η|b
[0,T ](x) ∈ B

)
λk(η)

≤ sup
x∈A

C
(k)|b
[0,T ]

(
B−;x

)
< ∞.

(2.10)
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Furthermore, if Assumption 4 holds, then claim (2.10) is also valid for b = ∞.

To conclude this section, we add a few remarks regarding Result 1. This result is a manifestation
of the catastrophe principle that governs the rare events in heavy-tailed systems: the catastrophic
failures (i.e., extreme deviations from typical behaviors) in a small number of components lead to
system-wide rare events. Specifically, the index k that leads to non-degenerate bounds in (2.10)
corresponds to the minimum number of jumps that needs to be added to the ODE yt(x) for it to
enter the set B given x ∈ A, where

y0(x) = x,
dyt(x)

dt
= a

(
yt(x)

)
∀t ≥ 0. (2.11)

Such an index k dictates the polynomial rate of decay of the probability of rare events and plays a
role similar to the infimum of rate function of the classical large deviation principles. Furthermore, it
dictates the most likely scenario of the rare events (i.e., they are almost always caused by exactly k
large jumps in the system); see Corollary 2.5 of [34].

2.2 First Exit Analysis for Heavy-Tailed Dynamical Systems

Next, we review the results about the local stability of Xη
j (x) and X

η|b
j (x) in Section 2.3 of [34].

Specifically, let I = (sleft, sright) be an open interval where sleft < 0 < sright. Define

τη(x) =∆ min
{
j ≥ 0 : Xη

j (x) /∈ I
}
, τη|b(x) =∆ min

{
j ≥ 0 : X

η|b
j (x) /∈ I

}
(2.12)

as the first exit times of Xη
j (x) and X

η|b
j (x) from I = (sleft, sright), respectively. As will be demon-

strated in Section 3, the global dynamics of heavy-tailed SGDs are understood by characterizing when
and how we exit from different regions and traverse the loss landscape, which hinges on the first exit
times and exit locations under different choices of I.

Specifically, in Section 2.2 we impose Assumption 5 on a(·). In case that a(·) = −U ′(·) for some
U ∈ C1(R), Assumption 5 dictates that, over the domain I, the potential function U(·) has a unique
local minimum at x = 0. Moreover, since U ′(x)x = −a(x)x > 0 for all x ∈ I \ {0}, the domain I is a
subset of the attraction field of the origin, as limt→∞ yt(x) = 0 holds for all x ∈ I.

Assumption 5. a(0) = 0. Besides, it holds for all x ∈ I \ {0} that a(x)x < 0.

To present the result, we introduce a few definitions. For any k ∈ N and b ∈ (0,∞), let the
mapping ǧ(k)|b : R× Rk × (0,∞)k↑ → R be defined as

ǧ(k)|b(x,w, t) =∆ h
(k)|b
[0,tk+1](x,w, t)(tk) (2.13)

where t = (t1, . . . , tk) ∈ (0,∞)k↑, w = (w1, . . . , wk) ∈ Rk, and h
(k)|b
[0,T ] : R × Rk × (0, T ]k↑ → D[0, T ] is

as defined in (2.4)–(2.6). As a convention, we set ǧ(0)|b(x) =∆ x. Next, define Borel measures (for each
k ≥ 1 and b ∈ (0,∞))

Č(k)|b( · ;x) =∆
∫

I
{
ǧ(k−1)|b

(
x+ φb

(
σ(x) · w0

)
,w, t

)
∈ ·

}
να(dw0)× νk−1α (dw)× Lk−1↑

∞ (dt) (2.14)

with Lk↑
∞ being the Lebesgue measure restricted on {(t1, · · · , tk) ∈ (0,∞)k : 0 < t1 < t2 < · · · < tk}.

Also, define

Č( · ;x) =∆
∫

I
{
x+ σ(x) · w ∈ ·

}
να(dw). (2.15)

In case that x = 0, we write Č(k)|b(·) =∆ Č(k)|b( · ; 0). and Č(·) =∆ Č( · ; 0). Also, let

l =∆ inf
x∈Ic

|x| = |sleft| ∧ sright, J ∗b =∆ ⌈l/b⌉. (2.16)
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Intuitively speaking, l is the distance between the origin and Ic, and J ∗b is the smallest number of
jumps required to exit from I if the size of each jump is bounded by b.

Recall that H(·) = P(|Z| > ·) and λ(η) = η−1H(η−1). Result 2 provides sharp asymptotics for

the joint distribution of the first exit times and exit locations of X
η|b
j (x) and Xη

j (x).

Result 2 (First Exit Times and Locations). Let Assumptions 1, 2, 3, and 5 hold.

(a) Let b > 0 be such that sleft/b /∈ Z and sright/b /∈ Z. For any ϵ > 0, t ≥ 0, and measurable set
B ⊆ Ic,

lim sup
η↓0

sup
x∈Iϵ

P
(
C∗b η · λJ

∗
b (η)τη|b(x) > t; X

η|b
τη|b(x)

(x) ∈ B
)
≤ Č(J ∗b )|b(B−)

C∗b
· exp(−t),

lim inf
η↓0

inf
x∈Iϵ

P
(
C∗b η · λJ

∗
b (η)τη|b(x) > t; X

η|b
τη|b(x)

(x) ∈ B
)
≥ Č(J ∗b )|b(B◦)

C∗b
· exp(−t)

where C∗b =∆ Č(J ∗b )|b(Ic) ∈ (0,∞).

(b) For any t ≥ 0 and measurable set B ⊆ Ic,

lim sup
η↓0

sup
x∈Iϵ

P
(
C∗η · λ(η)τη(x) > t; Xη

τη(x)(x) ∈ B
)
≤ Č(B−)

C∗
· exp(−t),

lim inf
η↓0

inf
x∈Iϵ

P
(
C∗η · λ(η)τη(x) > t; Xη

τη(x)(x) ∈ B
)
≥ Č(B◦)

C∗
· exp(−t)

where C∗ =∆ Č(Ic) ∈ (0,∞).

To conclude, we stress that Result 2 is another intriguing manifestation of the catastrophe principle

in heavy-tailed systems and reveals a discrete hierarchy in the first exit analysis of X
η|b
j (x). In

particular, J ∗b can be interpreted as the “discretized width” of domain I relative to the truncation
threshold b, and Result 2 shows that τη|b(x) is roughly of order η−1λ−J

∗
b (η), which is regularly varying

in 1/η with index 1+J ∗b (α−1). In other words, the order of the exit times are dictated by the minimum
number of jumps required for exit; the wider the domain I is (in terms of the relative width J ∗b ), the
much longer it takes to exit from I, asymptotically. Therefore, in light of Result 2, it is natural to
expect the following: over some multimodal potential function U , the truncated heavy-tailed SGDs
will spend almost all the time around the widest local minima, thus avoiding all the narrow minima.
This will be established rigorously in Section 3. In fact, thanks to the sharp characterization of both
exit times and exit locations in Result 2, we are able to provide asymptotics for the entire sample
path of heavy-tailed SGDs.

3 Global Dynamics of Heavy-Tailed SGDs

In this section, we consider the case where a(·) = −U ′(·) for some general multimodal potential

function U : R → R and characterize the global behavior of Xη
j (x) and X

η|b
j (x). We show that, after

proper scaling, their sample paths converge to those of Markov jump processes whose state spaces

consist of local minima of U . Curiously, the state space of the limit process associated with X
η|b
j (x)

consists of only the widest local minima.

3.1 Problem Setting

We consider a multimodal potential function with local minima {m1,m2, . . . ,mnmin
}. More precisely,

we make the following assumption throughout this section.
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Assumption 6. Let U : R → R be a function in C1(R). Besides, there exist a positive integer nmin ≥ 2
and an ordered sequence of real numbers −∞ < m1 < s1 < m2 < s2 < · · · < snmin−1 < mnmin < ∞
such that (under the convention s0 = −∞ and snmin = ∞)

(i) U ′(x) = 0 iff x ∈ {m1, s1, · · · , snmin−1,mnmin
};

(ii) U ′(x) < 0 for all x ∈
⋃

j∈[nmin]
(sj−1,mj);

(iii) U ′(x) > 0 for all x ∈
⋃

j∈[nmin]
(mj , sj).

See Figure 3.1 (Left) for an illustration of such function U with nmin = 3. Note that the local
maxima s1, · · · , snmin−1 divide R into different regions Ii =

∆ (si−1, si) for i = 0, . . . , nmin. Such regions
can be viewed as the attraction fields of the local minima mi’s. That is, the ODE yt(x) defined
in (2.11) (with a = −U ′) admits the limit limt→∞ yt(x) = mi if x ∈ Ii. Note that we impose the
condition nmin ≥ 2 simply to avoid the trivial case of nmin = 1, in which case there exists only one
attraction field.

In order to present the main results, we introduce some definitions to facilitate the characterization
of the geometry of U . First, for each attraction field Ii, let

li =
∆ inf

x∈Ic
i

|x−mi| = |mi − si−1| ∧ |si −mi| (3.1)

be the effective “width” of Ii, i.e., the minimum distance between mi and the outside of Ii. Next, for
any i ∈ [nmin] and j ∈ [nmin] with j ̸= i, let

J ∗b (i) =
∆ ⌈li/b⌉, li,j =

∆ inf
x∈Ij

|x−mi| =

{
sj−1 −mi if j > i

mi − sj if j < i
, J ∗b (i, j) =

∆ ⌈li,j/b⌉. (3.2)

Recall that b is the truncation threshold for X
η|b
j (x). Here, J ∗b (i) can be interpreted as the discretized

width of Ii w.r.t. the resolution b, in the sense that it is the minimum number of jumps (with sizes
bounded by b) required to escape from Ii when starting from mi. Furthermore, J ∗b (i, j) is the minimal
number of steps required to travel from mi to Ij under the truncation threshold b. By definition, we
must have J ∗b (i, j) ≥ J ∗b (i). With J ∗b (i) and J ∗b (i, j), we define the typical transition graph as follows.

Definition 3.1 (Typical Transition Graph). Given a function U satisfying Assumption 6 and some
b > 0, the typical transition graph associated with threshold b is a directed graph Gb = (V,Eb) such
that

• V = {m1, · · · ,mnmin};

• An edge (mi → mj) is in Eb iff J ∗b (i, j) = J ∗b (i).

The graph Gb can be decomposed into different communication classes that are mutually exclusive.
For mi,mj ∈ V with i ̸= j, we say that mi and mj communicate if and only if there exists a path
(mi → mk1

→ · · · → mkn
→ mj) as well as a path (mj → mk′1

→ · · · → mk′
n′

→ mi) on Gb. In this
section, we focus on the case where Gb is irreducible, i.e., all nodes communicate with each other on
graph Gb. See Figure 3.1 (Middle) and (Right) for the illustration of irreducible and reducible cases,
respectively. Specifically, we impose the following assumption on the truncation threshold b. We note
that the second condition is a mild one, as it holds for almost every b > 0 except for countably many.

Assumption 7. b ∈ (0,∞) is such that

• Gb is irreducible,

• |sj −mi|/b /∈ Z for all i ∈ [nmin] and j ∈ [nmin − 1].
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s1 s2m1 m2 m3

0.2 0.6 0.9 0.3

I1 I2 I3

m1 m2 m3

*
b (2, 1) = 2

*
b (1, 2) = 1

*
b (3, 2) = 1

*
b (2, 3) = 2

b = 0.5
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*
b (2, 1) = 2

*
b (1, 2) = 1

*
b (3, 2) = 1

*
b (2, 3) = 3

b = 0.4

Figure 3.1: Typical transition graphs Gb associated with different gradient clipping thresholds b.
(Left) The potential function U illustrated here has 3 attraction fields. For the second one I2 =
(s1, s2), we have s2−m2 = 0.9,m2−s1 = 0.6. (Middle) The typical transition graph associated with
b = 0.5. The entire graph Gb is irreducible since all nodes communicate with each other. (Right) The
typical transition graph associated with b = 0.4. When b = 0.4, since 0.6 < 2b and 0.9 > 2b, we have
J ∗b (2, 1) = 2 and J ∗b (2, 3) = 3, and hence J ∗b (2) = 2 = J ∗b (2, 1) < J ∗b (2, 3). Therefore, the graph Gb

does not contain the edge m2 → m3 and there are two communication classes: G1 = {m1,m2}, G2 =
{m3}.

3.2 Sample Path Convergence

We are now ready to present the main result of this section. Theorem 3.2 establishes that, under a

proper time scaling, the sample path of X
η|b
j (x) converges to that of a Markov jump process, which

only visits the widest local minima of U . Here, the width of each attraction field Ii is characterized
by J ∗b (i) defined in (3.2). We use

J ∗b (V ) ≜ max
i: mi∈V

J ∗b (i) (3.3)

to denote the largest width—when discretized w.r.t. the resolution b—among all attraction fields.
Next, define

V ∗b =∆ {mi : J ∗b (i) = J ∗b (V )} (3.4)

as the set containing all the widest local minima.

In Theorem 3.2, the scaling limit of the sample path of X
η|b
j (x) will be characterized in terms of

the following two modes of convergence. First, we say that {Sη
t : t > 0} converges to {S∗t : t > 0}

in finite-dimensional distributions (f.d.d.) if we have
(
Sη
t1 , · · · , S

η
tk

)
⇒

(
S∗t1 , · · · , S

∗
tk

)
as η ↓ 0 for any

k ≥ 1 and 0 < t1 < t2 < · · · < tk < ∞. We also denote this as {Sη
t : t > 0} f.d.d.→ {S∗t : t > 0}.

Remark 1. We consider the convergence in f.d.d. only on (0,∞), thus excluding t = 0. This is

because in Theorem 3.2, under the proper time scaling, the value of X
η|b
⌊t⌋ (x) for some t close to 0 will

quickly converges to that of Y
∗|b
0 (i.e., the initial value of the limit Markov jump process), but not

exactly at t = 0. The same applies to Theorem 3.3.

Next, we recall the convergence w.r.t. the Lp topology in D[0,∞). For any p ∈ [1,∞) and T ∈
(0,∞), let

d[0,T ]

Lp
(x, y) =∆

(∫ T

0

|xt − yt|pdt
)1/p

∀x, y ∈ D[0, T ] (3.5)

be the Lp metric on D[0, T ]. For any T > 0, define the projection πT : D[0,∞) → D[0, T ] such that

πT (ξ)t = ξt ∀t ∈ [0, T ]. (3.6)
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Now, we define

d[0,∞)

Lp
(x, y) =∆

∑
k≥1

1 ∧ d[0,k]

Lp

(
πk(x), πk(y)

)
2k

∀x, y ∈ D[0,∞) (3.7)

and note that d[0,∞)

Lp
is a metric on D[0,∞). Hereafter in this paper, the continuity of a functional

f : D[0,∞) → R is understood w.r.t. the topology induced by d[0,∞)

Lp
. We say that the sequence of

càdlàg processes {Sη
t : t ≥ 0} converges in distribution to {S∗t : t ≥ 0} w.r.t. the Lp topology in

D[0,∞) as η ↓ 0 if limη↓0 Ef(Sη
· ) = Ef(S∗· ) for all f : D[0,∞) → R that is bounded and continuous.

We denote this with Sη
· ⇒ S∗· in (D[0,∞),d[0,∞)

Lp
) or {Sη

t : t ≥ 0} ⇒ {S∗t : t ≥ 0} in (D[0,∞),d[0,∞)

Lp
).

Recall that H(·) = P(|Z1| > ·) and λ(η) = η−1H(η−1) ∈ RVα−1(η). Define a scaling function

λ∗b(η) =
∆ η ·

(
λ(η)

)J ∗b (V ) ∈ RVJ ∗b (V )·(α−1)+1(η) as η ↓ 0. (3.8)

We are now ready to state the main result.

Theorem 3.2. Let Assumptions 1, 2, 3, 6, and 7 hold. Let p ∈ [1,∞), i ∈ [nmin], and x ∈ Ii. As
η ↓ 0,

{Xη|b
⌊·/λ∗b (η)⌋

(x) : t > 0} f.d.d.→ {Y ∗|bt : t > 0} and X
η|b
⌊·/λ∗b (η)⌋

(x) ⇒ Y
∗|b
· in (D[0,∞),d[0,∞)

Lp
),

where Y
∗|b
t is a continuous-time Markov chain with a finite state space V ∗b , initial distribution (see

(3.11) for the definition of θb),

P(Y
∗|b
0 = mj) = θb(mj |mi) ∀mj ∈ V ∗b , (3.9)

and infinitesimal generator (see (3.10) for the definition of qb)

Q∗|b(i, j) =
∑

j′∈[nmin]: j′ ̸=i

qb(i, j
′)θb(mj |mj′) ∀mi, mj ∈ V ∗b with mi ̸= mj ,

Q∗|b(i, i) = −
∑

mj∈V ∗b : j ̸=i

Q∗|b(i, j) ∀mi ∈ V ∗b .

We provide the proof of Theorem 3.2 in Section B. Here, we specify the law of limiting Markov
jump process Y ∗|b. Recall the definition of Č(k)|b( · ;x) in (2.14). Let

qb(i, j) =
∆ Č(J ∗b (i))|b(Ij ;mi), qb(i) =

∆ Č(J ∗b (i))|b(Ici ;mi). (3.10)

Note that
∑

j∈[nmin]: j ̸=i qb(i, j) = qb(i) ∈ (0,∞) for any i ∈ [nmin]; see (C.3). This allows us to define

a discrete-time Markov chain (Sn)n≥0 over state space V , with any state v ∈ V ∗b being an absorbing
state, such that the one-step transition kernel P(Sn+1 = mj |Sn = mi) = qb(i, j)/qb(i) holds for any
mi ∈ V \ V ∗b and any mj ∈ V . Next, define

θb(mj |mi) =
∆ P(Sn = mj for some n ≥ 0 | S0 = mi) (3.11)

for any mi ∈ V and any mj ∈ V ∗b as the probability of being absorbed at mj when starting from mi.
For any mi ∈ V ∗b , by definition of θb(·|mi), we see that θb(mi|mi) = 1. In case that mi ∈ V \ V ∗b , the
evaluation of θb(mj |mi) is straightforward using the fundamental matrix of the Markov chain; see, for
instance, Chapter 3.3 of [14]. Lastly, given the generator of Y ∗|b, we have

P(Y
∗|b
t+h = mj | Y ∗|bt = mi) = h ·

∑
j′∈[nmin]: j′ ̸=i

qb(i, j
′)θb(mj |mj′) + o(h) as h ↓ 0
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for any mi, mj ∈ V ∗b with mi ̸= mj .
Moving onto the untruncated process Xη

j (x), Theorem 3.3 establishes a sample-path level conver-
gence of Xη

j (x) by sending b → ∞ in Theorem 3.2. In particular, given any T > 0, there is a high

chance that Xη
j (x) coincides with the truncated dynamics X

η|b
j (x) for all j ≤ T if the truncation

threshold b is large. Therefore, as the truncation threshold b of X
η|b
j (x) tends to ∞ in Theorem 3.2,

we recover the results for Xη
j (x). More precisely, recall the definition of measure Č( · ;x) in (2.15).

For i, j ∈ [nmin] with i ̸= j, let

q(i, j) =∆ Č(Ij ;mi), q(i) =∆
∑

j∈[nmin]: j ̸=i

q(i, j). (3.12)

Recall that H(·) = P(|Z| > ·). Theorem 3.3 shows that, under time scaling 1/H(η−1), the process
Xη

j converges in distribution to a Markov jump process at the sample-path level. The proof is given
in Section B.

Theorem 3.3. Let Assumptions 1, 2, 3, 4, and 6 hold. Let p ∈ [1,∞), i ∈ [nmin], and x ∈ Ii. As
η ↓ 0,

{Xη
⌊t/H(η−1)⌋(x) : t > 0} f.d.d.→ {Y ∗t : t > 0} and Xη

⌊·/H(η−1)⌋(x) ⇒ Y ∗· in (D[0,∞),d[0,∞)

Lp
)

where Y ∗t is a continuous-time Markov chain with a finite state space V , initial value Y ∗0 = mi, and
infinitesimal generator

Q∗(i, j) = q(i, j) ∀mi, mj ∈ V with mi ̸= mj ,

Q∗(i, i) = −
∑

j∈[nmin]: j ̸=i

Q∗(i, j) = −q(i) ∀mi ∈ V.

Finally, we state a direct corollary of Theorem 3.2 that highlights the elimination of sharp minima
under truncated heavy-tailed dynamics. Theorem 3.2 reveals that, under small η, the sample path

of the truncated dynamics X
η|b
j (x) closely resembles that of a Markov jump process that completely

avoids all the narrower attraction fields of the potential U . Corollary 3.4 then further demonstrates

that the fraction of time X
η|b
j (x) spends around sharp minima converges in probability to 0 as η ↓ 0.

This result follows directly from Theorem 3.2 and the continuous mapping argument. In particular,
given any ϵ, T > 0 and mapping

f(ξ) =
1

T

∫ T

0

I

{
ξt ∈

⋃
j: mj∈V ∗b

(mj − ϵ,mj + ϵ)

}
dt,

one can see that f : D[0,∞) → R is continuous at any ξ that, over [0, T ], only takes values in V ∗b and
only makes finitely many jumps.

Corollary 3.4. Let Assumptions 1, 2, 3, 6, and 7 hold. For any i ∈ [nmin], x ∈ Ii, T > 0, and ϵ > 0,

1

⌊T/λ∗b(η)⌋

⌊T/λ∗b (η)⌋∑
t=1

I

{
X

η|b
t (x) ∈

⋃
j: mj∈V ∗b

(mj − ϵ,mj + ϵ)

}
p→ 1 as η ↓ 0

where
p→ stands for convergence in probability.

4 Simulation Experiments

We empirically demonstrate that (a) as indicated by Theorem 2, the minimum jump number defined
in (3.2) accurately characterizes the first exit times of the SGDs with clipped heavy-tailed gradient
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noises; (b) sharp minima can be effectively eliminated from such SGD; and (c) these properties are
exclusive to heavy-tails. Under light-tailed noises, SGDs are trapped in sharp minima for a long time.
The test function f ∈ C2(R) is the same as in Fig. 1.1 (Left,e). m1 and m3 are sharp minima in narrow
attraction fields, whilem2 andm4 are flatter and located in larger attraction fields. Heavy-tailed noises
have tail index α = 1.2, and light-tailed noises are N (0, 1). See Section F for details.

First, we compare the first exit time of heavy-tailed SGD (when initialized at -0.7) from Ω2 =
(−1.3, 0.2) under 3 different clipping mechanism: (1) b = 0.28, where the minimum jump number
required to escape is l∗ = 3; (2) b = 0.5, where l∗ = 2; (3) no gradient clipping, where l∗ = 1
obviously. According to Theorem 2, the first exit times for the aforementioned 3 clipping mechanism
are of order (1/η)1.6, (1/η)1.4 and (1/η)1.2 respectively. These theoretical predictions are accurate as
demonstrated in Figure 1.1 (Right). Next, we investigate the global dynamics of heavy-tailed SGD.
We compared the clipped case (with b = 0.5) against the case without clipping. Figure 1.1 (Left, a, b)
show the histograms of the empirical distributions of SGD, and Figure 1.1(Middle, a,b) plots the SGD
trajectories. Without gradient clipping, Xn still visits the two sharp minima m1,m3. Under gradient
clipping, the time spent at m1,m3 is almost completely eliminated and is negligible compared to the
time Xn spent at m2,m4 in larger attraction fields. This matches the predictions of Theorem 3.2 and
Corollary 3.4, i.e., the elimination of sharp minima with truncated heavy-tailed noises. We stress that
the said properties are exclusive to heavy-tailed SGD. As shown in Figure 1.1(Left,c,d) and Figure
1.1(Middle, c,d), light-tailed SGD are easily trapped at sharp minima for extremely long time.

Figure 4.1 illustrates the same phenomena in R2, where f has several saddle points and infinitely
many local minima—the local minima of Ω2 form a line segment, which is an uncountably infinite
set. Under clipping threshold b, attraction fields Ω1 and Ω2 are the larger ones since the escape from
them requires at least two jumps. This suggests that the theoretical results from Section 3 also hold
for the more general multidimensional settings.
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Figure 4.1: Experiment result of heavy-tailed SGD when optimizing the modified Himmelblau func-
tion. (a) Contour plot of the test function f . (b) Different shades of gray are used to indicate the
area of the four different attraction fields Ω1,Ω2,Ω3,Ω4 of f . We say that a point belongs to an
attraction field Ωi if, when initializing at this point, the gradient descent iterates converge to the local
minima in Ωi, which are indicated by the colored dots. The circles are added to imply whether the
SGD iterates can escape from each Ωi with one large jump or not under clipping threshold b. (c)
The time heavy-tailed SGD spent at different region. An iterate Xk is considered “visiting” Ωi if
its distance to the local minimizer of Ωi is less than 0.5; otherwise we label Xk as “out”. (d) The
transition trajectories of heavy-tailed SGD. The dots represent the last “visited” attraction field at
each iteration.

14



Table 5.1: Test accuracy and expected sharpness of different methods across different tasks. The
reported numbers are the averages over 5 replications. For 95% CI, see Section F.

Test accuracy LB SB SB + Clip SB + Noise Our 1 Our 2
FashionMNIST, LeNet 68.66% 69.20% 68.77% 64.43% 69.47% 70.06%
SVHN, VGG11 82.87% 85.92% 85.95% 38.85% 88.42% 88.37%
CIFAR10, VGG11 69.39% 74.42% 74.38% 40.50% 75.69% 75.87%
Expected Sharpness LB SB SB + Clip SB + Noise Our 1 Our 2
FashionMNIST, LeNet 0.032 0.008 0.009 0.047 0.003 0.002
SVHN, VGG11 0.694 0.037 0.041 0.012 0.002 0.005
CIFAR10, VGG11 2.043 0.050 0.039 2.046 0.024 0.037

5 Deep Learning Experiments: An Ablation Study

In this section, we verify our theoretical results and demonstrate the effectiveness of clipped heavy-
tailed noise in training deep neural networks. Let θ be the current model weight during training,
gSB(θ) be the typical small-batch gradient, and gGD(θ) be the true (deterministic) gradient evaluated
on the entire training dataset. Then by evaluating gSB(θ) − gGD(θ) we obtain a sample of the
gradient noise. Due to the prohibitive cost of evaluating gGD(θ), we instead use gSB(θ) − gLB(θ) as
its approximation where gLB denotes the gradient evaluated on a larger batch. This is justified by the
unbiasedness in ELB [gLB(θ)] = gGD(θ). For some heavy-tailed random variable Z, by multiplying Z
with SGD noise, we obtain the following perturbed gradient:

gheavy(θ) = gSB(θ) + Z
(
gSB∗(θ)− gLB(θ)

)
(5.1)

where SB and SB∗ are two mini batches that may or may not be identical. We use the following
update recursion under gradient clipping threshold b: Xη

k+1 = Xη
k − φb(ηgheavy(X

η
k )) where φb is the

truncation operator. We consider two different implementations: in our method 1 (labeled as “our 1”
in Table 5.1), SB and SB∗ are chosen independently, while in our method 2 (labeled as “our 2” in
Table 5.1), we use the same batch for SB and SB∗. In summary, by simply multiplying gradient noise
with heavy-tailed random variables, we inject heavy-tailed noise into the optimization procedure.

We conduct an ablation study and benchmark the proposed clipped heavy-tailed methods against
the following optimization methods. LB : large-batch SGD with Xη

k+1 = Xη
k − ηgLB(X

η
k ); SB :

small-batch SGD with Xη
k+1 = Xη

k − ηgSB(X
η
k ); SB + Clip: the update recursion is Xη

k+1 =
Xη

k − φb(ηgSB(X
η
k )); SB + Noise: Our method 2 WITHOUT the gradient clipping mechanism,

leading to the update recursion Xη
k+1 = Xη

k − ηgheavy(X
η
k ).

The experiment setting and choice of hyperparameters are adapted from [37]. We consider three
different tasks: (1) LeNet [17] on corrupted FashionMNIST [35], (2) VGG11 [29] on SVHN [21], (3)
VGG11 on CIFAR10 [16] (see Section F for details). Here we highlight a few points: First, within
the same task, for all the 6 candidate methods will use the same η, batch size, training iteration,
and (when needed) the same clipping threshold b and heavy-tailed RV Z for a fair comparison; the
training duration is long enough so that LB and SB have attained 100% training accuracy and close-
to-0 training loss long before the end of training (the exception here is “SB + Noise” method; see
Section F for the details); Second, to facilitate convergence to local minima for our methods 1 and 2,
we remove heavy-tailed noise for last final 5,000 iterations and run LB instead1.

Table 5.1 shows that in all 3 tasks both our method 1 and our method 2 attain better test accuracy
than the other candidate methods. Meanwhile, both methods exhibit similar test performance, im-
plying that the implementation of the heavy-tailed method may not be a the deciding factor. We also

1The proposed method can be interpreted as a simplified version of GD + annealed heavy-tailed perturbation,
where a detailed annealing is substituted by a two-phase training schedule. In the first exploration phase the clipped
heavy-tailed noises drive the iterates to explore the loss landscape and identify “wide” attraction fields. In the second
exploitation phase, removing the artificial perturbation accelerates convergence to local minima.
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Table 5.2: Our method’s gain on test accuracy persists even when applied with techniques such as
data augmentation and scheduled learning rates. For 95% CI, see Section F.

CIFAR10-VGG11 Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Average
SB+Clip 89.40% 89.41% 89.89% 89.52% 89.47% 89.54%
Our 1 90.76% 90.57% 90.49% 90.85% 90.79% 90.67%
Our 2 90.67% 90.23% 90.52% 90.13% 90.70% 90.45%
CIFAR100-VGG16 Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Average
SB+Clip 55.76% 56.8% 56.38% 56.35% 56.32% 56.32%
Our 1 67.43% 65.12% 65.14% 65.96% 63.57% 65.44%
Our 2 67.19% 61.17% 60.97% 64.75% 60.90% 62.99%

report the expected sharpness metric Eν∼N (0,δ2I)|L(θ∗ + ν)− L(θ∗)| used in [37, 22] where N (0, δ2I)
is a Gaussian distribution, θ∗ is the trained model weight and L is training loss. In our experiment,
we use δ = 0.01 and the expectation is evaluated by averaging over 100 samples. We conduct 5
replications for each experiment scenario and report the averaged performance in Table 5.1. Smaller
sharpness of our methods 1 and 2 confirms that they encourage minimizers with a “flatter” geometry,
thus attaining better test performances.

The ablation study in Table 5.1 shows that both heavy-tailed noise and gradient clipping are
necessary to find a flat minima and hence achieve better generalization, which is predicted by our
analyses. SB and SB + Clip achieve similar inferior performances, confirming that clipping does not
help when noise is light-tailed. SB + Noise injects heavy-tailed noise without gradient clipping, which
achieves an inferior performance. This poor performance—even after extensive parameter tuning and
engineering (see Section F for more details)—demonstrates the difficulty on the optimization front,
especially when heavy-tailed noise is present yet little effort is put into controlling the highly volatile
gradient noises. This is aligned with the observations in [36, 5] where adaptive gradient clipping
methods are proposed to improve convergence of SGD in the presence of heavy-tailed noises. This
confirms that gradient clipping is crucial for heavy-tailed SGD.

Lastly, Table 5.2 shows that even in the more sophisticated settings with training techniques such
as data augmentations and scheduled learning rates, truncated heavy-tailed SGD still manages to
consistently find solutions with better test performance. For experiment details, see Section F. In
Table F.5 we also report the sharpness of the obtained solutions.
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The appendices are structured as follows. Section A develops a theoretical framework for estab-
lishing the sample path convergence of jump processes. Applying this framework, in Sections B–D we
provide the proof of Theorems 3.2 and 3.3. The proof utilizes several results established in [34], which
are collected in Section E. Section F provides the details of the simulation experiments in Section 4
and the deep learning experiments in Section 5.

A Technical Lemmas for Theorem 3.2

Let Y η
· and Y ∗· be random elements in D[0,∞), i.e., R-valued càdlàg processes. We start by discussing

a few properties of the weak convergence in (D[0,∞),d[0,∞)

Lp
). In particular, a similar mode of conver-

gence in (D[0, T ],d[0,T ]

Lp
) can be defined analogously for any T ∈ (0,∞). Recall the projection mapping

πT defined in (3.6). We say that Y η
· ⇒ Y ∗· in (D[0, T ],d[0,T ]

Lp
) if

lim
η↓0

Ef
(
πT (S

η
· )
)
= Ef

(
πT (S

∗
· )
)

∀f : D[0, T ] → R continuous and bounded;

see (3.5) for the definition of d[0,T ]

Lp
. More precisely, the Lp norm d[0,T ]

Lp
induces a metric over a

quotient space D[0, T ]/N . In particular, since we are dealing with the càdlàg space D[0, T ], we set
N = {ξ ∈ D[0, T ] : ξt ≡ 0 ∀t ∈ [0, T )}, which is the set containing all paths in D[0, T ] that is constant
zero except for the endpoint.

First, Lemma A.1 shows that the convergence in (D[0,∞),d[0,∞)

Lp
) follows from the convergence in

(D[0, T ],d[0,T ]

Lp
).

Lemma A.1. Let p ∈ [1,∞). If Y η
· ⇒ Y ∗· in (D[0, T ],d[0,T ]

Lp
) as η ↓ 0 for any positive integer T , then

Y η
· ⇒ Y ∗· in (D[0,∞),d[0,∞)

Lp
) as η ↓ 0.

Proof. By Portmanteau Theorem, it suffices to show that limη↓0 Ef(Y η
· ) = Ef(Y ∗· ) holds for any

f : D[0,∞) → R that is bounded and uniformly continuous. To proceed, we arbitrarily pick one
such f and some ϵ > 0. By virtue of the uniform continuity of f , there exists some δ > 0 such
that |f(x) − f(y)| < ϵ whenever d[0,∞)

Lp
(x, y) < δ. By definition of d[0,∞)

Lp
in (3.7), we must have

d[0,∞)

Lp
(x, y) < 1/2⌊T⌋−1 if xt = yt for all t ∈ [0, T ). Now, we fix some positive integer T large enough

such that 1/2T−1 < δ. Define π̃T : D[0,∞) → D[0,∞) by

π̃T (ξ)t =
∆

{
ξt if t ∈ [0, T )

0 if t ≥ T

and set f̃T (ξ) =∆ f
(
π̃T (ξ)

)
. We now have d[0,∞)

Lp

(
ξ, π̃T (ξ)

)
< δ and hence |f(ξ) − f̃T (ξ)| < ϵ for any

ξ ∈ D[0,∞). As a result,

lim sup
η↓0

|Ef(Y η
· )−Ef̃T (Y

η
· )| < ϵ, |Ef(Y ∗· )−Ef̃T (Y

∗
· )| < ϵ. (A.1)

Furthermore, let π†T : D[0, T ] → D[0,∞) be defined as

π†(ξ′)t =
∆

{
ξ′t if t ∈ [0, T )

0 if t ≥ T
,

which, at an intuitive level, is interpreted as a “pseudo inverse” of the projection mapping πT defined
in (3.6). Also, define functional fT : D[0, T ] → R by fT (·) =∆ f

(
π†T (·)

)
. It is easy to see that (i) fT is

continuous due to the continuity of f and π†T , and (ii) for any ξ ∈ D[0,∞), we have f̃T (ξ) = fT
(
πT (ξ)

)
.

Due to the assumption Y η
· ⇒ Y ∗· in (D[0, T ],d[0,T ]

Lp
), we now yield

lim
η↓0

|Ef̃T (Y
η
· )−Ef̃T (Y

∗
· )| = 0. (A.2)

19



Combining (A.1) and (A.2), we get lim supη↓0 |Ef(Y η
· ) − Ef(Y ∗· )| < 2ϵ. Driving ϵ → 0, we conclude

the proof.

Lemma A.2 then provides a Prohorov-type argument where weak convergence in (D[0, T ],d[0,T ]

Lp
) can

be established using the convergence in f.d.d. and a tightness condition. The proof is a straightforward
adaptation of its J1 counterparts. For the sake of clarity, the next proof will, w.l.o.g., focus on the
case where T = 1, but we stress that the arguments can be easily extended to D[0, T ] with arbitrary
T ∈ (0,∞). Recall that we write D = D[0, 1].

Lemma A.2. Let T ∈ (0,∞), p ∈ [1,∞), and T be a dense subset of (0, T ). Suppose that the laws
of Y ηn

· are tight in (D[0, T ],d[0,T ]

Lp
) for any sequence ηn > 0 with limn ηn = 0, and

(Y η
t1 , · · · , Y

η
tk
) ⇒ (Y ∗t1 , · · · , Y

∗
tk
) as η ↓ 0 ∀k = 1, 2, · · · , ∀(t1, · · · , tk) ∈ T k↑. (A.3)

Then Y η
· ⇒ Y ∗· in (D[0, T ],d[0,T ]

Lp
) as η ↓ 0.

Proof. The arguments below are adapted from the standard proofs in [1] for J1 topology. For any
0 ≤ t1 < t2 < · · · < tk ≤ 1, let π(t1,··· ,tk) : D → Rk be the projection mapping, i.e., π(t1,··· ,tk)(ξ) =

(ξt1 , ξt2 , · · · , ξtk). Let Rk be the Borel σ-algebra for Rk. Let p[πt : t ∈ T ] be the collection of all sets
of form π−1(t1,··· ,tk)H, where k ≥ 1, H ∈ Rk, and t1 < · · · < tk with ti ∈ T for each i ∈ [k]. It suffices

to show that (recall that dLp
= d[0,1]

Lp
and let Dp be the Borel σ-algebra of (D,dLp

))

p[πt : t ∈ T ] is a separating class for (D,dLp
). (A.4)

In other words, any two Borel probability measures µ and ν over (D,dLp
) would coincide (i.e., µ(A) =

ν(A) ∀A ∈ Dp) if µ(A) = ν(A) ∀A ∈ p[πt : t ∈ T ]. To see why claim (A.4) is a sufficient condition,
note that the tightness condition in Lemma A.2 implies that the sequence Y ηn

· has a converging sub-
sequence, while the claim (A.4) and assumption (A.3) dictate that the limiting distribution must be
that of Y ∗· .

The remainder of this proof is devoted to establishing claim (A.4). First, we show that the
projection mapping of form π(t1,··· ,tk) : D → Rk is Dp/Rk measurable when 0 ≤ t1 < · · · < tk < 1,
which immediately confirms that p[πt : t ∈ T ] ⊆ Dp. To do so, it suffices to prove that π(t) is

measurable for any given t ∈ [0, 1). Define hϵ(x) : D → R by hϵ(x) = ϵ−1
∫ t+ϵ

t
xsds. W.l.o.g. we only

consider ϵ small enough such that t+ ϵ ≤ 1. For any x, y ∈ D and ∆ ∈ (0, 1),

|hϵ(x)− hϵ(y)| ≤ ϵ−1
∫ t+ϵ

t

|xs − ys|ds

= ϵ−1
∫ t+ϵ

t

|xs − ys|I{|xs − ys| > ∆}ds+ ϵ−1
∫ t+ϵ

t

|xs − ys|I{|xs − ys| ≤ ∆}ds

≤ ϵ−1
∫ t+ϵ

t

|xs − ys|p

|∆|p
ds+∆.

Therefore, for any sequence y(n) ∈ D such that dLp
(y(n), x) → 0, we have lim supn→∞ |hϵ(x) −

hϵ(y
(n))| ≤ ∆. Driving ∆ ↓ 0, we see that hϵ(·) is a continuous mapping. On the other hand, the

right continuity of all paths in D implies that hϵ(x) → π(t)(x) as ϵ → 0 for all x ∈ D. As a result, the
limiting mapping π(t) must be Dp/R measurable.

Let σ[πt : t ∈ T ] be the σ-algebra generated by p[πt : t ∈ T ]. Note that we have verified
p[πt : t ∈ T ] ⊆ Dp, which implies σ[πt : t ∈ T ] ⊆ Dp since Dp is also a σ-algebra. Furthermore,
suppose that we can show

σ[πt : t ∈ T ] ⊇ Dp (and hence σ[πt : t ∈ T ] = Dp), (A.5)
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then we can confirm claim (A.4) using π−λ Theorem. Indeed, for any Borel probability measures µ and
ν over (D,dLp

), note that L =∆ {A ∈ Dp : µ(A) = ν(A)} is a λ-system. Whenever p[πt : t ∈ T ] ⊆ L,
by applying π − λ Theorem we then get σ[πt : t ∈ T ] = Dp ⊆ L. This concludes that p[πt : t ∈ T ] is
a separating class.

Now, it only remains to prove claim (A.5). Since T is a dense subset of (0, T ), for each m ≥ 1
we can pick some positive integer k and some 0 < s1 < · · · < sk < 1, with si ∈ T , such that
maxi∈[k+1] |si+1 − si| < m−1, under the convention that s0 = 0 and sk+1 = 1. Now, construct a

mapping Vm : Rk → D as follows: for each α = (α1, · · · , αk) ∈ Rk, define ξ = Vm(α) by setting
ξt = αi if t ∈ [si, si+1) for each i ∈ [k + 1] (with the convention that α0 = 0) and ξ1 = αk. It
is easy to see that Vm is continuous, and hence Rk/Dp measurable. Besides, we have shown that
π(t1,··· ,tk) is σ[πt : t ∈ T ]/Rk measurable. As a result, the composition V ∗m =∆ Vmπs1,··· ,sk : D → D is
σ[πt : t ∈ T ]/Dp measurable.

To proceed, fix some ϵ > 0. For any x ∈ D, define x′ ∈ D such that x′t = xt for all t ∈ [ϵ, 1 − ϵ)
and x′t = 0 otherwise. The boundedness of any path in D implies the existence of some Mx ∈ (0,∞)
such that supt |xt| ≤ Mx. Next, note that

dLp
(V ∗mx, x) ≤ dLp

(V ∗mx′, x′)︸ ︷︷ ︸
(I)

+dLp
(V ∗mx′, V ∗mx)︸ ︷︷ ︸

(II)

+dLp
(x′, x)︸ ︷︷ ︸
(III)

.

First, it was shown in Theorem 12.5 of [1] that limm→∞ dJ1
(V ∗mx′, x′) = 0. This immediately implies

that limm→∞ dLp
(V ∗mx′, x′) = 0. Next, by definition of x′, we have lim supm→∞

[
(II)

]p ≤ (2Mx)
p · 2ϵ

and lim supm→∞
[
(III)

]p ≤ (2Mx)
p · 2ϵ. Driving ϵ ↓ 0, we obtain that limm→∞ dLp

(V ∗mx, x) = 0 for

all x ∈ D. This implies that the identity mapping I(ξ) = ξ is also σ[πt : t ∈ T ]/Dp measurable, which
leads to Dp ⊆ σ[πt : t ∈ T ] and concludes the proof.

Moreover, consider a family of R-valued càdlàg processes Ŷ η,ϵ
t , supported on the same underlying

probability space with process Y η
t , that satisfies the following condition.

Condition 1. For any T ∈ (0,∞) and p ∈ [1,∞), the following claims hold for all ϵ > 0 small
enough:

(i) {Ŷ η,ϵ
t : t > 0} f.d.d.→ {Y ∗t : t > 0} and Ŷ η,ϵ

· ⇒ Y ∗· in (D[0, T ],d[0,T ]

Lp
) as η ↓ 0;

(ii) limη→0 P(|Ŷ η,ϵ
T − Y η

T | ≥ ϵ) = 0 and limη↓0 P
(
d[0,T ]

Lp

(
Ŷ η,ϵ
· , Y η

· ) ≥ 2ϵ
)
= 0.

As the first component of our framework, Lemma A.3 shows that, under Condition 1, both Y η
t

and Ŷ η,ϵ
t admit the same limit Y ∗t .

Lemma A.3. If Condition 1 holds, then {Y η
t : t > 0} f.d.d.→ {Y ∗t : t > 0} and, for any T > 0,

Y η
· ⇒ Y ∗· in (D[0, T ],d[0,T ]

Lp
) as η ↓ 0.

Proof. We start with the Lp convergence. By Portmanteau Theorem, it suffices to show that lim infη↓0 P(Y η
· ∈

G) ≥ P(Y ∗· ∈ G) for any open set G in the Lp topology of D[0, T ]. Next, (recall that Gϵ is the ϵ-
shrinkage of G, and Gϵ is also an open set)

P(Y η
· ∈ G) ≥ P(Y η

· ∈ G, d[0,T ]

Lp
(Ŷ η,ϵ

· , Y η
· ) < 2ϵ) ≥ P(Ŷ η,ϵ

· ∈ G2ϵ, d[0,T ]

Lp
(Ŷ η,ϵ

· , Y η
· ) < 2ϵ)

≥ P(Ŷ η,ϵ
· ∈ G2ϵ)−P(d[0,T ]

Lp
(Ŷ η,ϵ

· , Y η
· ) ≥ 2ϵ).

For small enough ϵ > 0, using part (i) of Condition 1 we get lim infη↓0 P(Ŷ η,ϵ
· ∈ G2ϵ) ≥ P(Y ∗· ∈

G2ϵ), and by part (ii) of Condition 1 we have limη↓0 P(d[0,T ]

Lp
(Ŷ η,ϵ

· , Y η
· ) ≥ 2ϵ) = 0. Therefore,

lim infη↓0 P(Y η
· ∈ G) ≥ P(Y ∗· ∈ G2ϵ). Driving ϵ ↓ 0, we conclude the proof for the Lp convergence.

The proof for the f.d.d. convergence is almost identical and hence we omit the details.
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In light of Lemma A.3, a natural approach to Theorem 3.2 is to identify some Ŷ η,ϵ
t that converges to

Y
∗|b
t while staying close enough to X

η|b
⌊t/λ∗b (η)⌋

(x). To this end, we introduce the next key component of

our framework, i.e., a technical tool for establishing the weak convergence of jump processes. Inspired
by the approach in [10], Lemma A.5 shows that the convergence of jump processes can be established
by verifying the convergence of the inter-arrival times and destinations of jumps. Specifically, we
introduce the following mapping Φ for constructing jump processes.

Definition A.4. Let random variables ((Uj)j≥1, (Vj)j≥1) be such that Vj ∈ R ∀j ≥ 1 and

Uj ∈ [0,∞) ∀j ≥ 1, lim
i→∞

P
( i∑

j=1

Uj > t
)
= 1 ∀t > 0. (A.6)

Let mapping Φ(·) be defined as follows: the image Y· = Φ
(
(Uj)j≥1, (Vj)j≥1

)
is a stochastic process

taking values in R such that (under the convention V0 ≡ 0)

Yt = VJ (t) ∀t ≥ 0 where J (t) =∆ max{J ≥ 0 :
J∑

j=1

Uj ≤ t}. (A.7)

Remark 2. We add two remarks regarding Definition A.4. First, (Uj)j≥1 and (Vj)j≥1 can be viewed
as the inter-arrival times and destinations of jumps in Yt, respectively. It is worth noticing that
we allow for instantaneous jumps, i.e., Uj = 0. Nevertheless, the condition limi→∞P(

∑i
j=1 Uj >

t) = 1 ∀t > 0 prevents the concentration of infinitely many instantaneous jumps before any finite
time t ∈ (0,∞), thus ensuring that the process Yt = VJ (t) is almost surely well defined. In case
that Uj > 0 ∀j ≥ 1, the process Yt admits a more standard expression and satisfies Yt = Vi for

all t ∈ [
∑i

j=1 Uj ,
∑i+1

j=1 Uj). Second, to account for the scenario where the process Yt stays constant
after a (possibly random) timestamp T , one can introduce dummy jumps that keep landing at the
same location. For instance, suppose that after hitting w ∈ R the process Yt is absorbed at w, then a
representation compatible with Definition A.4 is that, conditioning on Vj = w, we set Uk as iid Exp(1)
RVs and Vk ≡ w for all k ≥ j + 1.

As mentioned above, Lemma A.5 states that the convergence of jump processes in f.d.d. follows
from the convergence in distributions of the inter-arrival times and destinations of jumps.

Lemma A.5. Let mapping Φ be specified as in Definition A.4. Let Y· = Φ
(
(Uj)j≥1, (Vj)j≥1

)
and, for

each n ≥ 1, Y n
· = Φ

(
(Un

j )j≥1, (V
n
j )j≥1

)
. Suppose that

• (Un
1 , V

n
1 , Un

2 , V
n
2 , · · · ) converges in distribution to (U1, V1, U2, V2, · · · ) as n → ∞;

• For any u > 0 and any j ≥ 1, P(U1 + · · ·+ Uj = u) = 0;

• For any u > 0, limj→∞P(U1 + U2 + · · ·Uj > u) = 1.

Then {Y n
t : t > 0} f.d.d.→ {Y ∗t : t > 0} as n → ∞.

Proof. Fix some k ∈ N and 0 < t1 < t2 < · · · < tk < ∞. Set t = tk. Pick some ϵ > 0. By assumption,

one can find some J(ϵ) > 0 such that P(
∑J(ϵ)

j=1 Uj ≤ t) < ϵ, and hence P(
∑J(ϵ)

j=1 U
n
j ≤ t) < ϵ for all n

large enough. Also, we can fix ∆(ϵ) > 0 such thatP
(∑j

i=1 Ui ∈
⋃

l∈[k][tl−∆(ϵ), tl+∆(ϵ)] for some j ≤

J(ϵ)
)
< ϵ. Throughout the proof, we may abuse the notation slightly and write J = J(ϵ) and ∆ = ∆(ϵ)

when there is no ambiguity.
For any probability measure µ, let Lµ(X) be the law of the random element X under µ. Applying

Skorokhod’s representation theorem, we can construct a probability space (Ω̃, F̃ ,Q) that supports ran-

dom variables (Ũn
1 , Ṽ

n
1 , Ũn

2 , Ṽ
n
2 · · · )n≥1 and (Ũ1, Ṽ1, Ũ2, Ṽ2, · · · ) such that (i) LP(U

n
1 , V

n
1 , Un

2 , V
n
2 , · · · ) =
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LQ(Ũn
1 , Ṽ

n
1 , Ũn

2 , Ṽ
n
2 · · · ) for all n ≥ 1, (ii) LP(U1, V1, U2, V2, · · · ) = LQ(Ũ1, Ṽ1, Ũ2, Ṽ2, · · · ), and (iii)

Ũn
j

Q−a.s.−−−−−→ Ũj and Ṽ n
j

Q−a.s.−−−−−→ Ṽj as n → ∞ for all j ≥ 1. This allows us to construct a coupling

between processes Yt and Y n
t on (Ω̃, F̃ ,Q) by setting Y = Φ

(
(Ũj)j≥1, (Ṽj)j≥1

)
and (for each n ≥ 1)

Y n = Φ
(
(Ũn

j )j≥1, (Ṽ
n
j )j≥1

)
. Next, for each i ∈ [k], we define

I←i (∆) = max{j ≥ 0 : Ũ1 + · · · Ũj ≤ ti −∆}, I→i (∆) = min{j ≥ 0 : Ũ1 + · · · Ũj ≥ ti +∆}.

That is, I←i (∆) is the index of the last jump in Ys before time ti −∆, and I→i (∆) is the index of the
first jump after time ti +∆. Recall that we have fixed 0 < t1 < · · · < tk = t < ∞. On event

An =
{ j∑

i=1

Ũi /∈
⋃
l∈[k]

[tl −∆, tl +∆] ∀j ≤ J
}
∩
{ J∑

j=1

Ũj > t,

J∑
j=1

Ũn
j > t

}
,

we have I→i (∆) = I←i (∆) + 1 ≤ J for all i ∈ [k]. Then, on An it holds Q-a.s. that (for all i ∈ [k])

lim
n→∞

I←i (∆)∑
j=1

Ũn
j =

I←i (∆)∑
j=1

Ũj ≤ ti −∆, lim
n→∞

I←i (∆)+1∑
j=1

Ũn
j =

I←i (∆)+1∑
j=1

Ũj ≥ ti +∆,

As a result, on An it holds for all n large enough that
∑I←i (∆)

j=1 Ũn
j < ti and

∑I←i (∆)+1
j=1 Ũn

j > ti for

all i ∈ [k], implying that Y n
ti = ṼI←i (∆) ∀i ∈ [k]. Furthermore, due to Ṽ n

j → Ṽj Q-a.s. for all j ≤ J ,

it holds Q-a.s. that limn→∞ |Ṽ n
I←i (∆) − ṼI←i (∆)| ≤ limn→∞maxj≤J |Ṽ n

j − Ṽj | = 0. Therefore, on An

it holds Q-a.s. that limn→∞ Y n
ti = limn→∞ Ṽ n

I←i (∆) = ṼI←i (∆) = Yti for all i ∈ [k]. Then, for any

g : Rk → R that is bounded and continuous, note that (let Y n = (Y n
t1 , · · · , Y

n
tk
), Y = (Yt1 , · · · , Ytk),

and ∥g∥ = supy∈Rk |g(y)|)

lim sup
n→∞

∣∣∣Eg(Y n)−Eg(Y )
∣∣∣ ≤ lim sup

n→∞
EQ

∣∣∣g(Y n)− g(Y )
∣∣∣

= lim sup
n→∞

EQ

∣∣∣g(Y n)− g(Y )
∣∣∣IAn + lim sup

n→∞
EQ

∣∣∣g(Y n)− g(Y )
∣∣∣I(An)c

≤ 0 + 2 ∥g∥ lim sup
n→∞

Q
(
(An)

c
)

due to Y n Q−a.s.−−−−−→ Y on An

≤ 2 ∥g∥ ·
(
lim sup
n→∞

Q(

J∑
i=1

Ũj ≤ t) + lim sup
n→∞

Q(

J∑
i=1

Ũn
j ≤ t)

+ lim sup
n→∞

Q
( j∑

i=1

Ũi ∈
⋃
l∈[k]

[tl −∆, tl +∆] for some j ≤ J
))

≤ 6 ∥g∥ · ϵ.

The last inequality follows from our choice of J = J(ϵ) and ∆ = ∆(ϵ) at the beginning. From the
arbitrariness of the mapping g and ϵ > 0, we conclude the proof using Portmanteau theorem.

B Proof of Theorems 3.2 and 3.3

In this section, we apply the framework developed in Section A and prove Theorems 3.2 and 3.3. In
particular, the verification of part (i) of Condition 1 hinges on the chioce of the approximator Ŷ η,ϵ

t .

Here, we construct a process X̂
η,ϵ|b
t (x) as follows. Let τ̂

η,ϵ|b
0 (x) ≜ 0,

τ̂
η,ϵ|b
1 (x) =∆ min

{
j ≥ 0 : X

η|b
j (x) ∈

⋃
i∈[nmin]

(mi − ϵ,mi + ϵ)
}
, (B.1)
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and

Îη,ϵ|b
1 (x) ≜ i ⇐⇒ X

η|b
τ̂
η,ϵ|b
1 (x)

(x) ∈ Ii. (B.2)

For k ≥ 2,

τ̂
η,ϵ|b
k (x) =∆ min

{
j ≥ τ̂

η,ϵ|b
k−1 (x) : X

η|b
j (x) ∈

⋃
i̸=Îη,ϵ|b

k−1 (x)

(mi − ϵ,mi + ϵ)
}

∀k ≥ 2. (B.3)

and

Îη,ϵ|b
k (x) ≜ i ⇐⇒ X

η|b
τ̂
η,ϵ|b
k (x)

(x) ∈ Ii. (B.4)

Essentially, τ̂
η,ϵ|b
k (x) records the k-th time X

η|b
j (x) visits (the ϵ-neighborhood of) a local minimum

and Îη,ϵ|b
k (x) denotes the index of the visited local minimum. Let

X̂
η,ϵ|b
· (x) =∆ Φ

(((
τ̂
η,ϵ|b
k (x)− τ̂

η,ϵ|b
k−1 (x)

)
· λ∗b(η)

)
k≥1

,
(
mÎη,ϵ|b

k (x)

)
k≥1

)
.

By definition, X̂
η,ϵ|b
t (x) keeps track of how X

η|b
j (x) traverses the potential U and makes transitions

between the different local minima, under a time scaling of λ∗b(η).

Using Lemma A.5, the convergence of X̂
η,ϵ|b
· (x) follows directly from the convergence of τ̂

η,ϵ|b
k (x)− τ̂

η,ϵ|b
k−1 (x)

and mÎη,ϵ|b
k (x)

, i.e., the inter-arrival times and destinations of the transitions in X
η|b
j (x) between dif-

ferent local minima over the potential U . This is exactly the content of the first exit time analysis.
In particular, based on a straightforward adaptation of the first exit time analysis in Section 2.2 to
the current setup, we obtain Proposition B.1.

Proposition B.1. Let Assumptions 1, 2, 3, 6, and 7 hold. Let i ∈ [nmin] and x ∈ Ii. For any ϵ > 0
small enough, the following claims hold.

(i) {X̂η,ϵ|b
t (x) : t > 0} f.d.d.→ {Y ∗|bt : t > 0} as η ↓ 0;

(ii) Given any T ∈ (0,∞), p ∈ [1,∞), and any sequence of strictly positive reals ηn’s such that

limn→∞ ηn = 0, the laws of X̂
ηn,ϵ|b
· are tight in (D[0, T ],d[0,T ]

Lp
).

Proposition B.2 then verifies part (ii) of Condition 1 in Lemma A.3, under the choice of Y η
t =

X
η|b
⌊t/λ∗b (η)⌋

(x) and Ŷ η,ϵ
t = X̂

η,ϵ|b
t (x). We give the proof in Section C.

Proposition B.2. Let Assumptions 1, 2, 3, 6, and 7 hold. Let x ∈
⋃

i∈[nmin]
Ii. Given any T > 0

and p ∈ [1,∞), it holds for all ϵ > 0 small enough that

lim
η↓0

P

(
d[0,T ]

Lp

(
X

η|b
⌊·/λ∗b (η)⌋

(x), X̂
η,ϵ|b
· (x)

)
≥ 2ϵ

)
= 0, lim

η↓0
P
(∣∣∣Xη|b

T (x)− X̂
η,ϵ|b
T (x)

∣∣∣ ≥ ϵ
)
= 0.

Now, we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. Fix some i ∈ [nmin] and x ∈ Ii. From Lemma A.2 and Proposition B.1, we
verify part (i) of Condition 1, i.e., given any T > 0, the claim

{X̂η,ϵ|b
t (x) : t > 0} f.d.d.→ {Y ∗|bt : t > 0} and X̂

η,ϵ|b
· (x) ⇒ Y

∗|b
· in (D[0, T ],d[0,T ]

Lp
) as η ↓ 0
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holds for all ϵ > 0 small enough. Meanwhile, given any T ∈ (0,∞) and p ∈ [1,∞), Proposition

B.2 verifies part (ii) of Condition 1 under the choice of Y η
t = X

η|b
⌊t/λ∗b (η)⌋

(x), Ŷ η,ϵ
t = X̂

η,ϵ|b
t (x), and

Y ∗t = Y
∗|b
t . Applying Lemma A.3, we obtain that (for any T ∈ (0,∞) and p ∈ [1,∞))

{Xη|b
⌊t/λ∗b (η)⌋

(x) : t > 0} f.d.d.→ {Y ∗|bt : t > 0} and X
η|b
⌊·/λ∗b (η)⌋

(x) ⇒ Y
∗|b
· in (D[0, T ],d[0,T ]

Lp
)

as η ↓ 0. This allows us to conclude the proof using Lemma A.1.

To conclude, Theorem 3.3 follows almost immediately from Theorem 3.2.

Proof of Theorem 3.3. For any b > maxi∈[nmin], j∈[nmin−1] |mi − sj |, by definitions in (3.2) we have
J ∗b (i, j) = J ∗b (i) = 1 for all i ∈ [nmin] and j ∈ [nmin − 1]. Therefore, for such b > 0 large enough, we
also have λ∗b(η) = η · λ(η) = H(η−1). Henceforth in this proof, we only consider such large b.

Pick some closed set A ⊆ D[0, T ] (w.r.t. Lp topology), and observe that

P
(
Xη
⌊·/H(η−1)⌋(x) ∈ A

)
= P

(
Xη
⌊·/H(η−1)⌋(x) ∈ A; X

η|b
j (x) = Xη

j (x) ∀j ≤ ⌊T/H(η−1)⌋
)

(B.5)

+P
(
Xη
⌊·/H(η−1)⌋(x) ∈ A; X

η|b
j (x) ̸= Xη

j (x) for some j ≤ ⌊T/H(η−1)⌋
)

≤ P
(
X

η|b
⌊·/H(η−1)⌋(x) ∈ A

)
︸ ︷︷ ︸

(I)

+P
(
X

η|b
j (x) ̸= Xη

j (x) for some j ≤ ⌊T/H(η−1)⌋
)

︸ ︷︷ ︸
(II)

.

For term (I), it follows from Theorem 3.2 that lim supη↓0 (I) ≤ P
(
Y
∗|b
· (mi) ∈ A

)
. For term (II),

we make two observations. First, recall that C ∈ [1,∞) is the constant in Assumption 4 such that
supx∈R |a(x)| ∨ σ(x) ≤ C. Under any η ∈ (0, b

2C ), on the event {η|Zj | ≤ b
2C ∀j ≤ ⌊T/H(η−1)⌋}

the step-size (before truncation) ηa
(
X

η|b
j−1(x)

)
+ ησ

(
X

η|b
j−1(x)

)
Zj of X

η|b
j is less than b for each j ≤

⌊T/H(η−1)⌋. Therefore, Xη|b
j (x) and Xη

j (x) coincide for such j’s. In other words, for any η ∈ (0, b
2C ),

we have {η|Zj | ≤ b
2C ∀j ≤ ⌊T/H(η−1)⌋} ⊆ {Xη|b

j (x) = Xη
j (x) ∀j ≤ ⌊T/H(η−1)⌋}. which leads to

(recall that H(·) = P(|Z1| > ·))

lim sup
η↓0

(II) ≤ lim sup
η↓0

P

(
∃j ≤ ⌊T/H(η−1)⌋ s.t. η|Zj | >

b

2C

)
≤ lim sup

η↓0

T

H(η−1)
·H(η−1 · b

2C
) = T ·

(
2C

b

)α

due to H(x) ∈ RV−α(x).

In summary, lim supη↓0 P
(
Xη
⌊·/H(η−1)⌋(x) ∈ A

)
≤ P

(
Y
∗|b
· (mi) ∈ A

)
+ T ·

(
2C
b

)α

. Furthermore, note

that for all b large enough, we have qb(i, j) = q(i, j) for all i, j ∈ [nmin] with i ̸= j. To see why, we fix
some i, j ∈ [nmin] with i ̸= j. For all b large enough, we have J ∗b (i, j) = 1, and hence (see (3.10) and
(3.12) for definitions of qb(i, j) and q(i, j))

q(i, j) = να

({
w ∈ R : mi + σ(mi) · w ∈ Ij

})
, qb(i, j) = να

({
w ∈ R : mi + φb

(
σ(mi) · w

)
∈ Ij

})
.

Suppose that Ij has bounded support (i.e., j = 2, 3, · · · , nmin − 1 so that Ij is not the leftmost or
the rightmost attraction field), then it holds for all b large enough that mi − b /∈ Ij and mi + b /∈ Ij .
Under such large b, for mi + φb

(
σ(mi) · w

)
∈ Ij to hold we must have |σ(mi) · w| < b, thus implying

mi + φb

(
σ(mi) · w

)
= mi + σ(mi) · w and hence qb(i, j) = q(i, j). Next, consider the case where

j = 1 so Ij = I1 = (−∞, s1) is the leftmost attraction field. For any b large enough we must have
mi−z ∈ (−∞, s1) = I1 for all z ≥ b. This also impliesmi+φb

(
σ(mi)·w

)
∈ I1 ⇐⇒ mi+σ(mi)·w ∈ I1.

The same argument can be applied to the case with j = nmin (that is, Ij = (snmin−1,∞) is the
rightmost attraction field).
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Now that we know qb(i, j) = q(i, j) for all b large enough, the claim Y
∗|b
t (mi) = Y ∗t (mi) ∀t ≥ 0

must hold for all b large enough as both CTMCs have the same infinitesimal generator. Therefore,

limb→∞P
(
Y
∗|b
· (mi) ∈ A

)
= P

(
Y ∗· (mi) ∈ A

)
. Together with the fact that limb→∞

(
2C
b

)α
= 0, in (B.5)

we obtain lim supη↓0 P
(
Xη
⌊·/H(η−1)⌋(x) ∈ A

)
≤ P

(
Y ∗· (mi) ∈ A

)
. From the arbitrariness of the closed

set A, we conclude the proof with Portmanteau theorem.

C Proof of Propositions B.1 and B.2

This section is devoted to proving Propositions B.1 and B.2. Henceforth in Section C, we fix some
b ∈ (0,∞) be such that Assumption 7 holds. In particular,

|sj −mi|/b /∈ Z ∀i ∈ [nmin], j ∈ [nmin − 1]. (C.1)

This allows us to fix some ϵ̄ ∈ (0, 1 ∧ b) such that

li >
(
J ∗b (i)− 1)b+ 3ϵ̄ and [mi − ϵ̄,mi + ϵ̄] ⊆ [si−1 + ϵ̄, si − ϵ̄] ∀i ∈ [nmin] (C.2)

with li and J ∗b (i) defined in (3.1) and (3.2), respectively. In other words, we fix some ϵ̄ small enough
such that, even with ϵ̄-shrinkage, the number of jumps required to exit from (ϵ-shrunken) Ii remains
J ∗b (i).

We start by highlighting a few properties of the limiting Markov jump process Y ∗|b in Theorem
3.2, using results for the measure Č(k)|b collected in Section E. Recall the definitions of qb(i) and
qb(i, j) in (3.10). First, by definition,

qb(i) =
∑

j∈[nmin]: j ̸=i

qb(i, j) +
∑

j∈[nmin−1]

Č(J ∗b (i))|b({sj};mi).

From (C.2), we have |sj − mi| > (J ∗b (i) − 1) · b + ϵ̄. Then, by applying Lemma E.1, we get∑
j∈[nmin−1] Č

(J ∗b (i))|b({sj};mi) = 0. Together with Lemma E.2, we yield that∑
j∈[nmin]: j ̸=i

qb(i, j) = qb(i) ∈ (0,∞). (C.3)

Furthermore, Lemma E.3 verifies that

qb(i, j) > 0 ⇐⇒ J ∗b (i, j) = J ∗b (i). (C.4)

As a result, in Definition 3.1 we know that the typical transition graph associated with threshold b
contains an edge (mi → mj) if and only if qb(i, j) > 0.

Next, we stress that the law of the Markov jump process Y ∗|b can be expressed using the mapping
Φ introduced in Definition A.4. Given any minit ∈ {m1,m2, . . . ,mnmin

}, we set V1 = minit, U1 = 0,
and (for any t > 0, l ≥ 1, and i, j ∈ [nmin] with i ̸= j)

P
(
Ul+1 < t, Vl+1 = mj

∣∣∣ Vl = mi, (Vj)
l−1
j=1, (Uj)

l
j=1

)
= P

(
Ul+1 < t, Vl+1 = mj

∣∣∣ Vl = mi

)
=

{ qb(i,j)
qb(i)

if mi /∈ V ∗b ,
qb(i,j)
qb(i)

·
(
1− exp

(
− qb(i)t

))
if mi ∈ V ∗b .

(C.5)

In other words, conditioning on Vl = mi, we have Vl+1 = mj with probability qb(i, j)/qb(i); as for
Ul+1, we set Ul+1 ≡ 0 if mi /∈ V ∗b (i.e., the current value mi is not a widest minimum), and set Ul+1

as an Exponential RV with rate qb(i) otherwise. We claim that

Y
∗|b
· =d Φ

(
(Uj)j≥1, (Vj)j≥1

)
. (C.6)

In fact, under the conditions in Theorem 3.2, it is straightforward to show that
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(i) For any t > 0, limi→∞P(
∑

j≤i Uj > t) = 1;

(ii) For any u > 0 and i ≥ 1, P(U1 + · · ·+ Ui = u) = 0;

(iii) Y
∗|b
· =d Φ

(
(Uj)j≥1, (Vj)j≥1

)
; that is, it is a continuous-time Markov chain with state space V ∗b ,

generator

P(Y
∗|b
t+h = mj | Y ∗|bt = mi) = h ·

∑
j′∈[nmin]: j′ ̸=i

qb(i, j
′)θb(mj |mj′) + o(h) as h ↓ 0,

and initial distribution P(Y
∗|b
0 = mj) = θb(mj |minit); see (3.10) and (3.11) for the definitions of

qb(i, j) and θb(mj |mi), respectively.

For the sake of completeness, we collect the proof in Section D. The representation (C.6) and the
properties stated above will greatly facilitate the proofs below.

The proofs of Propositions B.1 and B.2 hinge on the first exit analysis in Result 2. Note that Re-
sult 2 focuses on some bounded interval I. In contrast, regarding the potential U characterized in As-
sumption 6, while for all i = 2, · · · , nmin the attraction field Ii is indeed bounded, for i = 1 or nmin (that
is, the leftmost or the rightmost attraction field) we have I1 = (−∞, s1) and Inmin

= (snmin−1,∞),
both of which are unbounded. Besides, our analysis below involves S(δ) =∆

⋃
i∈[nmin−1][si − δ, si + δ]

(i.e., the union of the δ-neighborhood of any boundary point si). As a result, we will frequently
consider sets of form

Ii;δ,M = (si−1 + δ, si − δ) ∩ (−M,M) = (Ii)δ ∩ (−M,M) (C.7)

for some δ,M > 0. For any M > 0 large enough such that −M < m1 < s1 < · · · < snmin−1 < mnmin <
M , we have Ii;δ,M = (si−1 + δ, si − δ) ∩ (−M,M) = (si−1 + δ, si − δ) for all i = 2, 3, · · · , nmin − 1,
and we have I1;δ,M = (s0 + δ, s1 − δ) ∩ (−M,M) = (−M, s1 − δ) (due to s0 = −∞) and Inmin;δ,M =
(snmin−1 + δ, snmin

− δ) ∩ (−M,M) = (snmin−1 + δ,M) (due to snmin
= ∞). We also set

σ
η|b
i;ϵ (x) =

∆ min
{
j ≥ 0 : X

η|b
j (x) ∈

⋃
l ̸=i

(ml − ϵ,ml + ϵ)
}
, (C.8)

τ
η|b
i;δ,M (x) =∆ min

{
j ≥ 0 : X

η|b
j (x) /∈ Ii;δ,M

}
. (C.9)

In other words, τ
η|b
i;δ,M (x) is the first exit time from Ii;δ,M , and σ

η|b
i;ϵ (x) is the first time visiting the

ϵ-neighborhood of a local minimum different from mi.
We first state Lemmas C.1 and C.2. To give an overview, we establish these two lemmas by

adapting the first exit analysis in Section 2.2 to the slightly more general settings in Propositions B.1
and B.2. First, Lemma C.1 states that it is unlikely to get close to any of the boundary points si’s or
exit a wide enough compact set.

Lemma C.1. Let Assumptions 1, 2, 3, 4, and 6 hold. Let b ∈ (0,∞) be such that (C.1) holds. There
exists M > 0 such that

max
i∈[nmin]

Č(J ∗b (i))|b((−M,M)c;mi

)
= 0, (C.10)

Furthermore, given any ∆ > 0 and any ϵ ∈ (0, ϵ̄) (with ϵ̄ specified in (C.2)), it holds for all δ > 0
small enough that

lim sup
η↓0

max
i∈[nmin]

sup
x∈[mi−ϵ,mi+ϵ]

P
(
∃j < σ

η|b
i;ϵ (x) s.t. X

η|b
j (x) ∈ S(δ) or

∣∣Xη|b
j (x)

∣∣ ≥ M + 1
)
< ∆. (C.11)
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Proof. In light of Lemma E.3, it holds for all M > 0 large enough such that

Č(J ∗b (i))|b((−M,M)c;mi) = 0 ∀i ∈ [nmin].

This concludes the proof of (C.10).
Henceforth in this proof, we fix such large M satisfying |M − mi|/b /∈ Z ∀i ∈ [nmin] and M >

maxi∈[nmin](J ∗b (i) − 1)b + ϵ̄, where ϵ̄ > 0 is the constant in (C.2). Also, we fix some ϵ ∈ (0, ϵ̄) and

show that (C.11) holds for such ϵ. Recall the definition of τ
η|b
i;δ,M (x) in (C.9) and Ii;δ,M = (si−1 +

δ, si − δ) ∩ (−M,M). We make a few observations regarding the stopping time τ
η|b
i;2δ,M (x) = min{j ≥

0 : X
η|b
j (x) /∈ Ii;2δ,M}. First, due to Ii;2δ,M ⊆ Ii;δ,M , we must have τ

η|b
i;2δ,M (x) ≤ τ

η|b
i;δ,M (x) ≤ σ

η|b
i;ϵ (x).

Second, by definition of τ
η|b
i;2δ,M (x), we have X

η|b
j (x) /∈ S(δ), |Xη|b

j (x)| < M for all j < τ
η|b
i;2δ,M (x). On

event
A0(η, δ, x) =

∆ {Xη|b
τ
η|b
i;2δ,M (x)

(x) ∈ (−M,M); X
η|b
τ
η|b
i;2δ,M (x)

(x) /∈ S(2δ)},

there exists some j ∈ [nmin], j ̸= i such that X
η|b
τ
η|b
i;2δ,M (x)

(x) ∈ Ij;2δ,M . Now define

A1(η, δ, x) =
∆ {∃j < σ

η|b
i;ϵ (x) s.t. X

η|b
j (x) ∈ S(δ)}, A2(η, x) =

∆ {∃j < σ
η|b
i;ϵ (x) s.t. |X

η|b
j (x)| ≥ M + 1}.

Let R
η|b
j;ϵ (x) =

∆ min{k ≥ 0 : X
η|b
k (x) ∈ (mj − ϵ,mj + ϵ)} be the first time entering (mj − ϵ,mj + ϵ).

From the strong Markov property at τ
η|b
i;2δ,M (x),

max
i∈[nmin]

sup
x∈[mi−ϵ,mi+ϵ]

P

((
A1(η, δ, x) ∪A2(η, x)

)
∩A0(η, δ, x)

)
≤ max

i∈[nmin]
sup

x∈[mi−ϵ,mi+ϵ]

P

(
A1(η, δ, x) ∪A2(η, x)

∣∣∣∣ A0(η, δ, x)

)
≤ max

j∈[nmin]
sup

y∈[sj−1+2δ,sj−2δ]∩[−M,M ]

P

({
X

η|b
k (x) ∈ [sj−1 + δ, sj − δ] ∩ (−M − 1,M + 1) ∀∃k < R

η|b
j;ϵ (x)

}c
)

︸ ︷︷ ︸
pj(η)

.

For any j ∈ [nmin] and any δ > 0 small enough, by applying Lemma E.5 onto Ij ∩ (−M − 1,M + 1)
(with parameter ϵ therein set as 2δ) we get limη↓0 pj(η) = 0. In summary, we have shown that
lim supη↓0 maxi∈[nmin] supx∈[mi−ϵ,mi+ϵ] P

(
(A1(η, δ, x)∪A2(η, x))∩A0(η, δ, x)

)
= 0. Therefore, to estab-

lish (C.11), it only remains to show that lim supη↓0 maxi∈[nmin] supx∈[mi−ϵ,mi+ϵ] P
((
A0(η, δ, x)

)c)
< ∆.

Now, it only remains to prove that for all δ > 0 small enough,

lim sup
η↓0

max
i∈[nmin]

sup
x∈[mi−ϵ,mi+ϵ]

P
(
X

η|b
τ
η|b
i;2δ,M (x)

(x) ∈ S(2δ)
)
< ∆, (C.12)

lim sup
η↓0

max
i∈[nmin]

sup
x∈[mi−ϵ,mi+ϵ]

P
(
X

η|b
τ
η|b
i;2δ,M (x)

(x) /∈ (−M,M)
)
= 0. (C.13)

Note that

lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P
(
X

η|b
τ
η|b
i;2δ,M (x)

(x) ∈ S(2δ)
)
≤ Č(J ∗b (i))|b

(
S(2δ);mi

)/
Č(J ∗b (i))|b

(
Ici;2δ,M ;mi

)
can be established using part (a) of Result 2. From Lemma E.1, we get limδ↓0 Č

(J ∗b (i))|b(S(2δ);mi

)
=

Č(J ∗b (i))|b({s1, · · · , snmin
};mi

)
= 0 and verifies claim (C.12). Similarly, claim (C.13) follows directly

from part (a) of Result 2 when applied onto Ii;δ,M , combined with (C.10).

Recall the scale function λ∗b defined in (3.8). Lemma C.2 then provides an analogue of Result 2
for the current setup.
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Lemma C.2. Let Assumptions 1, 2, 3, 4 and 6 hold. Let b ∈ (0,∞) be such that (C.1) holds. Let
ϵ̄ > 0 be specified as in (C.2).

(i) Let R
η|b
i;ϵ (x) =

∆ min{j ≥ 0 : X
η|b
j (x) ∈ (mi − ϵ,mi + ϵ)}. For any ϵ ∈ (0, ϵ̄), t > 0 and i ∈ [nmin],

lim inf
η↓0

inf
x∈[si−1+ϵ,si−ϵ]

P

(
R

η|b
i;ϵ (x) · λ

∗
b(η) ≤ t, X

η|b
j (x) ∈ Ii ∀j ≤ R

η|b
i;ϵ (x)

)
= 1.

(ii) Let i, j ∈ [nmin] be such that i ̸= j. Let σ
η|b
i;ϵ (x) =

∆ min{j ≥ 0 : X
η|b
j (x) ∈

⋃
l ̸=i(ml − ϵ,ml + ϵ)}.

If mi ∈ V ∗b , then for any ϵ ∈ (0, ϵ̄) and any t > 0,

lim inf
η↓0

inf
x∈[mi−ϵ,mi+ϵ]

P

(
σ
η|b
i;ϵ (x) · λ

∗
b(η) > t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

)
≥ exp

(
− qb(i) · t

)
· qb(i, j)

qb(i)
,

lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P

(
σ
η|b
i;ϵ (x) · λ

∗
b(η) > t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

)
≤ exp

(
− qb(i) · t

)
· qb(i, j)

qb(i)
.

If mi /∈ V ∗b , then for any ϵ ∈ (0, ϵ̄) and any t > 0,

qb(i, j)

qb(i)
≤ lim inf

η↓0
inf

x∈[mi−ϵ,mi+ϵ]
P

(
σ
η|b
i;ϵ (x) · λ

∗
b(η) ≤ t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

)
≤ lim sup

η↓0
sup

x∈[mi−ϵ,mi+ϵ]

P

(
σ
η|b
i;ϵ (x) · λ

∗
b(η) ≤ t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

)
≤ qb(i, j)

qb(i)
.

Proof. (i) Fix some t > 0 and ϵ ∈ (0, ϵ̄). Recall that λ∗b(η) ∈ RVJ ∗b (V )·(α−1)+1(η) as η ↓ 0. Due to

J ∗b (V ) ≥ 1 and α > 1, we have J ∗b (V )·(α−1)+1 ≥ α > 1. This implies that limη↓0
T/η

t/λ∗b (η)
= 0 ∀T > 0,

and hence (given any T > 0)

P
(
R

η|b
i;ϵ (x) · λ

∗
b(η) ≤ t, X

η|b
j (x) ∈ Ii ∀j ≤ R

η|b
i;ϵ (x)

)
≥ P

(
R

η|b
i;ϵ (x) ≤ T/η, X

η|b
j (x) ∈ Ii ∀j ≤ R

η|b
i;ϵ (x)

)
for all η small enough. Now, pick M > 0 large enough such that |M | > min{|si−1 + ϵ|, |si − ϵ|}. By
picking T > 0 large enough, one can apply Lemma E.5 onto (−M,M) ∩ Ij to conclude the proof of
part (i).

(ii) Let λ∗i;b(η) =
∆ η · λJ ∗b (i)(η). It suffices to establish the following upper and lower bounds: for

all i, j ∈ [nmin] such that i ̸= j, all ϵ ∈ (0, ϵ̄), and all t > 0,

lim inf
η↓0

inf
x∈[mi−ϵ,mi+ϵ]

P
(
σ
η|b
i;ϵ (x) · λ

∗
i;b(η) > t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij
)
≥ exp

(
− qb(i) · t

)
· qb(i, j)

qb(i)
, (C.14)

lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P
(
σ
η|b
i;ϵ (x) · λ

∗
i;b(η) > t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij
)
≤ exp

(
− qb(i) · t

)
· qb(i, j)

qb(i)
. (C.15)

Indeed, in case that mi ∈ V ∗b , claims in part (ii) are equivalent to (C.14) and (C.15) due to J ∗b (i) =
J ∗b (V ) (see (3.4)) and hence λ∗i;b(η) = λ∗b(η) = η · λJ ∗b (V )(η). In case that mi /∈ V ∗b (i.e., J ∗b (i) <

J ∗b (V )), we have limη↓0
t/λ∗i;b(η)

T/λ∗b (η)
= 0 for all t, T ∈ (0,∞). We then recover the upper and lower bounds

in part (ii) by letting t ↓ 0 in (C.14) and (C.15).
The rest of this proof is devoted to establishing (C.14) and (C.15). Here, we collect a few useful

facts about the measure Č(J ∗b (i))|b. By assumption (C.1), one can apply Lemma E.1 and obtain
Č(J ∗b (i))|b({s1, · · · , snmin−1};mi

)
= 0. Recall the definition of qb(i, j) = Č(J ∗b (i))|b(Ij ;mi) in (3.10).

Due to Ij = (sj−1, sj),

qb(i, j) = Č(J ∗b (i))|b(Ij ;mi) = Č(J ∗b (i))|b(I−j ;mi) ∀i, j ∈ [nmin] with i ̸= j. (C.16)
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Combining (C.16) with the continuity of measures, we have limδ↓0 Č
(J ∗b (i))|b((si−1 − δ, si + δ)c;mi

)
=

qb(i) = Č(J ∗b (i))|b(Ici ;mi). Next, throughout the remainder of this proof, we only consider M ∈ (0,∞)
large enough such that the claim (C.10) of Lemma C.1 holds. Given any ∆ > 0, regarding the set
Ii;δ,M = (−M,M) ∩ (si−1 + δ, si − δ) it holds for all δ > 0 small enough that

Č(J ∗b (i))|b(Ici;δ,M ;mi) ≤ Č(J ∗b (i))|b((−M,M)c;mi) + Č(J ∗b (i))|b((si−1 + δ, si − δ)c;mi)

= 0 + Č(J ∗b (i))|b((si−1 + δ, si − δ)c;mi) < (1 + ∆) · qb(i).
(C.17)

Lastly, due to Ii;δ,M ⊆ Ii,

Č(J ∗b (i))|b(Ici;δ,M ;mi

)
≥ Č(J ∗b (i))|b(Ici ;mi

)
= qb(i). (C.18)

Proof of Lower Bound (C.14).

We fix some i ̸= j and t > 0 when proving (C.14). Recall the definitions of Ii;δ,M and τ
η|b
i;δ,M (x) in

(C.7) and (C.9), respectively. Observe that{
σ
η|b
i;ϵ (x) · λ

∗
i;b(η) > t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij
}

⊇
{
τ
η|b
i;δ,M (x) · λ∗i;b(η) > t; X

η|b
τ
η|b
i;δ,M (x)

(x) ∈ Ij;δ,M+1

}
︸ ︷︷ ︸

(I)

∩
{
X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij
}

︸ ︷︷ ︸
(II)

.

We first analyze P((II)|(I)). By strong Markov property at τ
η|b
i;δ,M (x), infx∈[mi−ϵ,mi+ϵ] P((II) | (I)) ≥

infy∈Ij;δ,M+1
P
(
X

η|b
k (y) ∈ Ij ∀k ≤ R

η|b
j;ϵ (y)

)
. Here, recall that R

η|b
j;ϵ (x) = min{j ≥ 0 : X

η|b
k (x) ∈

(mj − ϵ,mj + ϵ)}. Applying Lemma E.5, we yield

lim inf
η↓0

inf
x∈[mi−ϵ,mi+ϵ]

P((II) | (I)) = 1. (C.19)

Next, we move onto the analysis of P((I)). Due to Ij;δ,M+1 ⊆ Ij ,

(I) = {τη|bi;δ,M (x) · λ∗i;b(η) > t; X
η|b
τ
η|b
i;δ,M (x))

(x) ∈ Ij}︸ ︷︷ ︸
(III)

∩{Xη|b
τ
η|b
i;δ,M (x)

(x) ∈ Ij;δ,M+1}︸ ︷︷ ︸
(IV)

.

Given any ∆ > 0, by applying part (a) of Result 2 onto Ii;δ,M , we yield (for any δ small enough)

lim inf
η↓0

inf
x∈[mi−ϵ,mi+ϵ]

P((III)) ≥ exp
(
− Č(J ∗b (i))|b(Ici;δ,M ;mi) · t

)
· Č(J ∗b (i))|b(Ij ;mi)

Č(J ∗b (i))|b(Ici;δ,M ;mi)

>
exp(−(1 + ∆)qb(i) · t)

1 + ∆
· qb(i, j)

qb(i)
due to (C.16) and (C.17).

Meanwhile, note that (IV)
c
= {Xη|b

τ
η|b
i;δ,M (x)

(x) ∈ S(δ)} ∪ {|Xη|b
τ
η|b
i;δ,M (x)

(x)| ≥ M + 1}. Due to τ
η|b
i;δ,M (x) ≤

σ
η|b
i;ϵ (x), the claim lim supη↓0 supx∈[mi−ϵ,mi+ϵ] P((IV)

c
) < ∆ follows directly from (C.11) of Lemma

C.1. In summary, for all δ > 0 small enough,

lim inf
η↓0

inf
x∈[mi−ϵ,mi+ϵ]

P((I)) ≥ exp(−(1 + ∆)qb(i) · t)
1 + ∆

· qb(i, j)
qb(i)

−∆. (C.20)

Combining (C.19) and (C.20) and then driving ∆ ↓ 0, we conclude the proof of the lower bound
(C.14).
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Proof of Upper Bound (C.15).

Let (I) = {ση|b
i;ϵ (x) · λ∗i;b(η) > t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij}. Arbitrarily pick some ∆ > 0. Given δ > 0,

define event (II) = {Xη|b
τ
η|b
i;δ,M (x)

(x) ∈ (−M − 1,M + 1)\S(δ)}. We start from the decomposition (I) =(
(I) \ (II)

)
∪
(
(I) ∩ (II)

)
. Applying (C.11) of Lemma C.1, it holds for all δ > 0 small enough that

lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P((I) \ (II)) ≤ lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P((II)
c
) < ∆. (C.21)

Next, recall that τ
η|b
i;δ,M (x) is the first exit time from Ii;δ,M , and σ

η|b
i;ϵ (x) is the first time visiting

the ϵ-neighborhood of a local minimum different from mi; see (C.8) and (C.9). By definition of

τ
η|b
i;δ,M (x), on event (I) ∩ (II) there must be some K ∈ [nmin], K ̸= i such that X

η|b
τ
η|b
i;δ,M (x)

(x) ∈

(−M − 1,M + 1) ∩ (sK−1 + δ, sK − δ) = IK;δ,M+1. For each k ∈ [nmin] with k ̸= i, define event

(k) = (I) ∩ (II) ∩ {Xη|b
τ
η|b
i;δ,M (x)

(x) ∈ Ik;δ,M+1}

and note that
⋃

k∈[nmin]: k ̸=i (k) = (I) ∩ (II). To proceed, consider the following decomposition

(k) =

(
(k) ∩

{(
σ
η|b
i;ϵ (x)− τ

η|b
i;δ,M (x)

)
· λ∗i;b(η) > ∆

})
︸ ︷︷ ︸

(k,1)

∪
(
(k) ∩

{(
σ
η|b
i;ϵ (x)− τ

η|b
i;δ,M (x)

)
· λ∗i;b(η) ≤ ∆

})
︸ ︷︷ ︸

(k,2)

.

We fix some k ∈ [nmin] with k ̸= i and analyze the probability of events (k, 1) and (k, 2) separately.

First, as has been shown at the beginning of the proof of part (ii), we have limη↓0
T/η

∆/λ∗i,b(η)
= 0 for all

T ∈ (0,∞). Then,

lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P((k, 1))

≤ lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P
(
(k) ∩ {ση|b

i;ϵ (x)− τ
η|b
i;δ,M (x) > T/η}

)
≤ lim sup

η↓0
sup

y∈Ik;δ,M+1

P(σ
η|b
i;ϵ (y) > T/η) by strong Markov property at τ

η|b
i;δ,M (x)

≤ lim sup
η↓0

sup
y∈Ik;δ,M+1

P(X
η|b
j (y) /∈ (mk − ϵ,mk + ϵ) ∀j ≤ T/η)

= 0 for all T > 0 large enough due to Lemma E.5. (C.22)

Meanwhile,

sup
x∈[mi−ϵ,mi+ϵ]

P((k, 2))

≤ sup
x∈[mi−ϵ,mi+ϵ]

P
(
τ
η|b
i;δ,M (x) · λ∗i;b(η) > t−∆; X

η|b
τ
η|b
i;δ,M (x)

(x) ∈ Ik;δ,M+1; X
η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij
)

≤ sup
x∈[mi−ϵ,mi+ϵ]

P
(
τ
η|b
i;δ,M (x) · λ∗i;b(η) > t−∆; X

η|b
τ
η|b
i;δ,M (x)

(x) ∈ Ik;δ,M+1

)
· sup
x∈[mi−ϵ,mi+ϵ]

P
(
X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij
∣∣ τη|bi;δ,M (x) · λ∗i;b(η) > t−∆; X

η|b
τ
η|b
i;δ,M (x)

(x) ∈ Ik;δ,M+1

)
≤ sup

x∈[mi−ϵ,mi+ϵ]

P
(
τ
η|b
i;δ,M (x) · λ∗i;b(η) > t−∆; X

η|b
τ
η|b
i;δ,M (x)

(x) ∈ Ik︸ ︷︷ ︸
(k,I)

)
· sup
y∈Ik;δ,M+1

P
(
X

η|b
σ
η|b
i;ϵ (y)

(y) ∈ Ij︸ ︷︷ ︸
(k,II)

)
.
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Applying part (a) of Result 2 onto Ii;δ,M and the bound (C.18), we yield (for any δ small enough)

lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P((k,I)) ≤ exp
(
− Č(J ∗b (i))|b(Ici;δ,M ;mi) · (t−∆)

)
·

Č(J ∗b (i))|b(I−k ;mi)

Č(J ∗b (i))|b(Ici;δ,M ;mi)

≤ exp
(
− qb(i) · (t−∆)

)
· qb(i, k)

qb(i)
using (C.18) and (C.16). (C.23)

Moving on, we analyze the probability of event (k,II). If k = j, we apply the trivial upper bound

P((k,II)) ≤ 1. If k ̸= j, on event (k,II),
(
X

η|b
n (y)

)
n≥0 visited (mj − ϵ,mj + ϵ) before visiting any

other local minima’s ϵ-neighborhood, despite the fact that the initial value X
η|b
0 (y) = y belongs to

Ik;δ,M+1 ⊂ Ik. This implies that
(
X

η|b
n (y)

)
n≥0 must have left Ik before visiting its local minimum

mk. Applying Lemma E.5, we obtain lim supη↓0 supy∈Ik;δ,M+1
P((k,II)) = 0 ∀k ̸= j for all δ > 0 small

enough In summary, for all δ small enough,

lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P
(
σ
η|b
i;ϵ (x) · λ

∗
i;b(η) > t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij
)

≤ lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P((II)
c
)

+
∑

k∈[nmin]: k ̸=i

lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P((k,I)) · lim sup
η↓0

sup
y∈Ik;δ,M

P((k,II)) due to (C.22)

≤ lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P((II)
c
) + lim sup

η↓0
sup

x∈[mi−ϵ,mi+ϵ]

P((j,I))

≤ ∆+ exp
(
− qb(i) · (t−∆)

)
· qb(i, j)

qb(i)
due to (C.21) and (C.23).

Let ∆ ↓ 0 and we conclude the proof of the upper bound.

Now, we are ready to prove Proposition B.1.

Proof of Proposition B.1. We first show that claims (i) and (ii) follow directly from the next claim:
for any ϵ > 0 small enough,

(Uη,ϵ
1 , V η,ϵ

1 , Uη,ϵ
2 , V η,ϵ

2 , · · · ) ⇒ (U1, V2, U2, V2, · · · ) as η ↓ 0, (C.24)

where the laws of Uj ’s and Vj ’s are defined in (C.5). Specifically, we only consider ϵ > 0 small enough
such that claim (C.24) holds. In light of Lemma A.5 and Proposition D.1, (C.24) immediately leads

to the claims in (i). Regarding claim (ii), note that X̂
η,ϵ,|b
t is a step function (i.e., piece-wise constant)

that only takes values in M =∆ {mj : j = 1, 2, · · · , nmin}, which is a finite set. Let

AN =∆ {ξ ∈ D[0, T ] : ξ is a step function with at most N jumps and only takes values in M}.

First, the finite-dimensional nature of AN (i.e., at most N jumps over [0, T ], only nmin possible values)
implies that AN is a compact set in (D[0, T ],d[0,T ]

Lp
). Besides,

lim sup
n→∞

P(X̂
ηn,ϵ,|b
· /∈ AN ) = lim sup

n→∞
P(

N+1∑
j=1

Uηn,ϵ
j ≤ T ) ≤ P(

N+1∑
j=1

Uj ≤ T ),

where the last inequality follows from (Uηn,ϵ
1 , · · · , Uηn,ϵ

N ) ⇒ (U1, · · · , UN ). Using part (i) of Proposi-

tion D.1, we have limN→∞ lim supn→∞P(X̂
ηn,ϵ,|b
· /∈ AN ) = 0, which verifies the tightness of X̂

ηn,ϵ,|b
· .

Now, it only remains to prove (C.24). This is equivalent to proving that, for each N ≥ 1,
(Uη,ϵ

1 , V η,ϵ
1 , · · · , Uη,ϵ

N , V η,ϵ
N ) converges in distribution to (U1, V1, · · · , UN , VN ) as η ↓ 0. Fix some

32



N = 1, 2, · · · . First, note that U1 = 0 and V1 = mi. From part (i) of Lemma C.2, we get (Uη,ϵ
1 , V η,ϵ

1 ) ⇒
(0,mi) = (U1, V1) as η ↓ 0. Next, for any n ≥ 1, any tl ∈ (0,∞), any vl ∈ {mi : i ∈ [nmin]}, and any
t > 0, i, j ∈ [nmin] with i ̸= j, it follows directly from part (ii) of Lemma C.2 that

lim
η↓0

P

(
Uη,ϵ
n+1 ≤ t, V η,ϵ

n+1 = mj

∣∣∣∣ V η,ϵ
n = mi, V η,ϵ

l = vl ∀l ∈ [n− 1], Uη,ϵ
l ≤ tl ∀l ∈ [n]

)

=

{ qb(i,j)
qb(i)

if mi /∈ V ∗b ,
qb(i,j)
qb(i)

·
(
1− exp

(
− qb(i)t

))
if mi ∈ V ∗b .

This coincides with the conditional law of P
(
Un+1 < t, Vn+1 = mj

∣∣∣ Vn = mi, (Vj)
n−1
j=1 , (Uj)

n
j=1

)
specified in (C.5). By arguing inductively, we conclude the proof.

Moving onto the proof of Proposition B.2, we first prepare a lemma that establishes the weak

convergence from X
η|b
⌊·/λ∗b (η)⌋

(x) to X̂
η,ϵ|b
· (x) in terms of finite dimensional distributions.

Lemma C.3. Let Assumptions 1, 2, 3, 4, 6, and 7 hold. Given any t > 0 and x ∈
⋃

i∈[nmin]
Ii,

(i) limη↓0 P
(
X

η|b
j (x) /∈ (−M,M) for some j ≤ t/λ∗b(η)

)
= 0 for the constant M > 0 specified in

Lemma C.1;

(ii) limη↓0 P
(∣∣∣Xη|b

⌊t/λ∗b (η)⌋
(x)− X̂

η,ϵ|b
t (x)

∣∣∣ ≥ ϵ
)
= 0 for all ϵ > 0 small enough.

Proof. Throughout this proof, let ϵ̄ be specified as in (C.2).
(i) We prove a stronger result. Let IM,δ = (−M,M)\S(δ) where S(δ) =

⋃
i∈[nmin−1][si − δ, si + δ].

Recall the definition of τ̂
η,ϵ|b
j (x) in (B.1) and (B.3). For any N ∈ Z+, on event(N−1⋂

k=1

{
X

η|b
j (x) ∈ IM,δ ∀j ∈

[
τ̂
η,ϵ|b
k (x), τ̂

η,ϵ|b
k+1 (x)

]}
︸ ︷︷ ︸

Ak(η,δ)

)
∩
{
τ̂
η,ϵ|b
1 (x) ≤ t/λ∗b(η)

}
︸ ︷︷ ︸

B1(η)

∩
{
τ̂
η,ϵ|b
N > t/λ∗b(η)

}
︸ ︷︷ ︸

B2(η)

we have X
η|b
j (x) ∈ IM,δ for all j ∈ [τ̂

η,ϵ|b
1 (x), τ̂

η,ϵ|b
N (x)] and τ̂

η,ϵ|b
1 (x) ≤ t/λ∗b(η) < τ̂

η,ϵ|b
N (x). Therefore,

it suffices to show that for any ∆ > 0, there are some positive integer N and δ > 0 such that

lim sup
η↓0

[
P
(
Bc

1(η)
)
+P

(
Bc

2(η)
)
+

N−1∑
k=1

P
(
Ac

k(η, δ)
)]

< ∆. (C.25)

Let i ∈ [nmin] be such that x ∈ Ii and let R
η|b
i;ϵ (x) = min{j ≥ 0 : X

η|b
j (x) ∈ [mi− ϵ,mi+ ϵ]}. Since

τ̂
η,ϵ|b
1 (x) is the first visit time to

⋃
l∈[nmin]

(ml − ϵ,ml + ϵ), we have τ̂
η,ϵ|b
1 (x) ≤ R

η|b
i;ϵ (x) and hence

lim sup
η↓0

P
(
Bc

1(η)
)
≤ lim sup

η↓0
P
(
τ̂
η,ϵ|b
1 (x) > t/λ∗b(η)

)
≤ lim sup

η↓0
P
(
λ∗b(η) ·R

η|b
i;ϵ (x) > t

)
= 0 using Lemma C.2 (i).

(C.26)

We move onto the analysis of event B2(η) and the choice of N . Recall that Y
∗|b
t (x) is the irre-

ducible, continuous-time Markov chain over V ∗b with important properties summarized in Section D.
In particular, we can fix some N large enough such that P(U1 + · · ·+ UN ≤ t) < ∆/2. From part (i)
of Proposition B.1, we now get

lim sup
η↓0

P
(
Bc

2(η)
)
≤ lim sup

η↓0
P

( N∑
n=1

(
τη,ϵ|bn (x)− τ

η,ϵ|b
n−1 (x)

)
· λ∗b(η) ≤ t

)
≤ P(U1 + · · ·+ UN ≤ t) < ∆/2.

(C.27)
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Meanwhile, recall that σ
η|b
k;ϵ(x) = min{j ≥ 0 : X

η|b
j (x) ∈

⋃
l ̸=k(ml − ϵ,ml + ϵ)} (i.e., the first time

X
η|b
j (x) visits the ϵ-neighborhood of some ml that is different from mk); also, for all j ≥ 2, τ̂

η,ϵ|b
j (x) is

the first time since τ̂
η,ϵ|b
j−1 (x) that X

η|b
· (x) visits the ϵ-neighborhood of some ml that is different from

the one visited at τ̂
η,ϵ|b
j−1 (x). From the strong Markov property at τ̂

η,ϵ|b
k (x),

sup
k≥1

P
(
Ac

k(η)
)
≤ max

l∈[nmin]
sup

y∈[ml−ϵ,ml+ϵ]

P
(
∃j < σ

η|b
l;ϵ (y) s.t. X

η|b
j (y) ∈ S(δ) or

∣∣Xη|b
j (y)

∣∣ ≥ M
)
.

Applying Lemma C.1, we are able to fix some M > 0 and δ ∈ (0, ϵ/2) such that lim supη↓0 P
(
Ac

k(η)
)
≤

∆
2N ∀k ∈ [N − 1]. Combining this bound with (C.26) and (C.27), we finish the proof of (C.25).

(ii) If X
η|b
⌊t/λ∗b (η)⌋

(x) ∈
⋃

l∈[nmin]
(ml−ϵ,ml+ϵ), then due to the definition of X̂

η,ϵ|b
t (x) as the marker

of the last visited local minimum (see (B.1)–(B.4) for the definition of the process X̂
η,ϵ|b
t (x)), we must

have |Xη|b
⌊t/λ∗b (η)⌋

(x)− X̂
η,ϵ|b
t (x)| < ϵ. Therefore, it suffices to show that for any ϵ ∈ (0, ϵ̄)

lim
η↓0

P
(
X

η|b
⌊t/λ∗b (η)⌋

(x) ∈
⋃

l∈[nmin]

(ml − ϵ,ml + ϵ)
)
= 1.

Pick some δt ∈ (0, t
3 ), δ > 0. Recall that H(·) = P(|Z1| > ·), and define event

(I) =
{
X

η|b
⌊t/λ∗b (η)⌋−⌊2δt/H(η−1)⌋(x) ∈ IM,δ

}
.

Let t1(η) = ⌊t/λ∗b(η)⌋ − ⌊2δt/H(η−1)⌋. On event (I), let Rη =∆ min{j ≥ t1(η) : X
η|b
j (x) ∈⋃

l∈[nmin]
(ml − ϵ

2 ,ml +
ϵ
2 )} and set Îη by the rule Îη = j ⇐⇒ X

η|b
Rη (x) ∈ Ij . Now, define event

(II) =
{
Rη − t1(η) ≤ δt/H(η−1)

}
.

On event (I) ∩ (II) we have ⌊t/λ∗b(η)⌋ − ⌊2δt/H(η−1)⌋ ≤ Rη ≤ ⌊t/λ∗b(η)⌋. Let τη =∆ min{j ≥ Rη :

X
η|b
j (x) /∈ (mÎη − ϵ,mÎη + ϵ)}, and define event

(III) =
{
τη −Rη > 2δt/H(η−1)

}
.

On event (I) ∩ (II) ∩ (III), we have τη > ⌊t/λ∗b(η)⌋ ≥ Rη, and hence X
η|b
⌊t/λ∗b (η)⌋

(x) ∈
⋃

l∈[nmin]
(ml −

ϵ,ml + ϵ). Furthermore, we claim that for any ∆ > 0 there exist δt ∈ (0, t
3 ) and δ > 0 such that

lim inf
η↓0

P
(
(I)

)
≥ 1−∆, (C.28)

lim inf
η↓0

P
(
(II)

∣∣∣ (I)) ≥ 1, (C.29)

lim inf
η↓0

P
(
(III)

∣∣∣ (I) ∩ (II)
)
≥ 1−∆. (C.30)

An immediate consequence is that lim infη↓0 P((I)∩(II)∩(III)) ≥ (1−∆)2. Let ∆ ↓ 0 and we conclude
the proof. Now it only remains to establish (C.28) (C.29) (C.30). Throughout the remainer of this
proof, we fix some ϵ ∈ (0, ϵ̄) and ∆ > 0.

Proof of (C.28). This has been established in the proof for part (i).

Proof of (C.29). We show that the claim holds for all δt ∈ (0, t/3). Due to H(x) ∈ RV−α(x)
and α > 1, given any T > 0 we have T/η < δt/H(η−1) eventually for all η small enough. Recall that
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Ij;δ,M = (sj−1 + δ, sj − δ) ∩ (−M,M). By Markov property at t1(η), for any T > 0 it holds for all
η > 0 small enough that

P
(
(II)

c
∣∣∣ (I)) ≤ max

k∈[nmin]
sup

y∈Ik;δ,M

P

(
X

η|b
j (y) /∈

⋃
l∈[nmin]

(ml −
ϵ

2
,ml +

ϵ

2
) ∀j ≤ δt/H(η−1)

)

≤ max
k∈[nmin]

sup
y∈Ik;δ,M

P

(
R

η|b
k;ϵ/2(y) > δt/H(η−1)

)
≤ max

k∈[nmin]
sup

y∈Ik;δ,M

P

(
R

η|b
k;ϵ/2(y) > T/η

)

where R
η|b
k;ϵ/2(y) = min{j ≥ 0 : X

η|b
j (y) ∈ (mk − ϵ

2 ,mk + ϵ
2 )}.

Let tk(x, ϵ) =
∆ inf{t ≥ 0 : yt(x) ∈ (mk − ϵ,mk + ϵ)}. By Assumption 6, tk(x,

ϵ
4 ) < ∞ for all x ∈

[−M−1,M+1]∩[sk−1+ δ
2 , sk−

δ
2 ], with tk( · , ϵ

4 ) being continuous over [−M−1,M+1]∩[sk−1+ δ
2 , sk−

δ
2 ].

As a result, we can fix T ∈ (0,∞) large enough such that

T > sup
{
tk(x,

ϵ

4
) : x ∈ [−M − 1,M + 1] ∩ [sk−1 +

δ

2
, sk − δ

2
]
}

∀k ∈ [nmin].

For each k ∈ [nmin], by applying Lemma E.5 onto (−M − 1,M + 1) ∩ (sk−1, sk), we are able to show

that lim supη↓0 supy∈Ik;δ,M
P
(
R

η|b
k;ϵ/2(y) > T/η

)
= 0. This concludes the proof of claim (C.29).

Proof of (C.30). We prove the claim for all δt small enough. By strong Markov property at Rη,

P
(
(III)

c
∣∣∣ (I) ∩ (II)

)
≤ max

k∈[nmin]
sup

y∈[mk−ϵ/2,mk+ϵ/2]

P
(
∃j ≤ 2δt

H(η−1)
s.t. X

η|b
j (y) /∈ (mk − ϵ,mk + ϵ)

)
.

Also, note that ϵ < ϵ̄ < b; see (C.2). For each k ∈ [nmin], by applying part (a) of Result 2 onto
(mk − ϵ,mk + ϵ), we obtain some ck,ϵ ∈ (0,∞) such that for any u > 0,

lim sup
η↓0

sup
y∈[mk−ϵ/2,mk+ϵ/2]

P
(
∃j ≤ u

H(η−1)
s.t. X

η|b
j (y) /∈ (mk − ϵ,mk + ϵ)

)
≤ 1− exp(−ck,ϵ · u).

By picking δt small enough, we ensure that 1− exp(−ck,ϵ ·2δt) < ∆ for all k ∈ [nmin], thus completing
the proof of claim (C.30).

The next result provides a bound over the proportion of time that X
η|b
j (x) is not close enough to

a local minimum.

Lemma C.4. Let Assumptions 1, 2, 3, 4, 6, and 7 hold. Given any ϵ ∈ (0, ϵ̄), it holds for all t ∈ (0, 1)
small enough that

lim sup
η↓0

max
i: mi∈V ∗b

sup
x∈(mi− ϵ

2 ,mi+
ϵ
2 )

P

(∫ t

0

I
{
X

η|b
⌊s/λ∗b (η)⌋

(x) /∈ (mi − ϵ,mi + ϵ)
}
ds > t2

)
< q∗t,

where q∗ ∈ (0,∞) is a constant that does not vary with t.

Proof. There are only finitely many elements in V ∗b . Therefore, it suffices to fix some mi ∈ V ∗b (recall
that Ii = (si−1, si) is the attraction field associated with mi, and w.l.o.g. we assume mi = 0) and
prove that

lim sup
η↓0

sup
x∈(− ϵ

2 ,
ϵ
2 )

P

(∫ t

0

I
{
X

η|b
⌊s/λ∗b (η)⌋

(x) /∈ (−ϵ, ϵ)
}
ds > t2

)
< q∗t (C.31)
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holds for all t > 0 small enough, where q∗ ∈ (0,∞) is a constant that does not vary with ϵ,∆, or t.
Let T η

0 = 0, and (for all i ≥ 1)

Sη
i =∆ min{j > T η

i−1 : X
η|b
j (x) /∈ (−ϵ, ϵ)}, T η

i =∆ min{j > Sη
i : X

η|b
j (x) ∈ (− ϵ

2
,
ϵ

2
)}.

Note that if X
η|b
j (x) /∈ (−ϵ, ϵ), then there is some i ≥ 1 such that j ∈ [Sη

i , T
η
i − 1]. Next, let Nη =∆

max{i ≥ 0 : Sη
i ≤ t/λ∗b(η)}, and note that #{j ≤ ⌊t/λ∗b(η)⌋ : X

η|b
j (x) /∈ (−ϵ, ϵ)} ≤

∑Nη

i=1 T
η
i − Sη

i .
Now, recall that α > 1 is the heavy-tailed index in Assumption 1, and the scale function λ∗b(η) is

defined in (3.8) with λ∗b(η) ∈ RVJ ∗b (V )·(α−1)+1(η). Let β ∈ (0, α− 1) and k(η) = 1/η(J
∗
b (V )−1)(α−1)+β .

For any x ∈ (− ϵ
2 ,

ϵ
2 ), define events

Aη
t,M (x) =∆

{
X

η|b
j (x) ∈ (si−1 +

ϵ

2
, si −

ϵ

2
) ∩ (−M,M) for all j ≤ ⌊t/λ∗b(η)⌋

}
,

Bη
t,δ(x) =

∆
{
for each i ≤ k(η),∃j ∈ [T η

i−1 + 1, Sη
i ] s.t. η|Zj | > δ

}
.

On Bη
t,δ(x), we must have Nη ≤ #{j ≤ ⌊t/λ∗b(η)⌋ : η|Zj | > δ}. Furthermore, given some constant

T ∈ (0,∞), let Eη
t,T (x) =

∆ {T η
i ∧ ⌊t/λ∗b(η)⌋ − Sη

i ≤ T/η ∀i ≥ 1}. On event Bη
t,δ(x) ∩ Eη

t,T (x) we get

#{j ≤ ⌊t/λ∗b(η)⌋ : X
η|b
j (x) /∈ (−ϵ, ϵ)} ≤

Nη∑
i=1

T η
i ∧ ⌊t/λ∗b(η)⌋ − Sη

i

≤ k(η) · T/η = T/η1+β+(J∗b (V )−1)(α−1),

and hence ∫ t

0

I
{
X

η|b
⌊s/λ∗b (η)⌋

(x) /∈ (−ϵ, ϵ)
}
ds ≤ T/η1+β+(J∗b (V )−1)(α−1) + 1

⌊t/λ∗b(η)⌋
.

However, due to λ∗b(η) ∈ RVJ ∗b (V )·(α−1)+1(η) and J∗b (V ) · (α − 1) + 1 = (J∗b (V ) − 1) · (α − 1) + α >
(J∗b (V )− 1) · (α− 1) + 1 + β, we have (for any t, T > 0 and β ∈ (0, α− 1))

lim
η↓0

T/η1+β+(J∗b (V )−1)(α−1) + 1

⌊t/λ∗b(η)⌋
= 0.

The discussion above implies the following: to prove (C.31), it suffices to find some t, T,M, δ ∈ (0,∞)
such that

lim sup
η↓0

sup
x∈(− ϵ

2 ,
ϵ
2 )

P
(
(Aη

t,M (x))c
)
< q∗t, (C.32)

lim
η↓0

sup
x∈(− ϵ

2 ,
ϵ
2 )

P
((

Bη
t,δ(x)

)c)
= 0, (C.33)

lim
η↓0

sup
x∈(− ϵ

2 ,
ϵ
2 )

P
(
Aη

t,M (x) ∩Bη
t,δ(x) ∩

(
Eη

t,T (x)
)c)

= 0. (C.34)

In particular, q∗ ∈ (0,∞) is a constant that does not vary with ϵ,∆,M, δ, or t.

Proof of (C.32). This follows immediately from the first exit time analysis. Specifically, recall that
we have assumed w.l.o.g. that the local minimum mi ∈ V ∗b at hand is located at the origin, i.e., mi = 0.
This implies J ∗b (V ) = ⌈min{|si−1|, si}/b⌉; that is, starting from the local minimum, it requires at least
J ∗b (V ) jumps (each bounded by b) to escape from the attraction field (si−1, si). Furthermore, by our
choice of ϵ̄ in (C.2) (which is essentially due to the assumption that |sj−mi|/b /∈ Z for all i ∈ [nmin] and
j ∈ [nmin−1]), it holds for all ϵ ∈ (0, ϵ̄) that J ∗b (V ) = ⌈min{|si−1+ ϵ

2 |, si−
ϵ
2}/b⌉. For any M ∈ (0,∞)

large enough, we then have J ∗b (V ) = ⌈min{|si−1+ ϵ
2 |, si−

ϵ
2 ,M}/b⌉, thus implying that, starting from
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the origin, it also requires at least J ∗b (V ) jumps to escape from (si−1 + ϵ
2 , si −

ϵ
2 ) ∩ (−M,M). By

applying part (a) of Result 2 onto (si−1 +
ϵ
2 , si −

ϵ
2 ) ∩ (−M,M), we can find q ∈ (0,∞) such that

lim sup
η↓0

sup
x∈(− ϵ

2 ,
ϵ
2 )

P
(
(Aη

t,M (x))c
)
≤ 1− exp(−qt) ∀t > 0.

For all t > 0 small enough, we have 1− exp(−qt) ≤ 2qt. By picking q∗ = 2q, we conclude the proof.

Proof of (C.33). By strong Markov property at T η
i ,

sup
x∈(− ϵ

2 ,
ϵ
2 )

P
((

Bη
t,δ(x)

)c) ≤ k(η) · sup
y∈(− ϵ

2 ,
ϵ
2 )

P
(
X

η|b
j (y) /∈ (−ϵ, ϵ) for some j < τ>δ

1 (η)
)

Here, τ>δ
1 (η) =∆ min{n ≥ 1 : η|Zn| > δ}. That is, τ>δ

1 (η) is the arrival time of the first Zj with

η|Zj | > δ. Applying Lemma E.6, it holds for all δ > 0 small enough that supy∈(− ϵ
2 ,

ϵ
2 )
P
(
X

η|b
j (y) /∈

(−ϵ, ϵ) for some j < τ>δ
1 (η)

)
= o

(
1/k(η)

)
. This concludes the proof of claim (C.33).

Proof of (C.34). On Aη
t,M (x) ∩Bη

t,δ(x), we have T η
i ∧ ⌊t/λ∗b(η)⌋ = T̃ η

i ∧ ⌊t/λ∗b(η)⌋ for each i ≥ 1,
where

T̃ η
i =∆ min

{
j > Sη

i : X
η|b
j (x) /∈

(
(si−1 +

ϵ

2
, si −

ϵ

2
) ∩ (−M,M)

)
\ [− ϵ

2
,
ϵ

2
]
}
.

Furthermore, it has been shown above that, on Bη
t,δ(x) we have Nη ≤ k(η). Therefore,

sup
x∈(− ϵ

2 ,
ϵ
2 )

P
(
Aη

t,M (x) ∩Bη
t,δ(x) ∩

(
Eη

t,T (x)
)c)

≤ sup
x∈(− ϵ

2 ,
ϵ
2 )

P
(
T̃ η
i − Sη

i > T/η for some i ≤ k(η)
)

≤ k(η) · sup
y∈(−ϵ,ϵ)

P
(
X

η|b
j (x) ∈

(
(si−1 +

ϵ

2
, si −

ϵ

2
) ∩ (−M,M)

)
\ [− ϵ

2
,
ϵ

2
] for all j ≤ ⌊T/η⌋

)
︸ ︷︷ ︸

=∆p∗T (η)

.

The last step is due to the strong Markov property at {Sη
i : i ∈ [k(η)]}. Applying Lemma E.4, we can

find T large enough such that p∗T (η) = o
(
1/k(η)

)
as η ↓ 0 and complete the proof.

Now, we are ready to prove Proposition B.2.

Proof of Proposition B.2. The claim limη↓0 P(|Xη|b
T (x)− X̂

η,ϵ|b
T (x)| ≥ ϵ) = 0 has already been proved

in part (ii) of Lemma C.3. In the remainder of this proof, we focus on establishing the claim

limη↓0 P
(
d[0,T ]

Lp
(X

η|b
⌊·/λ∗b (η)⌋

(x), X̂
η,ϵ|b
· (x)) ≥ 2ϵ

)
= 0. For simplicity of notations, we focus on the case

where T = 1. Nevertheless, the proof below can be easily generalized for arbitrary T > 0.

By definition of X̂
η,ϵ|b
t (x), we have |Xη|b

⌊t/λ∗b (η)⌋
(x) − X̂

η,ϵ|b
t (x)| < ϵ whenever X

η|b
⌊t/λ∗b (η)⌋

(x) ∈⋃
i∈[nmin]

(mi − ϵ,mi + ϵ). Now, we make a few observations. For any η > 0 and any positive in-

teger N , let I(η)
N (n) =∆ I

{
i
(η)
N (n) > 1/N2

}
where

i
(η)
N (n) =∆

∫ (n+1)/N

n/N

I
{
X

η|b
⌊t/λ∗b (η)⌋

(x) /∈
⋃

i∈[nmin]

(mi − ϵ,mi + ϵ)
}
dt ∀n = 0, 1, · · · , N − 1.

That is, i
(η)
N (n) is the amount of time over [ nN , n+1

N ) that X
η|b
⌊t/λ∗b (η)⌋

(x) is not close enough to any local

minima, and I(η)
N (n) is the indicator that i

(η)
N (n) > 1/N2.

Let K
(η)
N =∆

∑N−1
n=1 I(η)

N (n). The proof hinges on the following claims: there exist some C ∈ (0,∞),
a family of events Aη

N , and some constant M > 0 such that
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(i) on Aη
N , we have X

η|b
j (x) ∈ [−M,M ] for all j ≤ ⌊1/λ∗b(η)⌋;

(ii) for all positive integer N large enough, limη↓0 P(Aη
N ) = 1;

(iii) for all positive integer N large enough, there exists η̄ = η̄(N) > 0 such that under any η ∈ (0, η̄),

P(K
(η)
N ≥ j | Aη

N ) ≤ P

(
Binom(N,

2C

N
) ≥ j

)
∀j = 1, 2, · · · , N.

Here, Binom(n, p) is the RV denoting the number of successful trials among n independent Bernoulli
trials, each with success rate p. W.l.o.g., in claim (i) we can assume that M is sufficiently large such

that x ∈ [−M,M ] andmj ∈ [−M,M ] for all j ∈ [nmin]. As a result, we must have X̂
η,ϵ|b
t (x) ∈ [−M,M ]

as well for all t ≥ 0. To see how we apply these claims, let

d(η)
p (n) =∆

∫ (n+1)/N

n/N

∣∣∣Xη|b
⌊t/λ∗b (η)⌋

(x)− X̂
η,ϵ|b
t (x)

∣∣∣pdt.
On event Aη

N , for any n = 0, 1, · · · , N − 1, if i
(η)
N (n) ≤ 1/N2, we have d

(η)
p (n) ≤ ϵp · 1

N + (2M)p · 1
N2 ;

Otherwise, we have the trivial bound d
(η)
p (n) ≤ (2M)p · 1

N . Therefore, on Aη
N ,

∆(η) =∆
(
dLp

(
X

η|b
⌊·/λ∗b (η)⌋

(x), X̂
η,ϵ|b
· (x)

))p

=

N−1∑
n=0

∫ (n+1)/N

n/N

∣∣∣Xη|b
⌊t/λ∗b (η)⌋

(x)− X̂
η,ϵ|b
t (x)

∣∣∣pdt
≤ (2M)p · 1

N
+

N−1∑
n=1

∫ (n+1)/N

n/N

∣∣∣Xη|b
⌊t/λ∗b (η)⌋

(x)− X̂
η,ϵ|b
t (x)

∣∣∣pdt
≤ (2M)p · 1

N
+K

(η)
N · (2M)p

N
+ (N − 1−K

(η)
N ) ·

( ϵp
N

+
(2M)p

N2

)
≤ (2M)p ·

1 +K
(η)
N + 1

N

N
+ ϵp.

Then, given any N large enough, η ∈ (0, η̄(N)) and any β ∈ (0, 1),

r(η) =∆ P

(
∆(η) ≥

1 + 1
N + 2C +

√
Nβ

N︸ ︷︷ ︸
=∆ δ(N,β)

·(2M)p + ϵp
)

≤ P(K
(η)
N ≥ 2C +

√
Nβ) = P

(
{K(η)

N ≥ 2C +
√
Nβ} ∩Aη

N

)
+P

(
{K(η)

N ≥ 2C +
√
Nβ} \Aη

N

)
≤ P

(
Binom(N,

2C

N
) ≥ 2C +

√
Nβ

)
+P

(
(Aη

N )c
)

by claim (iii)

≤
var

[
Binom(N, 2C

N )
]

Nβ
+P

(
(Aη

N )c
)
≤ 2C

Nβ
+P

(
(Aη

N )c
)
.

Driving η ↓ 0, it follows from claim (ii) that lim supη↓0 r(η) ≤ 2C/Nβ for all N large enough.

Lastly, note that C/Nβ → 0 as N → ∞; also, due to β ∈ (0, 1) we have limN→∞ δ(N, β) = 0,
and hence δ(N, β) · (2M)p + ϵp < 2pϵp eventually for all N large enough. In summary, we get
limη↓0 P(∆(η) > 2pϵp) = 0 and conclude the proof. Now, it only remains to verify claims (i), (ii),
and (iii).

Proof of Claims (i) and (ii). We start by specifying events Aη
N . Let tN (n) = n/N and

Aη
N (n)
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=∆
{
X

η|b
⌊tN (k)/λ∗b (η)⌋

(x) ∈
⋃

i: mi∈V ∗b

(
mi −

ϵ

2
,mi +

ϵ

2

)
∀k ∈ [n]

}
︸ ︷︷ ︸

=∆Aη
N,1(n)

∩
{
X

η|b
⌊t/λ∗b (η)⌋

(x) ∈ [−M,M ] ∀t ≤ tN (k)
}

︸ ︷︷ ︸
=∆Aη

N,2(n)

and let Aη
N = Aη

N (N). Note that Aη
N (1) ⊇ Aη

N (2) ⊇ · · · ⊇ Aη
N (N) = Aη

N . Furthermore, {Xη|b
⌊t/λ∗b (η)⌋

:

t > 0} f.d.d.→ {Y ∗|bt : t > 0} due to {X̂η,ϵ|b
t : t > 0} f.d.d.→ {Y ∗|bt : t > 0} and limη↓0 P(|Xη|b

T (x) −
X̂

η,ϵ|b
T (x)| ≥ ϵ) = 0 for any T > 0; this is the content of Lemma A.3. Next, by definition, Y

∗|b
t only

visits states in V ∗b . Combining this fact with the weak convergence in f.d.d. we get limη↓0 P
(
Aη

N,1

)
= 1

for any N ≥ 1. On the other hand, part (i) of Lemma C.3 gives limη↓0 P
(
Aη

N,2

)
= 1 ∀N ≥ 1 for any

M large enough. This verifies claims (i) and (ii).

Proof of Claim (iii). Consider a random vector
(
Ĩη
N (n)

)
n∈[N−1] with law L

((
Iη
N (n)

)
n∈[N−1]

∣∣∣Aη
N

)
.

It suffices to find some C ∈ (0,∞) such that for all N large enough, there is η̄ = η̄(N) > 0 for the
following claim to hold: Given any n ∈ [N − 1] and any sequence ij ∈ {0, 1} ∀j ∈ [n− 1],

P
(
Ĩη
N (n) = 1

∣∣∣ Ĩη
N (j) = ij ∀j ∈ [n− 1]

)
< 2C/N ∀η ∈ (0, η̄). (C.35)

To see why, under condition (C.35) and for any η ∈ (0, η̄(N)), there exists a coupling between

iid Bernoulli RVs (ZN (n))n∈[N−1] with success rate 2C/N and (Ĩη
N (n))n∈[N−1] such that Ĩη

N (n) ≤
ZN (n) ∀n ∈ [N−1] almost surely. This stochastic dominance between (ZN (n))n∈[N−1] and (Ĩη

N (n))n∈[N−1]
immediately verifies claim (iii).

To prove condition (C.35) note that given anyN , any n ∈ [N−1], and any sequence ij ∈ {0, 1} ∀j ∈
[n− 1],

P
(
Ĩη
N (n) = 1

∣∣∣ Ĩη
N (j) = ij ∀j ∈ [n− 1]

)
=

P
(
Ĩη
N (n) = 1; Ĩη

N (j) = ij ∀j ∈ [n− 1]
)

P
(
Ĩη
N (j) = ij ∀j ∈ [n− 1]

)
=

P
({

Iη
N (n) = 1; Iη

N (j) = ij ∀j ∈ [n− 1]
}
∩Aη

N

)/
P(Aη

N )

P
({

Iη
N (j) = ij ∀j ∈ [n− 1]

}
∩Aη

N

)/
P(Aη

N )
by definition of

(
Ĩη
N (n)

)
n∈[N−1]

≤
P
({

Iη
N (n) = 1; Iη

N (j) = ij ∀j ∈ [n− 1]
}
∩Aη

N (n)
)

P
({

Iη
N (j) = ij ∀j ∈ [n− 1]

}
∩Aη

N

) due to Aη
N (n) ⊇ Aη

N

=
P
({

Iη
N (n) = 1; Iη

N (j) = ij ∀j ∈ [n− 1]
}
∩Aη

N (n)
)

P
({

Iη
N (j) = ij ∀j ∈ [n− 1]

}
∩Aη

N (n)
) ·

P
({

Iη
N (j) = ij ∀j ∈ [n− 1]

}
∩Aη

N (n)
)

P
({

Iη
N (j) = ij ∀j ∈ [n− 1]

}
∩Aη

N

)
= P

(
Iη
N (n) = 1

∣∣∣{Iη
N (j) = ij ∀j ∈ [n− 1]

}
∩Aη

N (n)
)

︸ ︷︷ ︸
=∆pη

1 (N)

·
P
({

Iη
N (j) = ij ∀j ∈ [n− 1]

}
∩Aη

N (n)
)

P
({

Iη
N (j) = ij ∀j ∈ [n− 1]

}
∩Aη

N

)
︸ ︷︷ ︸

=∆pη
2 (N)

.

For term pη1(N), note that onAη
N (n) we haveX

η|b
j (x) ∈

⋃
i: mi∈V ∗b

(mi− ϵ
2 ,mi+

ϵ
2 ) at j = ⌊tN (n)/λ∗b(η)⌋,

and hence (using Markov property)

pη1(N) ≤ max
i: mi∈V ∗b

sup
y∈(mi− ϵ

2 ,mi+
ϵ
2 )

P

(∫ 1/N

0

I
{
X

η|b
⌊s/λ∗b (η)⌋

(y) /∈ (mi − ϵ,mi + ϵ)
}
ds > 1/N2

)
.
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Applying Lemma C.4, for allN large enough there exist η̄ = η̄(N) > 0, such that pη1 ≤ C/N ∀η ∈ (0, η̄),
where C ∈ (0,∞) is independent of the value of N and η. As for term pη2 , note that for any event B
with P(B) > 0, we have

P(B ∩Aη
N (n))

P(B ∩Aη
N )

≤ P(B)

P(B)−P
(
(Aη

N )c
) → 1 as η ↓ 1 due to lim

η↓0
P(Aη

N ) = 1. (C.36)

In the definition of pη2 , note that there are only finitely many choices of n ∈ [N − 1] and finitely
many combinations for ij ∈ {0, 1} ∀j ∈ [n − 1]. By considering each of the finitely many choices for
B = {Iη

N (j) = ij ∀j ∈ [n − 1]} in (C.36), we can find some η̄ = η̄(N) such that pη2 < 2 ∀η ∈ (0, η̄)
uniformly for all those choices. Combining the bounds pη1 < C/N and pη2 < 2, we verify condition
(C.35) and conclude the proof.

D Properties of the Markov Jump Process Y ∗|b

Proposition D.1. Let Assumptions 6 and 7 hold. Given any minit ∈ {m1, . . . ,mnmin}, the following
claims hold for ((Uj)j≥1, (Vj)j≥1) defined in (C.5):

(i) For any t > 0, limi→∞P(
∑

j≤i Uj > t) = 1;

(ii) For any u > 0 and i ≥ 1, P(U1 + · · ·+ Ui = u) = 0;

(iii) Y
∗|b
· =d Φ((Uj)j≥1, (Vj)j≥1) holds for the mapping Φ defined in (A.4), ; that is, it is a continuous-

time Markov chain with initial distribution (3.9) and generator

P(Y
∗|b
t+h = mj | Y ∗|bt = mi) = h ·

∑
j′∈[nmin]: j′ ̸=i

qb(i, j
′)θb(mj |mj′) + o(h) as h ↓ 0; (D.1)

see (3.10) and (3.11) for the definitions of qb(i, j) and θb(mj |mi), respectively.

Proof. (i) Recall the definitions of qb(i) and qb(i, j) in (3.10). Let (Sn)n≥0 be a discrete-time Markov
chain with state space {m1, . . . ,mnmin} and one-step transition kernel P(Sn+1 = mj |Sn = mi) =
qb(i, j)/qb(i). Note that the chain is well-defined due to (C.3). We also introduce notations Sn(v) for
the chain initialized under S0(v) = v. For each n ≥ 0, set ISn (v) = i if and only if Sn(v) = mi; that
is, the sequence of indices (ISn (v))n≥0 indicates the state of the chain at time n.

Let (Ei)i≥0 be a sequence of iid Exponential RVs with rate 1, which is also independent of
(Sn(minit))n≥0. For any i ≥ 2, the law of (Uj)j≥1, (Vj)j≥1 defined in (C.5) then indicates that
(recall that U1 = 0 and V1 = minit)∑

j∈[i]

Uj =
d

∑
j=0,1,··· ,i−2

Ej

qb
(
ISj (minit)

) · I
{
Sj(minit) ∈ V ∗b

}
(D.2)

≥ 1

q∗
·

∑
j=0,1,··· ,i−2

Ej · I
{
Sj(minit) ∈ V ∗b

}
where q∗ =∆ max

i∈[nmin]: mi∈V ∗b
qb(i) ∈ (0,∞)

=d
Ni−2∑
j=0

Ej

q∗
where Ni =

∆

i∑
j=0

I
{
Sj(minit) ∈ V ∗b

}
.

To proceed with the proof of part (i), we fix some t > 0. Note that for any positive integer n, it

holds on event {
∑n

j=0 Ej/q
∗ > t} ∩ {Ni−2 > n} that

∑Ni−2

j=0 Ej/q
∗ > t. This implies P(

∑
j≤i Uj >

t) ≥ P(
∑n

j=0 Ej/q
∗ > t) ·P(Ni−2 > n), due to the independence between (Ej)j≥1 and (Sj)j≥0 (and
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hence Ni). Therefore, it suffices to show that, for any ϵ > 0, there exists some positive integer n = n(ϵ)
such that

P(

n∑
j=0

Ej/q
∗ > t) > 1− ϵ, lim

i→∞
P(Ni > n) = 1. (D.3)

Furthermore, the inequality P(
∑n

j=0 Ej/q
∗ > t) > 1 − ϵ holds for any n large enough due to q∗ ∈

(0,∞); see (C.3). Meanwhile, since Sn’s is irreducible, the chain will visit V ∗b (more generally, any
subset of its state space) infinitely often. In other words, for any fixed n, we have limi→∞P(Ni >
n) = limi→∞P(#{j = 0, 1, . . . , i : Sj(minit) ∈ V ∗b } > n) = 1. This concludes the proof of (D.3).

(ii) Fix some u > 0 and positive integer i. Representation (D.2) implies U1+· · ·+Ui =
d ∑i

j=1 Cj ·Ej

for an iid sequence (Ei)i≥1 of Exponential RVs with rate 1 and another sequence of RVs (Ci)i≥1 that is
independent of (Ei)i≥1. In particular, Ci’s only take values in the set C = {0}∪{1/qb(i) : mi ∈ V ∗b },
which has finitely many elements. Therefore,

P(U1 + · · ·+ Ui = u) =
∑

(c1,··· ,ci)∈C i

P(c1E1 + · · ·+ ciEi = u)P(Cj = cj ∀j ∈ [i]) = 0

due to the absolutely continuity of Exponential RVs.
(iii) Recall that U1 ≡ 0. We start by stating a useful property of the mapping Φ. Set T̂0 = 1. For

any k ≥ 1, define (under the convention U0 ≡ 0)

T̂k =∆ min{j > T̂k−1 : Uj ̸= 0}, V̂k =∆ V−1+T̂k
, Ûk =∆

−1+T̂k∑
j=T̂k−1

Uj = UT̂k−1
. (D.4)

Note that due to U1 ≡ 0, we have T̂1 ≥ 2 and hence −1+ T̂1 ≥ 1. This confirms that V̂1 is well-defined.
In simple terms, ((Ûk)k≥1, (V̂k)k≥1) can be interpreted as a transformation of ((Uj)j≥1, (Vj)j≥1) with
consecutive instantaneous jumps grouped together. As a result,

Φ
(
(Uj)j≥1, (Vj)j≥1

)
= Φ

(
(Ûk)k≥1, (V̂k)k≥1

)
. (D.5)

To proceed, we consider another representation of the Markov jump process Y ∗|b based on the
following straightforward observation: the law of the process would remain the same if we allow the
process to jump from any state mi to itself at any exponential rate (i.e., by including Markovian

“dummy” jumps where the process does not move at all). Specifically, Y
∗|b
· =d Φ((Ũk)k≥1, (Ṽk)k≥1)

with Ũk’s and Ṽk’s defined as follows. Let Ṽ1 be sampled from the distribution θb(·|minit) defined in

(3.11), and set Ũ1 ≡ 0. Note that so far, we have (Ũ1, Ṽ1) =d (Û1, V̂1). Furthermore, for any t > 0,
l ≥ 1, and mi, mj ∈ V ∗b (with possibly mi = mj),

P(Ũl+1 < t, Ṽl+1 = mj | Ṽl = mi, (Ṽj)
l−1
j=1, (Ũj)

l
j=1) = P(Ũl+1 < t, Ṽl+1 = mj | Ṽl = mi)

= r∗|b(i, j) ·
(
1− exp(−qb(i)t)

)
, (D.6)

where

r∗|b(i, j) =∆
∑

j′∈[nmin]: j′ ̸=i

qb(i, j
′)

qb(i)
· θb(mj |mj′) (D.7)

with qb(i) and qb(i, j) defined in (3.10). To see why Y
∗|b
· =d Φ((Ũk)k≥1, (Ṽk)k≥1), note that the

process Φ((Ũk)k≥1, (Ṽk)k≥1) is initialized under Ṽ1 ∼ θb(·|minit), which is the same initial distribution

of Y
∗|b
· . Moreover, any jump in Φ((Ũk)k≥1, (Ṽk)k≥1) from mi ∈ V ∗b to mj ∈ V ∗b (with possibly
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mi = mj) is Markovian and occurs with exponential rate
∑

j′ ̸=i qb(i, j
′)θb(mj |mj′). In other words,

Φ((Ũk)k≥1, (Ṽk)k≥1) is simply a reformulation of Y ∗|b where we include “dummy” jumps frommi ∈ V ∗b
to itself with exponential rate

∑
j′ ̸=i qb(i, j

′)θb(mi|mj′).
In light of (D.5), it only remains to show that(

(Ûk)k≥1, (V̂k)k≥1

)
=d

(
(Ũk)k≥1, (Ṽk)k≥1

)
. (D.8)

Specifically, fix some k ≥ 1, mi,mj ∈ V ∗b , and some t > 0. Observe that

P(Ûk+1 < t, V̂k+1 = mj , V̂k = mi)

=
∑
N≥1

∑
n≥1

P(Ûk+1 < t, VN+n = mj , T̂k+1 − 1 = N + n, VN = mi, T̂k − 1 = N) by (D.4)

=
∑
N≥1

∑
n≥1

P(UN+1 < t, Vp /∈ V ∗b ∀N + 1 ≤ p ≤ N + n− 1;

VN+n = mj , T̂k+1 − 1 = N + n, VN = mi, T̂k − 1 = N) by (D.4) and (C.5)

=
∑
N≥1

∑
n≥1

∑
(i1,··· ,in−1)∈I (i,n−1)

P(UN+1 < t, VN+p = mip ∀p ∈ [n− 1];

VN+n = mj , T̂k+1 − 1 = N + n, VN = mi, T̂k − 1 = N)

where I (i, n− 1) =∆
{
(i1, . . . , in−1) : ip ̸= ip−1 and mip /∈ V ∗b ∀p ∈ [n− 1]

}
with convention i0 = i

=
∑
N≥1

P(VN = mi, T̂k − 1 = N)

·
∑
n≥1

∑
(i1,··· ,in−1)∈I (i,n−1)

qb(i, i1)

qb(i)

(
1− exp

(
− qb(i)t

))qb(i1, i2)
qb(i1)

· · · qb(in−2, in−1)
qb(in−2)

qb(in−1, j)

qb(in−1)

using (C.5)

=
∑
N≥1

P(VN = mi, T̂k − 1 = N)

·
∑
i1 ̸=i

qb(i, i1)

qb(i)

(
1− exp

(
− qb(i)t

))
·
∑
n≥1

P(τS(m1) = n− 1, SτS(m1)(m1) = mj).

In the last line of the display above, we adopt the notations in part (i) and let Sn(v) be a Markov
chain with initial value S0(v) = v and transition kernel P(Sn+1 = mj |Sn = mi) = qb(i, j)/qb(i).
Furthermore, let τS(v) = min{n ≥ 0 : Sn(v) ∈ V ∗b } be the hitting time of any state in V ∗b . Now,
observe that

P(Ûk+1 < t, V̂k+1 = mj , V̂k = mi)

=
∑
N≥1

P(VN = mi, T̂k − 1 = N) ·
∑

i1∈[nmin]: i1 ̸=i

qb(i, i1)

qb(i)

(
1− exp

(
− qb(i)t

))
θb(mj |mi1)

=
∑
N≥1

P(VN = mi, T̂k − 1 = N) · r∗|b(i, j) ·
(
1− exp

(
− qb(i)t

))
with r∗|b(·, ·) defined in (D.7)

= r∗|b(i, j) ·
(
1− exp

(
− qb(i)t

))
·P(V̂k = mi).

This verifies P(Ûk+1 < t, V̂k+1 = mj | V̂k = mi) = r∗|b(i, j) ·
(
1 − exp(−qb(i)t)

)
. Through (D.6) we

conclude the proof of (D.8).
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E Technical Lemmas for Measures Č(k)|b and First Exit Anal-
ysis

This section collects useful results established in [34] for the measure Č(k)|b(·) defined in (2.14).
Throughout this section, we impose Assumptions 2, 3, and 5 on some I = (sleft, sright) where sleft <
0 < sright, and fix some b > 0 such that sleft/b /∈ Z and sright/b /∈ Z. With this, for l = infx∈Ic |x| =
|sleft| ∧ sright we have l > (J ∗b − 1)b. This allows us to fix, throughout this section, some ϵ̄ > 0 small
enough such that

ϵ̄ ∈ (0, 1 ∧ b), l > (J ∗b − 1)b+ 3ϵ̄. (E.1)

Next, for any ϵ ∈ (0, ϵ̄), let

t(ϵ) =∆ min
{
t ≥ 0 : yt(sleft + ϵ) ∈ [−ϵ, ϵ] and yt(sright − ϵ) ∈ [−ϵ, ϵ]

}
(E.2)

for the ODE yt(x) defined in (2.11). Also, recall that Iϵ =∆ (sleft + ϵ, sright − ϵ) is the ϵ-shrinkage of
set I. We use I−ϵ = [sleft + ϵ, sright − ϵ] to denote the closure of Iϵ. Then, the definition of t(·) implies

yt(y) ∈ [−ϵ, ϵ] ∀y ∈ I−ϵ , t ≥ t(ϵ). (E.3)

Lemma E.1 (Lemma D.2 of [34]). Let Assumptions 2, 3, and 5 hold. Let ϵ̄ ∈ (0, b) be defined as in
(E.1). For any |γ| > (J ∗b − 1)b+ ϵ̄ such that γ/b /∈ Z,

Č(J ∗b )|b({γ}) = 0.

Lemma E.2 (Lemma D.3 of [34]). If Assumptions 2, 3, and 5 hold, then Č(J ∗b )|b(Ic) ∈ (0,∞).

Lemma E.3 (Lemma D.4 of [34]). Let Assumptions 2 and 5 hold. Let ϵ̄ ∈ (0, b) be defined as in
(E.1). Given any open interval S ⊆ R, let

rS =∆ inf{|x| : x ∈ S}, dS =∆ ⌈rS/b⌉.

If dS ≥ k and rS − (dS − 1) · b > ϵ̄ for some positive integer k, then

Č(k)|b(S) > 0 ⇐⇒ dS = k.

Next, we collect a few useful results in [34] regarding the behavior of X
η|b
j (x) before exiting from

(some subset of) I or returning to the neighborhood of the origin. The proofs hinge on the sample
path large deviations developed in Result 1. Specifically, let τ>δ

1 (η) = min{n ≥ 0 : η|Zn| > δ} be the
arrival time of the first Zn with η|Zn| > δ (i.e., the first “large” noise). The next result states that it
is unlikely for Xη

j (x) to take long before exiting from Iϵ or returning to (−ϵ, ϵ).

Lemma E.4 (Lemma 4.4 of [34]). Let Assumptions 1, 2, 3, and 5 hold. Given any k ≥ 1 and
ϵ ∈ (0, ϵ̄), it holds for all T ≥ k · t(ϵ/2) that

lim
η↓0

sup
x∈I−ϵ

1(
λ(η)

)k−1P(
X

η|b
j (x) ∈ Iϵ \ (−ϵ, ϵ) ∀j ≤ T/η

)
= 0

where λ(η) = η−1P(|Z| > η−1).

Let R
η|b
ϵ (x) =∆ min

{
j ≥ 0 : X

η|b
j (x) ∈ (−ϵ, ϵ)

}
be the first time X

η|b
j (x) returned to the ϵ-

neighborhood of the origin. The next result verifies that, initialized within the attraction field I,

X
η|b
j (x) would return to (−ϵ, ϵ) efficiently with high probability.
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Lemma E.5 (Lemma 4.5 of [34]). Let Assumptions 1, 2, 3, and 5 hold. Let t(·) be defined as in (E.2)
and

E(η, ϵ, x) =∆
{
Rη|b

ϵ (x) ≤ t(ϵ/2)

η
; X

η|b
j (x) ∈ Iϵ/2 ∀j ≤ Rη|b

ϵ (x)
}
.

For each ϵ ∈ (0, ϵ̄) we have limη↓0 supx∈I−ϵ P
((

E(η, ϵ, x)
)c)

= 0.

Lastly, we show that it is unlikely for X
η|b
j (x) to deviate far from the origin without any “large”

Zn. Again, the proof makes heavy use of results in [34].

Lemma E.6. Let Assumptions 1, 2, 3, and 5 hold. Given any ϵ ∈ (0, ϵ̄) and positive integer N , there
is some δ̄ > 0 such that

lim
η↓0

sup
x∈(− ϵ

2 ,
ϵ
2 )

P
(
X

η|b
j (x) /∈ (−ϵ, ϵ) for some j < τ>δ

1 (η)
)/

ηN = 0 ∀δ ∈ (0, δ̄).

Proof. Note that the values of a(·) and σ(·) outside of [−ϵ, ϵ] ⊆ [−ϵ̄, ϵ̄] has no impact on the first exit
time from (−ϵ, ϵ) when starting from (−ϵ/2, ϵ/2). In light of Assumption 3, by modifying the values
of a(·) and σ(·) outside of [−ϵ̄, ϵ̄] we can assume w.l.o.g. the existence of some 0 < c ≤ C < ∞ that

inf
x∈R

σ(x) ≥ c, sup
x∈R

σ(x) ∨ |a(x)| ≤ C. (E.4)

For any r > 0, let T η
r (x) =∆ min{j ≥ 0 : X

η|b
j (x) /∈ (−r, r)}. Due to the monotonicity in

τ>δ′

1 (η) ≤ τ>δ
1 (η) for any 0 < δ′ < δ, it suffices to show that for any positive integer N and any small

enough ϵ > 0, there is some δ = δ(N, ϵ) > 0 such that

lim sup
η↓0

sup
x∈(−ϵ,ϵ)

P
(
T η
2ϵ(x) < τ>δ

1 (η)
)/

ηN = 0. (E.5)

Fix some β > α where α > 1 is specified in Assumption 1. Also, pick some θ ∈ (0, β − α). Applying
Lemma 4.6 (i) of [34], we see that the claim P(τ>δ

1 (η) > 1/ηβ) = o
(
exp(−1/ηθ)

)
(as η ↓ 0) holds for

any δ > 0. Also, note that τ>δ
1 (η) only takes integer values, and observe that{

T η
2ϵ(x) < τ>δ

1 (η)
}
⊆

{
T η
2ϵ(x) < τ>δ

1 (η) ≤ 1/ηβ
}
∪
{
τ>δ
1 (η) > 1/ηβ

}
.

Therefore, to prove (E.5) we only need to find some δ > 0 such that

sup
x∈(−ϵ,ϵ)

P
(
T η
2ϵ(x) < τ>δ

1 (η) ≤ ⌊1/ηβ⌋
)
= o(ηN ) as η ↓ 0. (E.6)

Recall the definition of t(ϵ) in (E.2). Let t =∆ t(ϵ/2) < ∞ and K(η) =∆ ⌈ ⌊1/η
β⌋

⌊t/η⌋ ⌉. Note that

K(η) = O(1/ηβ−1). Next, we fix some ϵ̃ > 0 small enough such that 2 exp(tD)ϵ̃ < ϵ/2, with D < ∞
being the Lipschitz constant in Assumption 2. Define events

Ãk(η, x) =
∆

{
max

(k−1)⌊ t
η ⌋+1≤j≤k⌊ t

η ⌋∧
(
τ>δ
1 (η)−1

) η∣∣∣∣ j∑
i=(k−1)⌊ t

η ⌋+1

σ
(
X

η|b
i−1(x)

)
Zi

∣∣∣∣ ≤ ϵ̃

}
.

For any x ∈ (−ϵ, ϵ), any δ ∈ (0, b
2C ) and any η ∈ (0, ϵ̃

C ∧ b∧1
2C ) (where C is specified in (E.4)), on event

Ã1(η, x) we observe the following facts. First, from part (b) of Lemma 3.7 in [34],

sup
s≤ t

η∧
(
τ>δ
1 (η)−1

) ∣∣∣yηs(x)−X
η|b
⌊s⌋(x)

∣∣∣ < exp(tD)ϵ̃+ exp(tD)ηC < 2 exp(tD)ϵ̃ < ϵ/2
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due to our choice of η and ϵ̃ above. Next, by Assumption 5, we have ys(x) ∈ (−ϵ, ϵ) ∀s ≥ 0 and

yt(x) ∈ (−ϵ/2, ϵ/2). Combining these two facts, we get that X
η|b
s (x) for all s ≤ ⌊t/η⌋ ∧

(
τ>δ
1 (η)− 1

)
and, in case that τ>δ

1 (η) > ⌊t/η⌋, we must have X
η|b
⌊t/η⌋(x) ∈ (−ϵ, ϵ). By repeating this argument

inductively for k = 2, 3, · · · ,K(η), we can see that for any x ∈ (−ϵ, ϵ), any δ ∈ (0, b
2C ), and any

η ∈ (0, ϵ̃
C ∧ b∧1

2C ), it holds on event
⋂K(η)

k=1 Ãk(η, x) that

X
η|b
j (x) ∈ (−2ϵ, 2ϵ) ∀j ≤ ⌊1/ηβ⌋ ∧

(
τ>δ
1 (η)− 1

)
≤ K(η)⌊t/η⌋ ∧

(
τ>δ
1 (η)− 1

)
.

As a result, for any x ∈ (−ϵ, ϵ), any δ ∈ (0, b
2C ), and any η ∈ (0, ϵ̃

C ∧ b∧1
2C ),

sup
x∈(−ϵ,ϵ)

P
(
T η
2ϵ(x) < τ>δ

1 (η)
)
≤ sup

x∈(−ϵ,ϵ)
P
(K(η)⋃

k=1

(
Ãk(η, x)

)c)
.

Lastly, due to part (a) of Lemma 3.3 of [34], the claim supk∈[K(η)] supx∈(−ϵ,ϵ) P
((

Ãk(η, x)
)c)

=

o(ηN+β−1) holds for all δ > 0 small enough, which leads to

sup
x∈(−ϵ,ϵ)

P
(
T η
2ϵ(x) < τ>δ

1 (η)
)
≤ K(η) · o(ηN+β−1) ≤ O(1/ηβ−1) · o(ηN+β−1) = o(ηN ).

This verifies claim (E.6) and concludes the proof.

F Details of Experiments

F.1 Details of the R1 simulation experiment

The function f used in the experiments is

f(x) = (x+ 1.6)(x+ 1.3)2(x− 0.2)2(x− 0.7)2(x− 1.6)
(
0.05|1.65− x|

)0.6
·
(
1 +

1

0.01 + 4(x− 0.5)2

)(
1 +

1

0.1 + 4(x+ 1.5)2

)(
1− 1

4
exp(−5(x+ 0.8)(x+ 0.8))

)
.

(F.1)

s1 s2 s3−L Lm1 m2 m3 m4

Ω1 Ω2 Ω3 Ω4

Figure F.1: Illustration of the test function f used in the R1 experiment.

As shown in Figure F.1, the four isolated local minimizers of f are m1 = −1.51, s1 = −1.3,m2 =
−0.66, s2 = 0.2,m3 = 0.49, s3 = 0.7,m4 = 1.32, and in our experiment we restrict the iterates on
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[−L,L] with L = 1.6. The heavy-tailed noises we used in the experiment were Zn = 0.1UnWn where
Wn were sampled from Pareto Type II distribution (aka Lomax distribution) with shape parameter
α = 1.2, and the signs Un were iid RVs such that P(Un = 1) = P(Un = −1) = 1/2.

In the first exit time experiment, we tested three different settings: (a) b = 0.28 (so that l∗ = 3);
(b) b = 0.5 (so that l∗ = 2); (c) no gradient clipping (so that l∗2 = 1). For the first case, we tested
learning rates {0.1, 0.05, 0.03, 0.02, 0.01, 0.005, 0.003, 0.001}, while for the other two cases, we tested
learning rates {0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001}. For each case, we ran the simulation 20
times and plotted the average of the 20 exit times. Lastly, to prevent excessively long running time
of the experiment, the simulation was terminated when the iteration number reached 5 × 107. This
threshold was reached only in the setting with η = 0.001, b = 0.28.
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Figure F.2: Five sample paths of SGD under heavy-tailed noises with gradient clipping (left) and
without gradient clipping (right). Note that in each case, SGD sample paths exhibit similar patters:
SGD almost completely avoided sharp minima with gradient clipping, whereas SGD spent significant
amount of time at the sharp minima without gradient clipping.

Next, we present extra sample paths of SGD when applied to function f in (F.1) in Figure F.2
and F.3. The blue curve on the right side of each plot shows f rotated by 90 degrees, and the
dashed lines indicate the locations of local minima. For better readability of the figures, we plotted
Xn for every 5,000 iterations. To generate these plots, we initialized the SGD iterates at 0.3 (so
that it is in Ω3 = (0.2, 0.7)) and fixed the learning rate as η = 0.001. Again, we tested both with
gradient clipping (with b = 0.5) and without gradient clipping. Moreover, we also tested light-tailed
noises where we use N(0, 1) as the distribution for noises Zn. For each sample path of Xn, we run
10, 000, 000 iterations. In the left plots of Figure F.2, one can see that with clipped heavy-tailed
stochastic gradients, the SGD iterates almost always stay around the wide attraction fields, and the
sharp minima are almost completely eliminated from the trajectories of SGD. In comparison, in the
right plots of Figure F.2 one can see that without gradient clipping, the heavy-tailed noises will drive
SGD to spend substantial amount of time in all the different local minima, including the sharp ones.
Lastly, from Figures F.3, one can see that under light-tailed noises and small learning rates, SGD
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Figure F.3: Five sample paths of SGD under light-tailed noises with gradient clipping (left) and
without gradient clipping (right). Note that regardless of the use of gradient clipping, SGD never
manages to escape the local minimum that it started from.

cannot escape a sharp minima once trapped there.

F.2 Details of the Rd simulation experiment

As illustrated in the contour plot in Figure 4.1 (a), the function f in this experiment is a modified
version of Himmelblau function, a commonly used test function for optimization algorithm. The
modifications serve two purposes. First, as shown in Figure 4.1 (b), for the modified function the four
attraction fields Ω1,Ω2,Ω3,Ω4 have different sizes; in particular, under gradient clipping threshold
b = 2.15, from the local minimizers of Ω1 and Ω2 (indicated by red dots in the corresponding area)
at least two jumps are required to escape from the attraction field, while from the local minimizer in
Ω3 or Ω4 it is possible to escape with one jump. Therefore, for the minimum jump number required
to escape, we have l∗1 = l∗2 = 2 > l∗3 = l∗4 = 1 in this case. Second, for the modified test function f ,
the local minimizer in Ω2 is not a single point but a connected line segment, which is indicated by
the dark line in bottom-left region in Figure 4.1 (a) and the red line segment in in Figure 4.1 (b).
Therefore, the modification allows us to test the heavy-tailed SGD methods on a more general loss
landscape.

Now we describe the construction of the test function f . Let h be the Himmelblau function
with expression h(x, y) = (x2 + y − 11)2 + (x + y2 − 7)2. Next, define the following transformation

for coordinates: ϕ(x, y) =
(
x(exp(c0(x − cx) + 1)), y(exp(c0(x − cx) + 1)

)
. Let the composition be

hϕ(x, y) = h
(
ϕ(x − ax, y)

)
. To create the connected region of local minimizers, define the following

locally “cut” version of hϕ:

i(x, y) = 1{x ∈ [bl, br], |y − ay| < by},
h∗(x, y) = (1− i(x, y))hϕ(x, y) + i(x, y)min{hϕ(x, y), c1|y − ay|1.1}.
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In other words, by taking minimum of the original hϕ and a polynomial function w.r.t. y around
the original local minimizer of Ω2, we obtain a function h∗ that attains local minimum on an entire
line segment with y = ay. Lastly, the test function we use in the experiment is f = 0.1h∗, with
ax = 1.5, ay = −2.9, bl = −5.5, br = −0.5, by = 2.0, c0 = 0.4, c1 = 12.

In the experiment, we initialize the SGD iterates Xk at X0 = (2.9, 1.0), which is very close to the
local minimizer in the small attraction field Ω3. For both the clipped and unclipped SGD, we perform
updates for 3×107 steps, under learning rate 5×10−4 and heavy-tailed noise Zk = 0.75Wk where the
iid samples Wk are isotropic and the law of ∥Wk∥, the size of the noise, is Pareto(1.2). For clipped
SGD, we use threshold b = 2.15. To prevent the iterates from drifting to infinity, after each update
Xk is projected back to the L2 ball centered at origin with radius 4.2 whenever Xk leaves this ball.
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Figure F.4: Heat map of SGD iterates when optimizing the modified Himmelblau function.

In Figure F.4, we use the 3× 107 steps of SGD iterates (for both the clipped and unclipped case)
to create heat maps showing locations of SGD iterates. From this figure, two points can be made
clear: first, the heavy-tailed SGD does spend much less time at the two small attraction fields when
gradient clipping is applied; second, in Ω2 (the bottom-left attraction field) the SGD iterates frequent
the entire connected region of local minima instead of a certain point on this line segment.

F.3 Details of the ablation study

We first mention that the all experiments using neural networks are conducted on Nvidia GeForce
GTX 1080 Ti. For the ablation study, the experiments and scripts are adapted from the ones in [37].2.

In Figure F.5, we display the gradient noise distribution in the three tasks of the ablation study
after the model is randomly initialized.

The experiment setting and choice of hyperparameters are mostly adapted from the experiment
in [37]. We consider three different tasks: (1) training LeNet on corrupted FashionMNIST dataset;
specifically, we use a 1200-sample subset of the original FashionMNIST training dataset, and for 200
samples points in the training set we randomly assign a label instead of using the correct ones; (2)
VGG11 on SVHN dataset, where we use a 25000-sample subset of the training dataset; (3) VGG11
on CIFAR10, where we use the entire training set. For all tasks we use the entire test dataset when
evaluating test accuracy.

The heavy-tailed multipliers Zn used in this experiment, whenever heavy-tailed noise is needed,
are Zn = cWn where Wn are iid Pareto(α) RVs. For each task, we first randomly initialize each model,

2https://github.com/uuujf/SGDNoise
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Table F.1: Test accuracy (percentage) and expected sharpness of different methods across different
tasks. The reported numbers are the averages and 95%CI over 5 replications.

Test accuracy LB SB SB + Clip SB + Noise Our 1 Our 2

FMNIST, LeNet 68.7±0.4 69.2±0.8 68.8±0.6 64.4±3.4 69.5±0.8 70.1±0.4
SVHN, VGG11 82.9±0.4 85.9±0.2 85.9±0.2 38.9±24.1 88.4±0.2 88.4±0.2
CIFAR10, VGG11 69.4±0.5 74.4±0.4 74.4±0.8 40.5±25.1 75.7±1.1 75.9±0.7

Expected Sharpness LB SB SB + Clip SB + Noise Our 1 Our 2

FMNIST, LeNet 0.032±0.006 0.008±0.001 0.009±0.001 0.047±0.02 0.003±0.0003 0.002±0.0002
SVHN, VGG11 0.694±0.048 0.037±0.007 0.041±0.006 0.012±0.009 0.002±0.0007 0.005±0.004
CIFAR10, VGG11 2.043±0.083 0.050±0.013 0.039±0.019 2.046±2.4 0.024±0.005 0.037±0.007

Table F.2: Hyperparameters for training in the ablation study

Hyperparameters FashionMNIST, LeNet SVHN, VGG11 CIFAR10, VGG11

learning rate 0.05 0.05 0.05
batch size for gSB 100 100 100
training iterations 10,000 30,000 30,000
gradient clipping threshold 5 20 20
c 0.5 0.5 0.5
α 1.4 1.4 1.4

Table F.3: Sharpness of different methods across different tasks. The reported numbers are the
averages over 5 replications.

PAC-Bayes Sharpness LB SB SB + Clip SB + Noise Our 1 Our 2

FashionMNIST, LeNet 5.9× 103 3× 103 3.3× 103 3.1× 103 1.9× 103 1.6× 103

SVHN, VGG11 2.97× 104 6.9× 103 7.3× 103 7.76× 104 2.1× 103 2.3× 103

CIFAR10, VGG11 4.87× 104 7.2× 103 6.8× 103 6.74× 104 4.8× 103 5.8× 103

Maximal Sharpness LB SB SB + Clip SB + Noise Our 1 Our 2

FashionMNIST, LeNet 1.01× 104 4.9× 103 5.4× 103 5.4× 103 3.2× 103 2.5× 103

SVHN, VGG11 3.78× 104 9.1× 103 9.3× 103 1.19× 105 2.5× 103 2.8× 103

CIFAR10, VGG11 5.46× 104 8.5× 103 8× 103 1.18× 105 5.8× 103 6.5× 103
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Figure F.5: Distribution of gradient noise in different tasks of the ablation study.
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Figure F.6: Test accuracy of the proposed clipped heavy-tailed methods vs. test accuracy of vanilla
SGD in the ablation study.

and then run the 6 candidate methods in parallel starting from the same randomly initialized model
weights for a fair comparison.

The hyperparameters in training for each task are listed in Table F.2. The same set of hyper-
parameters is used for all methods in the same task. Whenever gradient clipping scheme is applied,
we clip the gradient if its L2 norm exceeds the threshold given in Table F.2. The exception here
is the “SB + Noise” method: we use learning rate η = 0.005; for FashionMNIST task we train for
100,000 iterations and the heavy-tailed noise is removed for the final 50,000 iterations; for SVHN
and CIFAR10 tasks, we train for 150,000 iterations and heavy-tailed noise is removed for the last
70,000 iterations. Besides, for this method we always clip the model weights if its L∞ norm exceeds
1. The reason for the extra tuning and extended training in “SB + Noise” method is that, without
the said modifications, in all three tasks we observed that the model weights quickly drift to infinity
and explodes; even with the weight clipping implemented, the model performance stays at random
level with no signs of improvements if we do not tune down learning rate.

In Table F.3, we also report the sharpness of solutions under different shaprness metrics. First,
the PAC-Bayes Sharpness metric (see equation (53) in [13]) is defined as 1/σ2 where σ is equal to the
smallest δ that induces a 0.1 expected sharpness, and reflects the sharpness/flatness parameter used
in studies on generalization gaps under the PAC-Bayes framework (see [23]). Besides, the Maximal
Sharpness metric (see equation (54) in [13]) is defined as 1/σ2 where σ is equal to the smallest radius
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Table F.4: Results and 95% CI in the experiments with data augmentation.
Test Accuracy SB + Clip Our 1 Our 2
CIFAR10, VGG11 89.5±0.2 90.7±0.1 90.5±0.2
CIFAR100, VGG16 56.3±0.3 65.4±1.2 63.0±2.5
Expected Sharpness SB + Clip Our 1 Our 2
CIFAR10, VGG11 0.17±0.005 0.09±0.004 0.10±0.003
CIFAR100, VGG16 0.86±0.02 0.44±0.05 0.48±0.07

Table F.5: Sharpness of solutions obtained by different methods in CIFAR10/100 tasks with data
augmentation. Numbers reported here are the average of 5 replications.

CIFAR10-VGG11 SB + Clip Our 1 Our 2
Expected Sharpness 0.167 0.085 0.096
PAC-Bayes Sharpness 1.31× 104 9× 103 104

Maximal Sharpness 1.66× 104 1.29× 104 1.22× 104

CIFAR100-VGG16 SB + Clip Our 1 Our 2
Expected Sharpness 0.857 0.441 0.479
PAC-Bayes Sharpness 2.49× 104 1.9× 104 1.98× 104

Maximal Sharpness 2.75× 104 2.12× 104 2.16× 104

δ that makes max∥ν∥∞≤δ |L(θ
∗ + ν)−L(θ∗)| ≥ 0.1, and metrics of form max∥ν∥≤δ |L(θ∗ + ν)−L(θ∗)|

can be considered as a proxy for the spectral norm of the Hessian at the solution (see [2]). It worth
noticing that, for all three sharpness metrics, the smaller the value is the ”flatter” the loss landscape
is around the solution. Lastly, for evaluation of the PAC-Bayes Sharpness and Maximal Sharpness
metrics, we conduct binary search as in Algorithm 2 of [13] with ϵd = 0.01, ϵσ = 0,M1 = 10 and
M2 = 100; in our setting we always evaluate the training loss using one sweep of the entire training
set, so M3 is a case-specific and is equal to the number of batches of the training set under the batch
size for the task at hand.

In Figure F.6, we plot the test accuracy of our method against that of the SGD for all 5 replications
and 3 tasks.

F.4 Details of CIFAR10/100 experiments with data augmentation

For both methods, we train the model for 300 epochs and set the initial learning rate as 0.1. In our
method, the training can be partitioned into two phases. In the first phase (the first 200 epochs), the
learning rate is kept at a constant. In the second phase, for every 30 epoch we reduce the learning rate
by half. Also, an L2 weight decaying with coefficient 5×10−4 is enforced. As for parameters for heavy-
tailed noises in (5.1), we use c = 0.5 and α = 1.4 in the first phase, and in the second phase we remove
heavy-tailed noise and use SB to update weights. In both methods for the small-batch direction gSB

the batch size is 128, while for gLB we evaluate the gradient on a large sample batch of size 1,024.
Under the epoch number 300 and batch size 128, the count of total iterations performed during training
is 1.17×105. To augment the dataset, random horizontal flipping and cropping with padding size 4 is
applied for each training batch. Lastly, gradient clipping scheme is applied for both methods, and we
fix b = 0.5. In other words, when the learning rate is η (note that due to the scheduling of learning
rates, η will be changing throughout the training), the gradient is clipped if its L2 norm is larger than
b/η. The scripts are adapted from the ones in https://github.com/chengyangfu/pytorch-vgg-cifar10.

These results are presented in Table 5.2. Furthermore, in Table F.5 we see that our truncated
heavy-tailed method also manages to find solutions with a flatter geometry.
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