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Abstract

This paper introduces a novel framework that connects large deviations and metastability anal-
ysis in heavy-tailed stochastic dynamical systems. Employing this framework in the context of
stochastic difference equations Xη

j+1(x) = Xη
j (x) + ηa

(
Xη

j (x)
)
+ ησ

(
Xη

j (x)
)
Zj+1 and its varia-

tion with truncated dynamics, X
η|b
j+1(x) = X

η|b
j (x) + φb

(
ηa

(
X

η|b
j (x)

)
+ ησ

(
X

η|b
j (x)

)
Zj+1

)
, where

ϕb(x) = (x/|x|)max{|x|, b}, we first establish locally uniform sample path large deviations and
then translate such asymptotics into a precise characterization of the joint distribution of the first
exit time and exit location. As a result, we obtain the heavy-tailed counterparts of the classi-
cal Freidlin-Wentzell and Eyring-Kramers theorems. Our large deviations asymptotics are sharp
enough to identify how rare events arise in heavy-tailed dynamical systems and characterize the
catastrophe principle. Moreover, it also unveils the discrete hierarchy of phase transitions in the
asymptotics of the first exit times and locations under truncated heavy-tailed noises. Our results
in this paper open up the possibility of systematic analysis of the global dynamics of heavy-tailed
stochastic processes. In the appendix, we also present the corresponding results for the Lévy
driven SDEs.

Contents

1 Introduction 2

2 Main Results 7
2.1 Uniform M(S \ C)-Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Heavy-Tailed Large Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Sample-Path Large Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Catastrophe Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Metastability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 First Exit Times and Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 General Framework: Asymptotic Atoms . . . . . . . . . . . . . . . . . . . . . . 17

3 Uniform M-Convergence and Sample Path Large Deviations 18
3.1 Proof of Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Technical Lemmas for Theorems 2.3 and 2.4 . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Proofs of Theorems 2.3 and 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Proof of Theorem 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3 Proof of Proposition 3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1



4 Metastability Analysis 45
4.1 Proof of Theorem 2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Proof of Theorem 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A Results under General Scaling 61
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1 Introduction

The analysis of large deviations and metastability in stochastic dynamical systems has a rich history
in probability theory and continues to be a vibrant field of research. For instance, the classical
Freidlin-Wentzell theorem (see [62]) analyzed sample-path large deviations of Itô diffusions, and over
the past few decades, the theory has seen numerous extensions, including the discrete-time version
of Freidlin–Wentzell theorem (see, e.g., [45, 38]), large deviations for finite dimensional processes
under relaxed assumptions (see, e.g., [20, 24, 23, 1, 25]), Freidlin–Wentzell-type bounds for infinite
dimensional processes (see, e.g., [12, 13, 37]), and large deviations for stochastic partial differential
equations (see, e.g., [61, 15, 57, 44]), to name a few. On the other hand, the exponential scaling and the
pre-exponents in the asymptotics of first exit times under Brownian perturbations were characterized
in the Eyring–Kramers law (see [27, 40]). There have been various theoretical advancements since these
seminal works, such as the asymptotic characterization of the most likely exit path and the exit times
for Brownian particles under more sophisticated gradient fields (see [43]), results for discrete-time
processes (see, e.g., [39, 14]), and applications in queueing systems (see, e.g., [60]). For an alternative
perspective on metastability based on potential theory, which diverges from the Freidlin-Wentzell
theory, we refer the readers to [9].

While such developments provide powerful means to understand rare events and metastability of
classical light-tailed systems, they often fail to provide useful bounds when it comes to the heavy-
tailed systems. As shown in [32, 34, 35, 33], when the stochastic processes are driven by heavy-tailed
noises, the exit events are typically caused by large perturbations of a small number of components.
This is in sharp contrast to the light-tailed counterparts where rare events typically arise via smooth
tilting of the nominal dynamics. Due to such a stark difference in the mechanism through which rare
events arise, heavy-tailed systems exhibit a fundamentally different large deviations and metastability
behaviors and call for a different set of technical tools for successful analysis.

In this paper, we build a general framework for asymptotic analysis of heavy-tailed dynamical
systems by developing a set of machinery that uncovers the interconnection between the large devi-
ations and the metastability of stochastic processes. Building upon this framework, we characterize
the sample-path large deviations and metastability of heavy-tailed stochastic difference equations (and
stochastic differential equations in the appendix), thus offering the heavy-tailed counterparts of Frei-
dlin–Wentzell and Eyring–Kramers theory. More precisely, the main contributions of this article can
be summarized as follows:

• Heavy-tailed Large Deviations: We establish sample-path large deviations for heavy-tailed
dynamical systems. We propose a new heavy-tailed large deviations formulation that is locally
uniform w.r.t. the initial values. We accomplish this by formulating a uniform version ofM(S\C)-
convergence [42, 56]. Our large deviations characterize the catastrophe principle (also known
as the principle of big jumps), which reveals a discrete hierarchy governing the causes and
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probabilities of a wide variety of rare events associated with heavy-tailed stochastic difference
equations. Moreover, this new formulation of the heavy-tailed large deviations paves the way to
the analysis of local stability and global dynamics.

• Metastability Analysis: We establish a scaling limit of the exit-time and exit-location for
stochastic difference equations. We accomplish this by developing a machinery for local stability
analysis of general (heavy-tailed) Markov processes. Central to the development is the concept of
asymptotic atoms, where the process recurrently enters and asymptotically regenerates. Lever-
aging the locally uniform version of sample-path large deviations over such asymptotic atoms,
we obtain sharp asymptotics of the joint distribution of the (scaled) exit-times and exit-locations
for heavy-tailed processes. Notably, this complements the investigation of the exit times under
the truncated dynamics, which was first analyzed in [35] in the context of Weibull tails.

In a companion paper [64], we show that the above framework is powerful enough to identify a scaling
limit and characterize the global behavior of the heavy-tailed dynamical systems over a multi-well
potential at the process level. In particular, the scaling limit is a Markov jump process whose state
space consists of the local minima of the potential; under the truncated dynamics, the state space
consists of only the widest minima. This demonstrates that the truncation changes the global dynamics
of the dynamical systems qualitatively compared to the untruncated counterparts; see [21, 29]. These
findings systematically characterize a curious phenomena that the truncated heavy-tailed processes
avoid narrow local minima altogether in the limit. As a result, it can be shown that the fraction
of time such processes spend in the narrow attraction field converges to zero as the step-size tends
to zero. Precise characterization of such phenomena is of fundamental importance in understanding
and further improving the curious effectiveness of the stochastic gradient descent (SGD) algorithms
in training deep neural networks.

In this paper, we focus on the class of heavy-tailed phenomena captured by the notion of regular
variation. To be specific, let (Zi)i≥1 be a sequence of iid random vectors in Rm such that EZ1 = 0
and P(∥Zi∥ > x) is regularly varying with index −α as x→ ∞ for some α > 1. That is, there exists
some slowly varying function ϕ such that P(∥Z1∥ > x) = ϕ(x)x−α. For any η > 0 and x ∈ Rm, let(
Xη

j (x)
)
j≥0

be the solution of the following stochastic difference equation

Xη
0 (x) = x; Xη

j+1(x) = Xη
j (x) + ηa

(
Xη

j (x)
)
+ ησ

(
Xη

j (x)
)
Zj+1 ∀j ≥ 0. (1.1)

Throughout this paper, we adopt the convention that the subscript denotes the time, and the super-
script η denotes the scaling parameter that tends to zero. Furthermore, we also consider a truncated
variation of Xη

j+1(x) which is arguably more relevant when Zi’s are heavy-tailed. Specifically, let
φb(·) be the projection operator from Rm onto the closed ball centered at the origin with radius b.

Define
(
X

η|b
j (x)

)
j≥0

with the following recursion:

X
η|b
0 (x) = x; X

η|b
j+1(x) = X

η|b
j (x) + φb

(
ηa
(
X

η|b
j (x)

)
+ ησ

(
X

η|b
j (x)

)
Zj+1

)
∀j ≥ 0. (1.2)

In other words, X
η|b
j (x) is a modulated version of Xη

j (x) where the distance traveled at each step
is truncated at b. Such dynamical systems arise in the training algorithms for deep neural networks,
and their global dynamics has a close connection to the curious ability of SGDs to regularize the
deep neural networks algorithmically. See, for example, [63] and the references therein for more
details. Note that (1.1) and (1.2) can be viewed as discretizations of small noise SDEs driven by Lévy
processes. All the results we establish for (1.1) and (1.2) in this paper can also be established for the
stochastic differential equations driven by regularly-varying Lévy processes through a straightforward
adaptation of the machinery we develop in this paper. Note that although (1.1) and (1.2) are probably
the most natural scaling regime, more general scaling can be considered. In Appendix A, we present
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the corresponding results under more general scaling regimes, i.e.,

Xη
0 (x) = x, Xη

j (x) = Xη
j−1(x) + ηa

(
Xη

j−1(x)
)
+ ηγσ

(
Xη

j−1(x)
)
Zj ∀j ≥ 1;

X
η|b
0 (x) = x, X

η|b
j (x) = X

η|b
j−1(x) + φb

(
ηa
(
X

η|b
j−1(x)

)
+ ηγσ

(
X

η|b
j−1(x)

)
Zj

)
∀j ≥ 1.

(1.3)

with some γ > 0. Similar results hold for Lévy-driven SDEs, which are summarized in Appendix B.
At the crux of this study is a fundamental difference between light-tailed and heavy-tailed stochas-

tic dynamical systems. This difference lies in the mechanism through which system-wide rare events
arise. In light-tailed systems, the system-wide rare events are characterized by the conspiracy princi-
ple: the system deviates from its nominal behavior because the entire system behaves subtly differently
from the norm, as if it has conspired. In contrast, the catastrophe principle governs the rare events in
heavy-tailed systems: catastrophic failures (i.e., extremely large deviations from the average behavior)
in a small number of components drive the system-wide rare events, and the behavior of the rest of
the system is indistinguishable from the nominal behavior.

The principle of a single big jump, a special case of the catastrophe principle, has been discussed
in the heavy-tail and extreme value theory literature for a long time. That is, in many heavy-tailed
systems, the system-wide rare events arise due to exactly one catastrophe. This line of investigation
was initiated in the classical works [46, 47]. The summary of the subsequent developments in the
context of processes with independent increments can be found in, for example, [7, 22, 26, 28]. The
principle of a single big jump has been rigorously confirmed for random walks in the form of heavy-
tailed large deviations at the sample-path level in [31]. More recently, [56] established a fully general
catastrophe principle, which goes beyond the principle of a single big jump and characterizes the rare
events driven by any number of catastrophes for regularly varying Lévy processes and random walks.
For example, let D denote the space of càdlàg functions over [0, 1], let Sj ≜ Z1 + · · · + Zj denote a

mean-zero random walk, and let Sn ≜ {Sn
⌊nt⌋/n : t ∈ [0, 1]} denote a scaled version of Sj . Suppose

that Zi’s have a regularly varying tail with index α as above. Then, the sample path large deviations
established in [56] takes the following form: for “general” B ∈ D,

0 < Ck(B
◦) ≤ lim inf

n→∞

P(Sn ∈ B)

(nP(|Z1| > n))k

≤ lim sup
n→∞

P(Sn ∈ B)

(nP(|Z1| > n))k
≤ Ck(B

−) <∞,

(1.4)

where k is the minimal number of jumps that a step function must possess in order to belong to B,
Ck(·) is a measure on D supported on the set of step functions with k or less jumps, and B◦ and B−

are the interior and closure of B, respectively. Here, k, as a function of B, plays the role of the infimum
of rate function over B in the classical light-tailed large deviation principle (LDP) formulation. See
also [5] where asymptotic bounds similar to (1.4) were obtained for random walks under more general
scaling.

Note that in contrast to the standard log-asymptotics in the classical LDP framework, (1.4) pro-
vides exact asymptotics. This formulation provides a powerful framework in heavy-tailed contexts; for
instance, this formulation has enabled the design and analysis of strongly efficient rare-event simula-
tion algorithms for a wide variety of rare events associated with Sn, as demonstrated in [18]. Moreover,
[56, Section 4.4] proves that it is impossible to establish the classical LDP w.r.t. J1 topology at the
sample-path level for regularly varying Lévy processes. On a related note, it is worth mentioning that
by relaxing the upper bound of the standard LDP, an alternative formulation known as ”extended
LDP” was proposed in [8], and such a formulation is also feasible for heavy-tailed processes; see, for
example, [6, 2, 3]. However, the extended LDP only provides log-asymptotics. For regularly varying
processes, it is often desirable and possible to obtain exact asymptotics; for example, the extended
LDP wouldn’t suffice for analyzing the strong efficiency of the aforementioned rare-event simulation
algorithm in [18]. We will also see that exact asymptotics are crucial in Section 2.3 and Section 4
for sharp exit time and exit location analysis. In fact, it demands an even stronger version of (1.4),
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which we will introduce in (1.5) shortly. Below, we describe the main contributions of this paper in
greater detail.

Large Deviations for Heavy-Tailed Dynamical Systems. The first contribution of this paper
is to characterize the catastrophe principle for a general class of heavy-tailed stochastic dynamical
systems in the form of a “locally uniform” heavy-tailed large deviations at the sample-path level. This
turns out to be the right large deviations formulation for the purpose of the subsequent metastability
analysis. To be specific, let Xη

[0,1](x) =∆ {Xη
⌊t/η⌋(x) : t ∈ [0, 1]} be the time-scaled version of

the sample path of Xη
j (x) embedded in the continuous time, and note that Xη

[0,1](x) is a random

element in D. As η decreases, Xη
[0,1](x) converges to a deterministic limit {yt(x) : t ∈ [0, 1]}, where

dyt(x)/dt = a(yt(x)) with initial value y0(x) = x. Let B ⊆ D be a Borel set w.r.t. the J1 topology
and A ⊂ Rm be a compact set. We establish the following asymptotic bound for each k:

inf
x∈A

C(k)(B◦;x) ≤ lim inf
η↓0

infx∈A P
(
Xη

[0,1](x) ∈ B
)

(
η−1P(∥Z1∥ > η−1)

)k
≤ lim sup

η↓0

supx∈A P
(
Xη

[0,1](x) ∈ B
)

(
η−1P(∥Z1∥ > η−1)

)k ≤ sup
x∈A

C(k)(B−;x).

(1.5)

The precise statement and the definition of C(k) can be found in Theorem 2.3 and Section 2.2.1, but
here we just point out that the index k that leads to non-degenerate upper and lower bounds in (1.5)
is the minimum number of jumps that needs to be added to the path of yt(x) for it to enter the set
B given x ∈ A. Such a k dictates the precise polynomial decay rate of the rare-event probability and
corresponds to the infimum of rate function of the classical large deviations framework. Note also that
as the set A shrinks to an atom, the upper and lower bounds in (1.5) become tighter, and hence, (1.5)
is a locally uniform version of the large deviations formulation in (1.4). An important implication of
(1.5) is a sharp characterization of the catastrophe principle. Specifically, Section 2.2.2 proves that
the conditional distribution of Xη

[0,1](x) given the rare event of interest converges to the distribution

of a piecewise deterministic random function X∗
|B(x) with precisely k random jumps whose sizes are

bounded from below:
L
(
Xη

[0,1](x)
∣∣Xη

[0,1](x) ∈ B
)
→ L

(
X∗

|B(x)
)
.

Note that the perturbation associated with Zi is modulated by ησ(Xη
i−1(x)). Hence, the jump size

associated with Zi being bounded from below implies that Zi is of order 1/η. This confirms that the
rare event {Xη

[0,1](x) ∈ B} arises almost always because of k catastrophically large Zi’s, whereas the

rest of the system is indistinguishable from its nominal behavior.
The notion of M(S \ C)-convergence, introduced in [42] and further developed in [56], was a key

technical tool behind (1.4). In this paper, we introduce a uniform version of the M(S\C)-convergence
to establish the uniform asymptotics in (1.5) and prove an associated Portmanteau theorem (The-
orem 2.2) in Section 2.1. These developments form the backbone that supports our proofs of the
uniform sample-path large deviations in (1.5). Furthermore, we also establish the locally uniform

asymptotics for the truncated dynamics X
η|b
j (x) in Theorem 2.4. As Section 2.3 elaborates, such

large deviations of X
η|b
j (x) leads to exit times and locations with structurally different asymptotic

limits compared to those associated with Xη
j (x).

Metastability Analysis. The second contribution of this paper is the first exit-time analysis for
heavy-tailed systems. The first exit time problem finds applications in numerous contexts, including
chemical reactions [40], physics [16, 17], extreme climate events [52], mathematical finance [59], and
queueing systems [60]. A classical result in this literature is the Eyring-Kramers law [27, 40], which
characterizes the exit time of Brownian particles; see also [43]. In the light-tailed context, a rich set
of systematic tools for exit-time analysis are available [49, 10, 11, 9].

5



Unlike in the light-tailed context where dynamical systems are driven by Brownian noise, the
exit times of the heavy-tailed Lévy-driven SDEs exhibit fundamentally different characteristics, and
their successful analysis is a relatively recent development [32, 33]. These results were extended to
the higher dimensional settings in [34, 50, 21]. More recently, motivated by the discovery of heavy
tails in the stochastic gradient descent algorithms in machine learning literature, stochastic difference
equations driven by α-stable noises are investigated extensively; see, for example, [48, 4]. The exit
times characterized in this line of research is a manifestation of the principle of a single big jump in
the context of the exit times of the stochastic dynamical systems. In contrast, our focus in this paper
is to build a systematic tool that facilitates the analysis of the exit times even when they are driven

by multiple big jump events as in the case of X
η|b
j (x). Indeed, we characterize the asymptotics of the

joint law of the first exit time and the exit location for heavy-tailed processes.
We consider (1.1) with drift coefficients a(·) = −∇U(·) for some potential function U ∈ C1(Rm).

Specifically, let I ⊆ Rd be some open and bounded set containing the origin. Suppose that the entire
domain I falls within the attraction field of the origin in the following sense: for the ODE path
dyt(x)/dt = −∇U(yt(x)) with initial condition y0(x) = x, it holds that limt→∞ yt(x) = 0 for all
x ∈ I. As a result, when initialized within I, the deterministic process will be attracted to and be
trapped around the origin. In contrast, under the presence of random perturbations, although Xη

j (x)

and X
η|b
j (x) are attracted to the origin most of the times, they will eventually escape from I if one

waits long enough. Of particular interest are the asymptotics of the first exit time as η → ∞. Theorem

2.6 establishes that the joint law of the first exit time τη|b(x) = min{j ≥ 0 : X
η|b
j (x) /∈ I} and the

exit location X
η|b
τ (x) ≜ X

η|b
τη|b(x)

(x) admits the following limit (for all x ∈ I):(
λIb(η) · τη|b(x), Xη|b

τ (x)
)
⇒ (E, Vb) as η ↓ 0 (1.6)

with some (deterministic) time-scaling function λIb(η). Here, E is an exponential random variable
with the rate parameter 1, and Vb is some random element independent of E and supported on Ic.
The exact law of Vb and the definition of λIb(η) are provided in Section 2.3.1. Here, we note that λIb(η)
is regularly varying with index −[1 + J I

b (α − 1)], where J I
b is the “discretized width” of domain I

relative to the truncation threshold b; see (2.33) for the precise definition. Intuitively speaking, J I
b

is the minimal number of jumps of size b to escape from I, and hence, the wider the domain I is,
the longer the exit time τη|b(x) will be asymptotically. Theorem 2.6 also obtains the first exit time
analysis for Xη

j (x) by considering an arbitrarily large truncation threshold b ≈ ∞.
Our approach hinges on a general machinery we develop in Section 2.3.2. At the core of this

development lies the concept of asymptotic atoms, namely, nested regions of recurrence at which the
process asymptotically regenerates upon each visit. Our locally uniform sample-path large deviations
then prove to be the right tool in this framework, empowering us to simultaneously characterize the
behavior of the stochastic processes under all the initial values over the asymptotic atoms.

It should be noted that [35] also investigated the exit events driven by multiple jumps. How-
ever, the mechanism through which multiple jumps arise in their context is due to a different tail
behavior of the increment distribution that is lighter than any polynomial rate—more precisely, a
Weibull tail—and it is fundamentally different from that of the regularly varying case. Along with the
aforementioned results [32, 33, 34] for regularly varying SDEs, [35] paints interesting picture of the
hierarchy in the asymptotics of the first exit times. See [36] for the summary of such hierarchy. Our
results complement the picture and provide a missing piece of the puzzle by unveiling the precise effect
of truncation in the regularly varying cases. In particular, we characterize a discrete structure of phase

transitions in (1.6), where we find that the first exit time τη|b(x) is (roughly) of order 1/η1+J I
b ·(α−1)

for small η. This means that the order of the first exit time τη|b(x) does not vary continuously with
b; rather, it exhibits a discrete dependence on b through J I

b .

Some of the results in Section 2.3 of this paper have been presented in a preliminary form at
a conference [63]. The main focus of [63] was the connection between the metastability analysis
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of stochastic gradient descent (SGD) and its generalization performance in the context of training
deep neural networks. Compared to the brute force approach in [63], the current paper provides
a systematic framework to characterize the global dynamics for significantly more general class of
heavy-tailed dynamical systems.

The rest of the paper is organized as follows. Section 2 presents the main results of this paper.
Section 3 and Section 4 provide the proofs of Sections 2.1, 2.2, and 2.3. Results for SDEs driven by
Lévy processes with regularly varying increments are collected in Appendix B. Results for stochastic
difference equations under more general scaling regimes are presented in Appendix A.

2 Main Results

This section presents the main results of this paper and discusses their implications. Section 2.1
introduces the uniform version of M(S \ C)-convergence and presents an associated portmanteau
theorem. Section 2.2 develops the sample-path large deviations, and Section 2.3 carries out the
metastability analysis. All the proofs are deferred to the later sections.

Before presenting the main results, we set frequently used notations. Let [n] =∆ {1, 2, · · · , n} for
any positive integer n. Let N = {0, 1, 2, · · · } be the set of non-negative integers. Let (S,d) be a metric
space with SS being the corresponding Borel σ-algebra. For any E ⊆ S, let E◦ and E− be the interior
and closure of E, respectively. For any r > 0, let Er =∆ {y ∈ S : d(E, y) ≤ r} be the r-enlargement
of a set E. Here for any set A ⊆ S and any x ∈ S, we define d(A, x) =∆ inf{d(y, x) : y ∈ A}.
Also, let Er =∆ ((Ec)r)c be the r-shrinkage of E. Note that for any E, the enlargement Er of E is
closed, and the shrinkage Er of E is open. We say that set A ⊆ S is bounded away from another set
B ⊆ S if infx∈A,y∈B d(x, y) > 0. For any Borel measure µ on (S,SS), let the support of µ (denoted
as supp(µ)) be the smallest closed set C such that µ(S \ C) = 0. For any function g : S → R, let
supp(g) =∆

(
{x ∈ S : g(x) ̸= 0}

)−
. Given two sequences of positive real numbers (xn)n≥1 and (yn)n≥1,

we say that xn = O(yn) (as n → ∞) if there exists some C ∈ [0,∞) such that xn ≤ Cyn ∀n ≥ 1.
Besides, we say that xn = o(yn) if limn→∞ xn/yn = 0.

2.1 Uniform M(S \ C)-Convergence

This section extends the notion of M(S \ C)-convergence [42, 56] to a uniform version and prove an
associated portmanteau theorem. Such developments pave the way to the locally uniform heavy-tailed
sample-path large deviations.

Specifically, in this section we consider some metric space (S,d) that is complete and separable.
Given any Borel measurable subset C ⊆ S, let S \ C be a subspace of S equipped with the relative
topology with σ-algebra SS\C =∆ {A ∈ SS : A ⊆ S \ C}. Let

M(S \ C) =∆ {ν(·) is a Borel measure on S \ C : ν(S \ Cr) <∞ ∀r > 0}.

M(S\C) can be topologized by the sub-basis constructed using sets of form {ν ∈ M(S\C) : ν(f) ∈ G},
where G ⊆ [0,∞) is open, f ∈ C(S \ C), and C(S \ C) is the set of all real-valued, non-negative,
bounded and continuous functions with support bounded away from C (i.e., f(x) = 0 ∀x ∈ Cr for
some r > 0). Given a sequence µn ∈ M(S\C) and some µ ∈ M(S\C), we say that µn converges to µ in
M(S\C) as n→ ∞ if limn→∞ |µn(f)−µ(f)| = 0 for all f ∈ C(S\C). See [42] for alternative definitions
in the form of a Portmanteau Theorem. When the choice of S and C is clear from the context, we
simply refer to it as M-convergence. As demonstrated in [56], the sample path large deviations for
heavy-tailed stochastic processes can be formulated in terms of M-convergence of the scaled process
in the Skorokhod space. In this paper, we introduce a stronger version of M-convergence, which
facilitates the analysis of the local stability and global dynamics in the later sections.

Definition 2.1 (Uniform M(S \ C)-convergence). Let Θ be a set of indices. Let µη
θ , µθ ∈ M(S \ C)

for each η > 0 and θ ∈ Θ. We say that µη
θ converges to µθ in M(S \C) uniformly in θ on Θ as η → 0
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if

lim
η↓0

sup
θ∈Θ

|µη
θ(f)− µθ(f)| = 0 ∀f ∈ C(S \ C).

If {µθ : θ ∈ Θ} is sequentially compact, a Portmanteau-type theorem holds. The proof is provided
in Section 3.1.

Theorem 2.2 (Portmanteau theorem for uniform M(S \ C)-convergence). Let Θ be a set of indices.
Let µη

θ , µθ ∈ M(S \ C) for each η > 0 and θ ∈ Θ. If, for any sequence of measures (µθn)n≥1, there
exist a sub-sequence (µθnk

)k≥1 and some θ∗ ∈ Θ such that

lim
k→∞

µθnk
(f) = µθ∗(f) ∀f ∈ C(S \ C), (2.1)

then the next three statements are equivalent:

(i) µη
θ converges to µθ in M(S \ C) uniformly in θ on Θ as η ↓ 0;

(ii) limη↓0 supθ∈Θ |µη
θ(f)− µθ(f)| = 0 for each f ∈ C(S \C) that is also uniformly continuous on S;

(iii) lim supη↓0 supθ∈Θ µ
η
θ(F )−µθ(F

ϵ) ≤ 0 and lim infη↓0 infθ∈Θ µ
η
θ(G)−µθ(Gϵ) ≥ 0 for all ϵ > 0, all

closed F ⊆ S that is bounded away from C, and all open G ⊆ S that is bounded away from C.

Furthermore, any of the claims (i)–(iii) implies the following.

(iv) lim supη↓0 supθ∈Θ µ
η
θ(F ) ≤ supθ∈Θ µθ(F ) and lim infη↓0 infθ∈Θ µ

η
θ(G) ≥ infθ∈Θ µθ(G) for all

closed F ⊆ S that is bounded away from C and all open G ⊆ S that is bounded away from
C.

Remark 1. To conclude, we provide two additional remarks regarding Theorem 2.2. First, it is not
possible to strengthen statement (iii) and assert that

lim sup
η↓0

sup
θ∈Θ

µη
θ(F )− µθ(F ) ≤ 0, lim inf

η↓0
inf
θ∈Θ

µη
θ(G)− µθ(G) ≥ 0 (2.2)

for all closed F ⊆ S bounded away from C and all open G ⊆ S bounded away from C. In other
words, in statement (iii) the ϵ-fattening in F ϵ and ϵ-shrinking in Gϵ are indispensable. Indeed, we
demonstrate through a counterexample that, due to the infinite cardinality of the collections of measures
{µη

θ : θ ∈ Θ} and {µθ : θ ∈ Θ}, the claims in (2.2) can easily fall apart while statements (i)–(iii)
hold true. Specifically, by setting C = ∅ and S = R, the M(S \C)-convergence degenerates to the weak
convergence of Borel measures on R. Set Θ = [−1, 1] and

µη
θ =∆ δθ−η, µθ =∆ δθ,

where δx is the Dirac measure at x. For closed set F = [−1, 0] and any η ∈ (0, 2),

sup
θ∈Θ

µη
θ(F )− µθ(F ) ≥ δ−η/2

(
[−1, 0]

)
− δη/2

(
[−1, 0]

)
by picking θ = η/2

= I

{
−η
2

∈ [−1, 0]

}
− I

{
η

2
∈ [−1, 0]

}
= 1,

thus implying lim supη↓0 supθ∈Θ µ
η
θ(F )− µθ(F ) ≥ 1.

Secondly, while statement (iv) holds as the key component when establishing the sample-path large
deviation results, it is indeed strictly weaker than the other claims for one obvious reason: unlike
statements (i)–(iii), the content of statement (iv) does not require µη

θ to converge to µθ for any θ ∈ Θ.
To illustrate that (iv) does not imply (i)–(iii), it suffices to examine the following case where C = ∅,
S = R, Θ = [−1, 1], µη

θ = δ−θ, and µθ = δθ.
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2.2 Heavy-Tailed Large Deviations

In Section 2.2.1, we study the sample-path large deviations for stochastic difference equations with
heavy-tailed increments. Section 2.2.2 then characterizes the catastrophe principle of heavy-tailed
systems by presenting the conditional limit theorems that reveal a discrete hierarchy of the most
likely scenarios and probabilities of rare events in heavy-tailed stochastic difference equations.

2.2.1 Sample-Path Large Deviations

Let Z1,Z2, . . . be iid copies of some random vector Z taking values in Rd, and let F be the σ-algebra
generated by (Zj)j≥1. Henceforth in this paper, all vectors in Euclidean spaces are understood
as column vectors. Let Fj be the σ-algebra generated by Z1,Z2, · · · ,Zj and F0 =∆ {∅,Ω}. Let
(Ω,F ,F,P) be a filtered probability space with filtration F = (Fj)j≥0. The goal of this section is to
study the sample-path large deviations for the discrete-time process

{
Xη

t (x) : t ∈ N
}
in Rm, which is

driven by the recursion

Xη
0 (x) = x; Xη

t (x) = Xη
t−1(x) + ηa

(
Xη

t−1(x)
)
+ ησ

(
Xη

t−1(x)
)
Zt, ∀t ≥ 1 (2.3)

as η ↓ 0. In particular, we are interested in the case where Zi’s are heavy-tailed. Heavy-tails are
typically captured with the notion of regular variation. For any measurable function ϕ : (0,∞) →
(0,∞), we say that ϕ is regularly varying as x → ∞ with index β (denoted as ϕ(x) ∈ RVβ(x) as
x→ ∞) if limx→∞ ϕ(tx)/ϕ(x) = tβ for all t > 0. For details of the definition and properties of regularly
varying functions, see, for example, Chapter 2 of [55]. Throughout this paper, we say that a measurable
function ϕ(η) is regularly varying as η ↓ 0 with index β if limη↓0 ϕ(tη)/ϕ(η) = tβ for any t > 0. We

denote this as ϕ(η) ∈ RVβ(η) as η ↓ 0. Besides, we adopt the L2 norm ∥(x1, · · · , xk)∥ =
√∑k

j=1 x
2
k

on Euclidean spaces. Let

H(x) =∆ P(∥Z∥ > x). (2.4)

For any α > 0, let να be the (Borel) measure on R with

να[x,∞) = x−α. (2.5)

Let Nd =∆ {x ∈ Rd : ∥x∥ = 1} be the unit sphere of Rd. Let Φ : Rd → [0,∞)×Nd be

Φ(x) =∆
{(

∥x∥ , x
∥x∥

)
if x ̸= 0,(

0, (1, 0, 0, · · · , 0)
)

otherwise.
(2.6)

Since Φ(x) will not be applied at x = 0 in our proof, Φ can essentially be interpreted as the polar
transform on Rd. We impose the following multivariate regular variation assumption regarding the
law of Z.

Assumption 1 (Regularly Varying Noises). EZ = 0. Besides, there exist some α > 1 and a
probability measure S(·) on the unit sphere of Rd such that

• H(x) ∈ RV−α(x) as x→ ∞,

• for the polar coordinates (R,Θ) =∆ Φ(Z), we have (as x→ ∞)

P
(
(x−1R,Θ) ∈ ·

)
H(x)

→ να × S in M
((

[0,∞)×Nd

)
\
(
{0} ×Nd

))
. (2.7)
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Remark 2. It is worth noticing that the multivariate regular variation condition (2.7) is typically
stated in terms of vague convergence; see, e.g., [54, 30]. While vague convergence is generally weaker
than M-convergence (see Lemma 2.1 of [42]), due to α > 1 we have (να×S)(A) <∞ for any set A ⊆
(0,∞)×Nd bounded away from {0}×Nd. Therefore, it is easy to verify that the M-convergence stated
in (2.7) is equivalent to vague convergence. Furthermore, by equivalent statements of multivariate
regular variation (see [54, 30]), Assumption 1 is equivalent to that H−1(x)P(x−1Z ∈ · ) converges
to some Borel measure µ(·) in M(Rd \ {0}) and µ(·) admits self-similarity of form µ(λA) = λ−αµ(A)
for any Borel set A ⊆ Rd that is bounded away from the origin.

Next, we introduce the following assumptions on the drift coefficient a : Rm → Rm and the
diffusion coefficient σ : Rm → Rm×d. To be clear, the exact meaning of the vecotrized version
of the stochastic difference equation in (2.3) is as follows. By writing a(·) =

(
a1(·), · · · , am(·)

)
,

σ(·) =
(
σi,j(·)

)
i∈[m],j∈[d]

, Xη
t (x) =

(
Xη

t,1(x), · · · , X
η
t,m(x)

)
, and Zt = (Zt,1, · · · , Zt,d), we have

Xη
t,i(x) = Xη

t−1,i(x) + ηai
(
Xη

t−1(x)
)
+ η

∑
j∈[d]

σi,j
(
Xη

t−1(x)
)
Zt,j ∀t ≥ 1, i ∈ [m] (2.8)

as a scalar version of the recursion. Henceforth, we adopt the L2 vector norm induced matrix norm
∥A∥ = supx∈Rq : ∥x∥=1 ∥Ax∥ for any A ∈ Rp×q. Note that the lower bounds for C and D in
Assumption 2 and 3 are obviously not necessary. However, we assume that C ≥ 1 and D ≥ 1 w.l.o.g.
for the notational simplicity.

Assumption 2 (Lipschitz Continuity). There exists some D ∈ [1,∞) such that

∥σ(x)− σ(y)∥ ∨ ∥a(x)− a(y)∥ ≤ D ∥x− y∥ ∀x, y ∈ Rm.

Assumption 3 (Boundedness). There exists some C ∈ [1,∞) such that

∥a(x)∥ ∨ ∥σ(x)∥ ≤ C ∀x ∈ Rm.

To present the main results, we set a few notations. Let (D[0, T ],d[0,T ]

J1
) be the metric space where

D[0, T ] = Dm[0, T ] is the space of all càdlàg functions with domain [0, T ] and codomain Rm, and

d[0,T ]

J1
= d

[0,T ]
J1,m

is the Skorodkhod J1 metric

d[0,T ]

J1
(x, y) =∆ inf

λ∈ΛT

sup
t∈[0,T ]

|λ(t)− t| ∨ ∥x(λ(t))− y(t)∥ . (2.9)

Here, ΛT is the set of all homeomorphism on [0, T ]. Throughout this paper, we fix some m and d and
consider Xη

t (x) taking values in Rm driven by Zt’s in Rd, so we omit the subscript m in D[0, T ] and
d[0,T ]

J1
. Given any A ⊆ R, let Ak↑ =∆ {(t1, · · · , tk) ∈ Ak : t1 < t2 < · · · < tk} be the set of sequences

of increasing real numbers with length k on A. For any k ∈ N and T > 0, define mapping h̄
(k)
[0,T ] :

Rm × Rd×k × Rm×k × (0, T ]k↑ → D[0, T ] as follows. Given any x ∈ Rm, W = (w1, · · · ,wk) ∈ Rd×k,

V = (v1, · · · ,vk) ∈ Rm×k, and t = (t1, · · · , tk) ∈ (0, T ]k↑, let ξ = h̄
(k)
[0,T ](x,W,V, t) ∈ D[0, T ] be the

solution to

ξ0 = x (2.10)

dξs
ds

= a(ξs) ∀s ∈ [0, T ], s ̸= t1, · · · , tk (2.11)

ξs = ξs− + vj + σ(ξs− + vj)wj if s = tj for some j ∈ [k]. (2.12)

Here, for any ξ ∈ D[0, T ] and t ∈ (0, T ], we use ξt− = lims↑t ξs to denote the left limit of ξ at t, and

we set ξ0− = ξ0. Also, define a mapping h
(k)
[0,T ] : R

m × Rd×k × (0, T ]k↑ → D[0, T ] as

h
(k)
[0,T ](x,W , t) =∆ h̄

(k)
[0,T ]

(
x,W , (0, · · · ,0), t

)
. (2.13)
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In essence, the mapping h
(k)
[0,T ](x,W, t) produces the ODE path perturbed by jumps w1, · · · ,wk

(with sizes modulated by the drift coefficient σ(·)) at times t1, · · · , tk, and the mapping h̄
(k)
[0,T ] further

includes perturbations vj right before each jump. We adopt the convention that ξ = h̄
(0)
[0,T ](x) is the

solution to the ODE dξs/ds = a(ξs) ∀s ∈ [0, T ] under the initial condition ξ0 = x.

For any t > 0, let Lt be the Lebesgue measure restricted on (0, t) and Lk↑
t be the Lebesgue measure

restricted on (0, t)k↑. Given any T > 0, x ∈ R, and k ≥ 0, let

C
(k)
[0,T ]( · ;x) =

∆

∫
I

{
h
(k)
[0,T ]

(
x,W, t

)
∈ ·

}(
(να × S) ◦ Φ

)k
(dW)× Lk↑

T (dt). (2.14)

Here, S is the Borel (in fact, probability) measure on the unit sphereNd characterized in Assumption 1,
να is specified in (2.5), (να × S) ◦Φ is the composition of the product measure να × S with the polar
transform Φ, i.e., (

(να × S) ◦ Φ
)
(B) =∆ (να × S)

(
Φ(B)

)
∀B ⊆ Rd that is Borel, (2.15)

and
(
(να × S) ◦ Φ

)k
is the k-fold of (να × S) ◦ Φ. In other words, for W = (w1, · · · ,wk) ∈ Rp×k,

we have
(
(να × S) ◦ Φ

)k
(dW) =×j∈[k]

(
(να × S) ◦ Φ

)
(dwj). For {Xη

j (x) : j ≥ 0}, we define the

time-scaled version of the sample path as

Xη
[0,T ](x) =

∆
{
Xη

⌊t/η⌋(x) : t ∈ [0, T ]
}
, ∀T > 0 (2.16)

with ⌊t⌋ =∆ max{n ∈ Z : n ≤ t} and ⌈t⌉ =∆ min{n ∈ Z : n ≥ t}. Note that Xη
[0,T ](x) is a D[0, T ]-valued

random element.
For each r > 0 and x ∈ Rm, let B̄r(x) =

∆ {y ∈ Rm : ∥y − x∥ ≤ r} be the closed ball with radius
r centered at x. For any k ∈ N, T > 0, ϵ ≥ 0, and A ⊆ Rm, let

D(k)
A [0, T ](ϵ) =∆ h̄

(k)
[0,T ]

(
A× Rm×k ×

(
B̄ϵ(0)

)k × (0, T ]k↑
)

(2.17)

be the set that contains all the ODE path with k jumps by time T , i.e., images of the mapping h̄
(k)
[0,T ]

defined in (2.10)–(2.12), with small perturbations ∥vj∥ ≤ ϵ for all j. We adopt the convention that

D(−1)
A [0, T ](ϵ) =∆ ∅. Also, it is easy to see that D(k)

A [0, T ](ϵ) ⊆ D(k)
A [0, T ](ϵ′) for any 0 ≤ ϵ < ϵ′. Next,

define a scale function

λ(η) =∆ η−1H(η−1)

with H(x) = P(∥Z∥ > x) defined in (2.4). From Assumption 1, one can see that λ(η) ∈ RVα−1(η)

as η ↓ 0. For any k ≥ 1 we write λk(η) =
(
λ(η)

)k
. In case T = 1, we suppress the time horizon [0, 1]

and write D, dJ1
, h(k), C(k), D(k)

A (ϵ), and Xη(x) to denote D[0, 1], d[0,1]

J1
, h

(k)
[0,1], C

(k)
[0,1], D

(k)
A [0, 1](ϵ),

and Xη
[0,1](x), respectively.

Now, we are ready to state Theorem 2.3, which establishes the uniform M-convergence of (the law
of) Xη

[0,T ](x) to C(k)( · ;x) and a uniform version of the sample-path large deviations for Xη
[0,T ](x).

Theorem 2.3. Under Assumptions 1, 2, and 3, it holds for any k ∈ N, T > 0, ϵ > 0, and any
compact A ⊆ Rm that

λ−k(η)P
(
Xη

[0,T ](x) ∈ ·
)
→ C

(k)
[0,T ]( · ;x) in M

(
D[0, T ] \ D(k−1)

A [0, T ](ϵ)
)
uniformly in x on A

as η ↓ 0. Furthermore, for any B ∈ SD[0,T ] that is bounded away from D(k−1)
A [0, T ](ϵ),

inf
x∈A

C
(k)
[0,T ](B

◦;x) ≤ lim inf
η↓0

infx∈A P
(
Xη

[0,T ](x) ∈ B
)

λk(η)

≤ lim sup
η↓0

supx∈A P
(
Xη

[0,T ](x) ∈ B
)

λk(η)
≤ sup

x∈A
C

(k)
[0,T ](B

−;x) <∞.

(2.18)
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Remark 3. We add a remark on the connection between (2.18) and the classical LDP framework.
Given any measurable B ⊆ D[0, T ], there is a particular k that plays the role of the rate function.

Specifically, let JA(B) =∆ min{k ∈ N : B ∩ D(k)
A [0, T ](ϵ) ̸= ∅}. In great generality, this coincides with

the smallest possible value of k ∈ N for which the lower bound infx∈A C
(k)
[0,T ](B

◦;x) in (2.18) can be

strictly positive, and λJA(B)(η) characterizes the exact rate of decay for both infx∈A P(Xη
[0,T ](x) ∈ B)

and supx∈A P(Xη
[0,T ](x) ∈ B) as η ↓ 0. It should be noted these results are exact asymptotics as

opposed to the log asymptotics in classical LDP framework. In case that the set A is a singleton,
T = 1, a ≡ 0, and σ ≡ Im (i.e., the identity matrix in Rm), the process Xη

[0,T ](x) will degenerate

to a Lévy process, and JA(·) will reduce to J (·) defined in equation (3.3) of [56]. This confirms
that Theorem 2.3 is a proper generalization of the heavy-tailed large deviations for Lévy processes and
random walks in [56].

The proof of Theorem 2.3 will be given in Section 3.3. Interestingly enough, the results are obtained
by first studying its truncated counterpart. Specifically, for any x ∈ Rm, b > 0, and η > 0, on the
filtered probability space (Ω,F ,F,P), we define

X
η|b
0 (x) = x, X

η|b
t (x) = X

η|b
t−1(x) + φb

(
ηa
(
X

η|b
t−1(x)

)
+ ησ

(
X

η|b
t−1(x)

)
Zt

)
∀t ≥ 1, (2.19)

where the truncation operator φ·(·) is defined as

φc(w) =∆
( c

∥w∥
∧ 1
)
·w ∀w ∈ Rm, c > 0. (2.20)

Here, u ∧ v = min{u, v} and u ∨ v = max{u, v}. Note that for any w ̸= 0, we have φc(w) =
(c ∧ ∥w∥) · w

∥w∥ . In other words, the truncation operator φb(w) in (2.19) maintains the direction of

the vector w but rescales it to ensure that the norm would not exceed the threshold value b. For any

T, η, b > 0, and x ∈ R, let Xη|b
[0,T ](x) =

∆ {Xη|b
⌊t/η⌋(x) : t ∈ [0, T ]} be the time-scaled version of X

η|b
j (x)

embedded in D[0, T ].
For any b, T ∈ (0,∞), and k ∈ N, define a mapping h̄

(k)|b
[0,T ] : R

m × Rd×k × Rm×k × (0, T ]k↑ →
D[0, T ] as follows. Given any x ∈ Rm, W = (w1, · · · ,wk) ∈ Rd×k, V = (v1, · · · ,vk) ∈ Rm×k, and

t = (t1, · · · , tk) ∈ (0, T ]k↑, let ξ = h̄
(k)|b
[0,T ](x,W,V, t) be the solution to

ξ0 = x; (2.21)

dξs
ds

= a(ξs) ∀s ∈ [0, T ], s ̸= t1, t2, · · · , tk; (2.22)

ξs = ξs− + vj + φb

(
σ(ξs− + vj)wj

)
if s = tj for some j ∈ [k] (2.23)

The mapping h̄
(k)|b
[0,T ] can be interpreted as a truncated analog of the mapping h̄

(k)
[0,T ] defined in (2.10)–

(2.12). In other words, h̄
(k)|b
[0,T ](x,W,V, t) returns a perturbed ODE path where the impact of the

jumps wj are modulated by σ(·) and truncated under b. Similarly, define a mapping h
(k)|b
[0,T ] : R

m ×
Rd×k × (0, T ]k↑ → D[0, T ] as

h
(k)|b
[0,T ](x,W , t) =∆ h̄

(k)|b
[0,T ]

(
x,W , (0, · · · ,0), t

)
. (2.24)

For any b, T > 0, ϵ ≥ 0, A ⊆ Rm and k ∈ N, let

D(k)|b
A [0, T ](ϵ) =∆ h̄

(k)|b
[0,T ]

(
A× Rm×k ×

(
B̄ϵ(0)

)k × (0, T ]k↑
)

(2.25)

be a truncated analog of D(k)
A [0, T ](ϵ). We adopt the convention that D(−1)|b

A [0, T ](ϵ) =∆ ∅. We collect

and establish useful properties of mappings h
(k)
[0,T ], h

(k)|b
[0,T ] and sets D(k)

A [0, T ](ϵ), D(k)|b
A [0, T ](ϵ) in Section

C.
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Given any x ∈ Rm, k ∈ N, b > 0, and T > 0, define a Borel measure by

C
(k)|b
[0,T ]( · ;x) =

∆

∫
I

{
h
(k)|b
[0,T ]

(
x,W, t

)
∈ ·

}(
(να × S) ◦ Φ

)k
(dW)× Lk↑

T (dt), (2.26)

where S is the probability measure on the unit sphere Nd characterized in Assumption 1 and να is

specified in (2.5). Note that given x ∈ A, the measure C
(k)|b
[0,T ]( · ;x) is supported on D(k)|b

A [0, T ](0) ⊆
D(k)

A [0, T ](0). Again, in case that T = 1, we set Xη|b(x) =∆ X
η|b
[0,1](x), h

(k)|b =∆ h
(k)|b
[0,1] , D

(k)|b
A (ϵ) =∆

D(k)|b
A [0, 1](ϵ), and C(k)|b =∆ C

(k)|b
[0,1] . Now, we are ready to state the main result. It is worth noticing

that Assumption 3 (i.e., the boundedness of σ(·) and a(·)) is not required in the truncated case. See
Section 3.3 for the proof.

Theorem 2.4. Under Assumptions 1 and 2, it holds for any k ∈ N, any b, T, ϵ > 0, and any compact
A ⊆ Rm that

λ−k(η)P
(
X

η|b
[0,T ](x) ∈ ·

)
→ C

(k)|b
[0,T ]( · ;x) in M

(
D[0, T ] \ D(k−1)|b

A [0, T ](ϵ)
)
uniformly in x on A

as η ↓ 0. Furthermore, for any B ∈ SD[0,T ] that is bounded away from D(k−1)|b
A [0, T ](ϵ),

inf
x∈A

C
(k)|b
[0,T ]

(
B◦;x

)
≤ lim inf

η↓0

infx∈A P
(
X

η|b
[0,T ](x) ∈ B

)
λk(η)

≤ lim sup
η↓0

supx∈A P
(
X

η|b
[0,T ](x) ∈ B

)
λk(η)

≤ sup
x∈A

C
(k)|b
[0,T ]

(
B−;x

)
<∞.

(2.27)

Here, we provide a high-level description of the proof strategy for Theorems 2.3 and 2.4. Specifi-
cally, the proof of Theorem 2.4 and Theorem 2.3 consists of the following steps.

• First, we establish the asymptotic equivalence between X
η|b
[0,T ](x) and an ODE perturbed by

the k “largest” noises in (Zj)j≤T/η, in the sense that they admit the same limit in terms of
M-convergence as η ↓ 0. The key technical tools are the concentration inequalities we developed

in Lemma 3.3 that tightly control the fluctuations in X
η|b
j (x) between any two “large” noises.

• Then, to complete the proof of Theorem 2.4, it suffices to study the M-convergence of this
perturbed ODE. The foundation of this analysis is the asymptotic law of the top-k largest
noises in (Zj)j≤T/η studied in Lemma 3.4.

• Regarding Theorem 2.3, note that for any b sufficiently large, it is highly likely that Xη
j (x)

coincides with X
η|b
j (x) for the entire period of j ≤ T/η (that is, the truncation operator φb did

not come into effect for a long period due to the truncation threshold b > 0 being large). By
sending b → ∞ and carefully analyzing the limits involved, we recover the sample-path large
deviations for Xη

j (x) and prove Theorem 2.3.

See Section 3.3 for the detailed proof and the rigorous definitions of the concepts involved.

2.2.2 Catastrophe Principle

Perhaps the most important implication of the large deviations bounds is the identification of condi-
tional distributions of the stochastic processes given the rare events of interest. This section precisely

identifies the distributional limits of the conditional laws of Xη
[0,T ](x) and X

η|b
[0,T ](x), respectively,

given the rare events.
More precisely, the conditional limit theorem below follows immediately from the sample-path

large deviations established above, i.e., (2.18) and (2.27), and Portmanteau Theorem. While all the
results in Section 2.2.2 can be easily extended to D[0, T ] with arbitrary T ∈ (0,∞), we focus on
D = D[0, 1] for the sake of clarity of the presentation.
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Corollary 2.5. Let Assumptions 1 and 2 hold.

(i) For some b, ϵ > 0, k ∈ N, x ∈ Rm, and measurable B ⊆ D, suppose that B is bounded away

from D(k−1)|b
{x} (ϵ), and C(k)|b(B◦;x) = C(k)|b(B−;x) > 0. Then

P
(
X

η|b
[0,1](x) ∈ · |Xη|b

[0,1](x) ∈ B
)
⇒ C(k)|b( · ∩B;x)

C(k)|b(B;x)
as η ↓ 0.

(ii) Furthermore, suppose that Assumption 3 holds. For some k ∈ N, ϵ > 0, x ∈ Rm, and measurable

B ⊆ D, suppose that B is bounded away from D(k−1)
{x} (ϵ) and C(k)(B◦;x) = C(k)(B−;x) > 0.

Then

P
(
Xη

[0,1](x) ∈ ·
∣∣Xη

[0,1](x) ∈ B
)
⇒ C(k)(· ∩B;x)

C(k)(B;x)
as η ↓ 0.

Remark 4. Note that Corollary 2.5 is a sharp characterization of catastrophe principle for X
η|b
[0,1](x)

and Xη
[0,1](x). By definition of measures C(k)|b, its support is on the set of paths of the form

h(k)|b
(
x, (w1, · · · ,wk), (u1, · · · , uk)

)
,

where the mapping h(k)|b is defined in (2.21)–(2.23), and the norms ∥wj∥’s are bounded from below; see,
for instance, Lemma 3.5 and 3.6. This is a clear manifestation of the catastrophe principle: whenever
the rare event arises, the conditional distribution resembles the nominal path (i.e., the solution of the
associated ODE) perturbed by precisely k jumps. In fact, the definition of C(k)|b also implies that the
the jump sizes are Pareto (modulated by σ(·)) and the jump times are uniform, conditional on the
perturbed path belonging to B. Similar interpretation applies to Xη

[0,1](x) in part (ii).

2.3 Metastability Analysis

This section analyzes the metastability of Xη
j (x) and X

η|b
j (x). Section 2.3.1 establishes the scaling

limits of their exit times. Section 2.3.2 introduces a framework that facilitates such analysis for general
Markov chains.

2.3.1 First Exit Times and Locations

In this section, we analyze the first exit times and locations of Xη
j (x) and X

η|b
j (x) from an attraction

field of some potential with a unique local minimum at the origin. Specifically, throughout Section
2.3.1, we fix an open set I ⊂ Rm that is bounded and contains the origin, i.e., supx∈I ∥x∥ < ∞ and
0 ∈ I. Let yt(x) be the solution of ODE

y0(x) = x,
dyt(x)

dt
= a

(
yt(x)

)
∀t ≥ 0. (2.28)

We impose the following assumption on the gradient field a : Rm → Rm.

Assumption 4. a(0) = 0. For all x ∈ I \ {0},

yt(x) ∈ I ∀t ≥ 0, lim
t→∞

yt(x) = 0.

Besides, it holds for all ϵ > 0 small enough that a(x)x < 0 ∀x ∈ B̄ϵ(0) \ {0}.

An immediate consequence of the condition limt→∞ yt(x) = 0 ∀x ∈ I \ {0} is that a(x) ̸= 0 for
all x ∈ I \{0}. Of particular interest is the case where a(·) = −∇U(·) for some potential U ∈ C1(Rm)
that has a unique local minimum at x = 0 over the domain I. In particular, Assumption 4 holds if
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U is also locally C2 at the origin, and the Hessian of U(·) at the origin x = 0 is positive definite. We
note that Assumption 4 is a standard one in existing literature; see e.g. [51, 34].

Define

τη(x) =∆ min
{
j ≥ 0 : Xη

j (x) /∈ I
}
, τη|b(x) =∆ min

{
j ≥ 0 : X

η|b
j (x) /∈ I

}
, (2.29)

as the first exit time of Xη
j (x) and X

η|b
j (x) from I, respectively. To facilitate the presentation of the

main results, we introduce a few concepts. Define the mapping ḡ(k)|b : Rm×Rd×k×Rm×k×(0,∞)k↑ →
Rm as the location of the (perturbed) ODE with k jumps at the last jump time:

ḡ(k)|b
(
x,W,V, (t1, · · · , tk)

)
=∆ h̄

(k)|b
[0,tk+1]

(
x,W,V, (t1, · · · , tk)

)
(tk), (2.30)

where h̄
(k)|b
[0,T ] is the perturbed ODE mapping defined in (2.21)–(2.23). Besides, define qg(k)|b : Rm ×

Rd×k × (0,∞)k↑ → Rm by

qg(k)|b(x,W, t) =∆ ḡ(k)|b
(
x,W, (0, · · · ,0), t

)
= h

(k)|b
[0,tk+1](x,W, t)(tk), (2.31)

where t = (t1, . . . , tk) ∈ (0,∞)k↑, and the mapping h
(k)|b
[0,T ] is defined in (2.24). For k = 0, we adopt the

convention that ḡ(0)|b(x) = x.
With the mapping ḡ(k)|b defined, we are able to introduce (for any k ≥ 1, b > 0, and ϵ ≥ 0)

G(k)|b(ϵ) =∆
{
ḡ(k−1)|b

(
v1 + φb

(
σ(v1)w1

)
, (w2, · · · ,wk), (v2, · · · ,vk), t

)
:

W = (w1, · · · ,wk) ∈ Rd×k,V = (v1, · · · ,vk) ∈
(
B̄ϵ(0)

)k
, t ∈ (0,∞)k↑

}
(2.32)

as the set covered by the kth jump of along ODE path (with ϵ perburbation before each jump)
initialized at the origin, with each jump modulated by σ(·) and truncated under b. Here, the truncation
operator φb is defined in (2.20), and B̄r(0) is the closed ball with radius r centered at the origin. For
ϵ = 0, we write

G(k)|b =∆ G(k)|b(0) =

{
qg(k−1)|b

(
φb

(
σ(0)w1

)
, (w2, · · · ,wk), t

)
: W = (w1, · · · ,wk) ∈ Rd×k, t ∈ (0,∞)k↑

}
.

Furthermore, as a convention for the case with k = 0, we set

G(0)|b(ϵ) =∆ B̄ϵ(0).

We note that G(k)|b(ϵ) is monotone in ϵ, k, and b, in the sense that G(k)|b(ϵ) ⊆ G(k)|b(ϵ′) for all
0 ≤ ϵ ≤ ϵ′, G(k)|b(ϵ) ⊆ G(k+1)|b(ϵ), and G(k)|b(ϵ) ⊆ G(k)|b′(ϵ) for all 0 < b ≤ b′.

The intuition behind our metastability analysis (in particular, Theorem 2.6) is as follows. The
characterization of the k-jump-coverage sets of form G(k)|b reveals that, due to the truncation of φb(·),
the reachable space expands as more jumps are added to the ODE path. Regarding the asymptotics
of the first exit times τη|b(x), this results in an intriguing phase transition for the law τη|b(x) (as
η ↓ 0) in terms of the minimum number of jumps required for exit. More precisely, let

J I
b =∆ min

{
k ≥ 1 : G(k)|b ∩ I ̸= ∅

}
(2.33)

be the smallest k such that, under truncation at level b, the k-jump-coverage sets can reach outside
the attraction field I. Theorem 2.6 reveals a discrete hierarchy that the asymptotics of τη|b(x) does
not vary with the truncation level b in a continuous fashion; instead, the order of the first exit time

τη|b(x) and the limiting law of the exit location X
η|b
τη|b(x)

(x) /∈ I are dictated by this “discretized
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width” metric J I
b of the domain I, relative to the truncation threshold b. Here, the limiting laws will

be characterized through measures

qC(k)|b( · ) =∆
∫

I

{
qg(k−1)|b

(
φb

(
σ(x)w1

)
, (w2, · · · ,wk), t

)
∈ ·

}(
(να × S) ◦ Φ

)k
(dW)× Lk−1↑

∞ (dt),

(2.34)

where α > 1 is the heavy-tail index in Assumption 1, W = (w1,w2, · · · ,wk) ∈ Rd×k,
(
(να×S)◦Φ

)k
is

the k-fold of (να×S)◦Φ defined in (2.15), and Lk↑
∞ is the Lebesgue measure restricted on {(t1, · · · , tk) ∈

(0,∞)k : 0 < t1 < t2 < · · · < tk}. Section D collects useful properties of the mapping qg(k)|b and the

measure qC(k)|b.
Recall that H(·) = P(∥Z1∥ > ·), λ(η) = η−1H(η−1), and for any k ≥ 1 we write λk(η) =

(
λ(η)

)k
.

Recall that Iϵ = {y : ∥x− y∥ < ϵ =⇒ x ∈ I} is the ϵ-shrinkage of I. As the main result of this
section, Theorem 2.6 provides sharp asymptotics for the joint law of first exit times and exit locations

of X
η|b
j (x) and Xη

j (x). The results are obtained through a general machinery we develop in Section
2.3.2, and here we provide a brief outline of the proof. In Section 2.3.2, we introduce the notion of
asymptotic atoms, where a Markov process recurrently visits and almost regenerates upon each visit.
This recurrence and almost regeneration is characterized through asymptotic limits that are uniform
over the entire region of the asymptotic atom. First, in Theorem 2.9 we show that once the existence
of asymptotic atoms is verified, the precise asymptotic limits for the joint law of the exit times and exit
locations, such as those stated in Theorem 2.6, follow immediately. More importantly, the uniform
M-convergence and uniform sample path large deviations developed earlier prove to be powerful tools

for the identification of asymptotic atoms, particularly in the truncated cases of X
η|b
j (x), where the

truncation of heavy-tailed noises results in a much more complex description of exit paths. The
detailed proof of Theorem 2.6 is provided in Section 4.2.

Theorem 2.6. (First Exit Times and Locations: Truncated Case) Let Assumptions 1, 2, and

4 hold. Let b > 0 such that J I
b < ∞. Suppose that Ic is bounded away from G(J I

b −1)|b(ϵ) for some

(and hence all) ϵ > 0 small enough, and qC(J I
b )|b(∂I) = 0. Then CI

b =∆ qC(J I
b )|b(Ic) <∞. Furthermore,

if CI
b ∈ (0,∞), then for any ϵ > 0, t ≥ 0, and measurable set B ⊆ Ic,

lim sup
η↓0

sup
x∈Iϵ

P

(
CI

b η · λJ
I
b (η)τη|b(x) > t; X

η|b
τη|b(x)

(x) ∈ B

)
≤

qC(J I
b )|b(B−)

CI
b

· exp(−t),

lim inf
η↓0

inf
x∈Iϵ

P

(
CI

b η · λJ
I
b (η)τη|b(x) > t; X

η|b
τη|b(x)

(x) ∈ B

)
≥

qC(J I
b )|b(B◦)

CI
b

· exp(−t).

Otherwise, we must have CI
b = 0, and

lim sup
η↓0

sup
x∈Iϵ

P

(
η · λJ

I
b (η)τη|b(x) ≤ t

)
= 0 ∀ϵ > 0, t ≥ 0.

In summary, by developing the machinery of uniform M-convergence and asymptotic atoms, we
provide a general framework that connects large deviations and first exit analysis. Applying this

framework for the truncated heavy-tailed dynamics X
η|b
j (x), we reveal an intriguing phase transition

in terms of the truncation threshold b, where the discretized width J I
b dictates the order of the first

exit times and the limiting law of first exit locations. To conclude this section, we note that the first
exit analysis for untruncated heavy-tailed dynamics (see e.g. [32, 33, 51, 34] for similar results in the
existing literature) would follow immediately from Theorem 2.6. Specifically, let

qC( · ) =∆
∫

I

{
σ(0)w ∈ ·

}(
(να × S) ◦ Φ

)
(dw). (2.35)
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The exit times and locations for the untruncated dynamics Xη
j (x) then follows from the result for

X
η|b
j (x) by sending b to ∞, and the limiting laws of the exit location Xη

τη(x)(x) is characterized by

qC( · ), as presented in Corollary 2.7. The proof is straightforward and we collect it in Section D for
the sake of completeness.

Corollary 2.7. (First Exit Times and Locations: Untruncated Case) Let Assumptions 1, 2,

and 4 hold. Suppose that qC(∂I) = 0. Then CI
∞ =∆ qC(Ic) <∞. Furthermore, if CI

∞ > 0, then for any
t ≥ 0 and measurable set B ⊆ Ic,

lim sup
η↓0

sup
x∈Iϵ

P

(
CI

∞η · λ(η)τη(x) > t; Xη
τη(x)(x) ∈ B

)
≤

qC(B−)

CI
∞

· exp(−t),

lim inf
η↓0

inf
x∈Iϵ

P

(
CI

∞η · λ(η)τη(x) > t; Xη
τη(x)(x) ∈ B

)
≥

qC(B◦)

CI
∞

· exp(−t).

Otherwise, we must have CI
∞ = 0, and

lim sup
η↓0

sup
x∈Iϵ

P

(
η · λ(η)τη(x) ≤ t

)
= 0 ∀ϵ > 0, t ≥ 0.

2.3.2 General Framework: Asymptotic Atoms

This section proposes a general framework that enables sharp characterization of exit times and
exit locations of Markov chains. The new heavy-tailed large deviations formulation introduced in
Section 2.2 is conducive to this framework.

Consider a general metric space (S,d) and a family of S-valued Markov chains
{
{V η

j (x) : j ≥ 0} :

η > 0
}
parameterized by η, where x ∈ S denotes the initial state and j denotes the time index. We use

V η
[0,T ](x) =

∆ {V η
⌊t/η⌋(x) : t ∈ [0, T ]} to denote the scaled version of {V η

j (x) : j ≥ 0} as a D[0, T ]-valued
random element. For a given set E, let τηE(x) =

∆ min{j ≥ 0 : V η
j (x) ∈ E} denote {V η

j (s) : j ≥ 0}’s
first hitting time of E. We consider an asymptotic domain of attraction I ⊆ S, within which V η

[0,T ](x)

typically (i.e., as η ↓ 0) stays within I throughout any fixed time horizon [0, T ] as far as the initial
state x is in I. However, if one considers an infinite time horizon, V η

· (x) is typically bound to escape
I eventually due to the stochasticity. The goal of this section is to establish an asymptotic limit of the
joint distribution of the exit time τηIc(x) and the exit location V η

τη
Ic

(x)
(x). Throughout this section, we

will denote V η
τη
I(ϵ)c

(x)
(x) and V η

τη
Ic

(x)
(x) with V η

τϵ(x) and V
η
τ (x), respectively, for notation simplicity.

We introduce the notion of asymptotic atoms to facilitate the analyses. Let {I(ϵ) ⊆ I : ϵ > 0} and
{A(ϵ) ⊆ S : ϵ > 0} be collections of subsets of I such that

⋃
ϵ>0 I(ϵ) = I and

⋂
ϵ>0A(ϵ) ̸= ∅. Let C(·)

is a Borel measure on S \ I satisfying C(∂I) = 0 that characterizes the (asymptotics limit of the) exit
location of V η

· (x). Specifically, we consider two different cases for the location measure C(·):

(i) C(Ic) ∈ (0,∞): by incorporating the normalizing constant C(Ic) into the scale function γ(η),
we can assume w.l.o.g. that C(·) is a probability measure, and C(B) dictates the limiting
probability that P(V η

τ (x) ∈ B) as shown in Theorem 2.9;

(ii) C(Ic) = 0: as a result, C(B) = 0 for any Borel set B ⊆ Ic, and it is equivalent to stating that
C(·) is trivially zero.

Definition 2.8.
{
{V η

j (x) : j ≥ 0} : η > 0
}

possesses an asymptotic atom {A(ϵ) ⊆ S : ϵ > 0}
associated with the domain I, location measure C(·), scale γ : (0,∞) → (0,∞), and covering {I(ϵ) ⊆
I : ϵ > 0} if the following holds: For each measurable set B ⊆ S, there exist δB : (0,∞) × (0,∞) →
(0,∞), ϵB > 0, and TB : (0,∞) → (0,∞) such that

C(B◦)− δB(ϵ, T ) ≤ lim inf
η↓0

infx∈A(ϵ) P
(
τηI(ϵ)c(x) ≤ T/η; V η

τϵ(x) ∈ B
)

γ(η)T/η
(2.36)
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≤ lim sup
η↓0

supx∈A(ϵ) P
(
τηI(ϵ)c(x) ≤ T/η; V η

τϵ(x) ∈ B
)

γ(η)T/η
≤ C(B−) + δB(ϵ, T ) (2.37)

lim sup
η↓0

supx∈I(ϵ) P
(
τη(I(ϵ)\A(ϵ))c(x) > T/η

)
γ(η)T/η

= 0 (2.38)

lim inf
η↓0

inf
x∈I(ϵ)

P
(
τηA(ϵ)(x) ≤ T/η

)
= 1 (2.39)

for any ϵ ≤ ϵB and T ≥ TB(ϵ), where γ(η)/η → 0 as η ↓ 0 and δB’s are such that

lim
ϵ↓0

lim
T→∞

δB(ϵ, T ) = 0.

To see how Definition 2.8 asymptotically characterize the atoms in V η
· (x) for the first exit anal-

ysis from domain I, note that the condition (2.39) requires the process to efficiently return to the
asymptotic atoms A(ϵ). The conditions (2.36) and (2.37) then state that, upon hitting the asymp-
totic atoms A(ϵ), the process almost regenerates in terms of the law of the exit time τηI(ϵ)c(x) and exit

locations V η
τϵ(x). Furthermore, the condition (2.38) prevents the process V η

· (x) from spending a long
time without either returning to the asymptotic atoms A(ϵ) or exiting from I(ϵ), which covers the
domain I as ϵ tends to 0.

The existence of an asymptotic atom is a sufficient condition for characterization of exit time and
location asymptotics as in Theorem 2.6. To minimize repetition, we refer to the existence of an asymp-
totic atom—with specific domain, location measure, scale, and covering—Condition 1 throughout the
paper.

Condition 1. A family
{
{V η

j (x) : j ≥ 0} : η > 0
}
of Markov chains possesses an asymptotic atom

{A(ϵ) ⊆ S : ϵ > 0} associated with the domain I, location measure C(·), scale γ : (0,∞) → (0,∞),
and covering {I(ϵ) ⊆ I : ϵ > 0}.

Recall that, right before Definition 2.8, we state that for the location measure C(·) we consider two
cases that (i) C(Ic) = 1 (more generally, C(·) is a finite measure), and (ii) C(Ic) = 0. The following
theorem is the key result of this section. See Section 4.1 for the proof of the theorem.

Theorem 2.9. If Condition 1 holds, then the first exit time τηIc(x) scales as 1/γ(η), and the distri-
bution of the location V η

τ (x) at the first exit time converges to C(·). Moreover, the convergence is
uniform over I(ϵ) for any ϵ > 0. That is,

(i) If C(Ic) = 1, then for each ϵ > 0, measurable B ⊆ Ic, and t ≥ 0,

C(B◦) · e−t ≤ lim inf
η↓0

inf
x∈I(ϵ)

P
(
γ(η)τηIc(x) > t, V η

τ (x) ∈ B
)

≤ lim sup
η↓0

sup
x∈I(ϵ)

P
(
γ(η)τηIc(x) > t, V η

τ (x) ∈ B
)
≤ C(B−) · e−t;

(ii) If C(Ic) = 0, then for each ϵ, t > 0,

lim
η↓0

sup
x∈I(ϵ)

P
(
γ(η)τηIc(x) > t

)
= 0.

3 Uniform M-Convergence and Sample Path Large Deviations

Here, we collect the proofs for Sections 2.1 and 2.2. Specifically, Section 3.1 provides the proof
of Theorem 2.2, i.e., the Portmanteau theorem for the uniform M(S \ C)-convergence. Section 3.2
further develops a set of technical tools, which will then be applied to establish the sample-path large
deviations results (i.e., Theorems 2.3 and 2.4) in Section 3.3.
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3.1 Proof of Theorem 2.2

Proof of Theorem 2.2. Proof of (i) ⇒ (ii). It follows directly from Definition 2.1.

Proof of (ii) ⇒ (iii). We consider a proof by contradiction. Suppose that the upper bound
lim supη↓0 supθ∈Θ µ

η
θ(F ) − µθ(F

ϵ) ≤ 0 does not hold for some closed F bounded away from C and
some ϵ > 0. Then there exist a sequence ηn ↓ 0, a sequence θn ∈ Θ, and some δ > 0 such that
µηn

θn
(F ) − µθn(F

ϵ) > δ ∀n ≥ 1. Now, we make two observations. First, using Urysohn’s lemma (see,
e.g., lemma 2.3 of [42]), one can identify some f ∈ C(S \ C), which is also uniformly continuous on
S, such that IF ≤ f ≤ IF ϵ . This leads to the bound µηn

θn
(F ) − µθn(F

ϵ) ≤ µηn

θn
(f) − µθn(f) for each

n. Secondly, from statement (ii) we get limn→∞
∣∣µηn

θn
(f) − µθn(f)

∣∣ = 0. In summary, we yield the
contradiction

lim sup
n→∞

µηn

θn
(F )− µθn(F

ϵ) ≤ lim sup
n→∞

µηn

θn
(f)− µθn(f) ≤ lim

n→∞

∣∣µηn

θn
(f)− µθn(f)

∣∣ = 0.

Analogously, if the claim lim infη↓0 infθ∈Θ µ
η
θ(G) − µθ(G

ϵ) ≥ 0, supposedly, does not hold for some
open G bounded away from C and some ϵ > 0, then we can yield a similar contradiction by applying
Urysohn’s lemma and constructing some uniformly continuous g ∈ C(S \ C) such that IGϵ

≤ g ≤ IG.
This concludes the proof of (ii) ⇒ (iii).

Proof of (iii) ⇒ (i). Again, we proceed with a proof by contradiction. Suppose that the claim
limη↓0 supθ∈Θ

∣∣µη
θ(g) − µθ(g)

∣∣ = 0 does not hold for some g ∈ C(S \ C). Then, there exist some
sequences ηn ↓ 0, θn ∈ Θ and some δ > 0 such that

|µηn

θn
(g)− µθn(g)| > δ ∀n ≥ 1. (3.1)

To proceed, we arbitrarily pick some closed F ⊆ S that is bounded away from C and some open G ⊆ S
that is bounded away from C. First, using claims in (iii), we get lim supn→∞ µηn

θn
(F ) − µθn(F

ϵ) ≤ 0
and lim infn→∞ µηn

θn
(G) − µθn(Gϵ) ≥ 0 for any ϵ > 0. Next, due to condition (2.1), by picking a

sub-sequence of θn if necessary we can find some µθ∗ such that limn→∞
∣∣µθn(f) − µθ∗(f)

∣∣ = 0 for
all f ∈ C(S \ C). By Portmanteau theorem for standard M(S \ C)-convergence (see theorem 2.1 of
[42]), we yield lim supn→∞ µθn(F

ϵ) ≤ µθ∗(F ϵ) and lim infn→∞ µθn(Gϵ) ≥ µθ∗(Gϵ). In summary, for
any ϵ > 0,

lim sup
n→∞

µηn

θn
(F ) ≤ lim sup

n→∞
µθn(F

ϵ) + lim sup
n→∞

µηn

θn
(F )− µθn(F

ϵ) ≤ µθ∗(F ϵ),

lim inf
n→∞

µηn

θn
(G) ≥ lim inf

n→∞
µθn(Gϵ) + lim inf

n→∞
µηn

θn
(G)− µθn(Gϵ) ≥ µθ∗(Gϵ).

Lastly, note that limϵ↓0 µθ∗(F ϵ) = µθ∗(F ) and limϵ↓0 µθ∗(Gϵ) = µθ∗(G) due to continuity of measures
and

⋂
ϵ>0 F

ϵ = F ,
⋃

ϵ>0Gϵ = G. This allows us to apply Portmanteau theorem for standard M(S\C)-
convergence again and obtain limn→∞

∣∣µηn

θn
(g)−µθ∗(g)

∣∣ = 0 for the g ∈ C(S\C) fixed in (3.1). However,

recall that we have already obtained limn→∞
∣∣µθn(g) − µθ∗(g)

∣∣ = 0 using assumption (2.1). We now
arrive at the contradiction

lim
n→∞

∣∣µηn

θn
(g)− µθn(g)

∣∣ ≤ lim
n→∞

∣∣µηn

θn
(g)− µθ∗(g)

∣∣+ lim
n→∞

∣∣µθ∗(g)− µθn(g)
∣∣ = 0

and conclude the proof of (iv) ⇒ (i).

Proof of (i) ⇒ (iv). Due to the equivalence of (i), (ii), and (iii), it only remains to show that (i) ⇒
(iv). Suppose, for the sake of contradiction, that the claim lim supη↓0 supθ∈Θ µ

η
θ(F ) ≤ supθ∈Θ µθ(F ) in

(iv) does not hold for some closed F bounded away from C. Then we can find sequences ηn ↓ 0, θn ∈ Θ
and some δ > 0 such that µηn

θn
(F ) > supθ∈Θ µθ(F ) + δ ∀n ≥ 1. Next, due to the assumption (2.1), by

picking a sub-sequence of θn if necessary we can find some µθ∗ such that limn→∞
∣∣µθn(f)−µθ∗(f)

∣∣ = 0
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for all f ∈ C(S \ C). Meanwhile, (i) implies that limn→∞
∣∣µηn

θn
(f) − µθn(f)

∣∣ = 0 for all f ∈ C(S \ C).
Therefore,

lim
n→∞

∣∣µηn

θn
(f)− µθ∗(f)

∣∣ ≤ lim
n→∞

∣∣µηn

θn
(f)− µθn(f)

∣∣+ lim
n→∞

∣∣µθn(f)− µθ∗(f)
∣∣ = 0

for all f ∈ C(S \ C). By Portmanteau theorem for standard M(S \ C)-convergence, we yield the
contradiction lim supn→∞ µηn

θn
(F ) ≤ µθ∗(F ) ≤ supθ∈Θ µθ(F ). In summary, we have established the

claim lim supη↓0 supθ∈Θ µ
η
θ(F ) ≤ supθ∈Θ µθ(F ) for all closed F bounded away from C. The same

approach can also be applied to show lim infη↓0 infθ∈Θ µ
η
θ(G) ≥ infθ∈Θ µθ(G) for all open G bounded

away from C. This concludes the proof.

To facilitate the application of Theorem 2.2, we introduce the concept of asymptotic equivalence
between two families of random objects. Specifically, we consider a generalized version of asymptotic
equivalence over S \ C, which is equivalent to definition 2.9 in [19].

Definition 3.1. Let Xn and Yn be random elements taking values in a complete separable metric
space (S,d). Let ϵn be a sequence of positive real numbers. Let C ⊆ S be Borel measurable. Xn is said
to be asymptotically equivalent to Yn in M(S \ C) with respect to ϵn if for any ∆ > 0 and any
B ∈ SS bounded away from C,

lim
n→∞

ϵ−1
n P

(
d
(
Xn, Yn

)
I
(
Xn ∈ B or Yn ∈ B

)
> ∆

)
= 0.

In case that C = ∅, Definition 3.1 simply degenerates to the standard notion of asymptotic equiv-
alence; see Definition 1 of [56]. The following lemma demonstrates the application of the asymptotic
equivalence and is plays an important role in our analysis below.

Lemma 3.2 (Lemma 2.11 of [19]). Let Xn and Yn be random elements taking values in a complete
separable metric space (S,d) and let C ⊆ S be Borel measurable. Suppose that ϵ−1

n P(Xn ∈ ·) → µ(·)
in M(S \ C) for some sequence of positive real numbers ϵn. If Xn is asymptotically equivalent to Yn
when bounded away from C with respect to ϵn, then ϵ

−1
n P(Yn ∈ ·) → µ(·) in M(S \ C).

3.2 Technical Lemmas for Theorems 2.3 and 2.4

Our analysis hinges on the separation of large noises among (Zj)j≥1 from the rest, and we pay special
attention to Zj ’s with norm large enough such that η ∥Zj∥ exceed some prefixed threshold level δ > 0.
To be more concrete, for any i ≥ 1 and η, δ > 0, define the ith arrival time of “large noises” and its
size as

τ>δ
i (η) =∆ min{n > τ>δ

i−1(η) : η ∥Zj∥ > δ}, τ>δ
0 (η) = 0 (3.2)

W>δ
i (η) =∆ Zτ>δ

i (η). (3.3)

For any δ > 0 and k = 1, 2, · · · , note that

P
(
τ>δ
k (η) ≤ ⌊1/η⌋

)
≤ P

(
τ>δ
j (η)− τ>δ

j−1(η) ≤ ⌊1/η⌋ ∀j ∈ [k]
)

=
[ ⌊1/η⌋∑

i=1

(
1−H(δ/η)

)i−1
H(δ/η)

]k
≤
[ ⌊1/η⌋∑

i=1

H(δ/η)
]k

≤
[
1/η ·H(δ/η)

]k
. (3.4)

Recall the definition of filtration F = (Fj)j≥0 where Fj is the σ-algebra generated by Z1,Z2, · · · ,Zj

and F0 = {∅,Ω}. In the next lemma, we establish a uniform asymptotic concentration bound for the
weighted sum of Zi’s where the weights are adapted to the filtration F. For any M ∈ (0,∞), let ΓM
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denote the collection of families of random matrices Vj = (Vj;p,q)p∈[m],q ∈[d] taking values in Rm×d,
over which we will prove the uniform asymptotics:

ΓM =∆
{
(Vj)j≥0 is adapted to F : ∥Vj∥ ≤M ∀j ≥ 0 almost surely

}
. (3.5)

Lemma 3.3. Let Assumption 1 hold.

(a) Given any M > 0, N > 0, t > 0, and ϵ > 0, there exists δ0 = δ0(ϵ,M,N, t) > 0 such that

lim
η↓0

η−N sup
(Vi)i≥0∈ΓM

P

(
max

j≤⌊t/η⌋∧
(
τ>δ
1 (η)−1

) η
∥∥∥∥∥

j∑
i=1

Vi−1Zi

∥∥∥∥∥ > ϵ

)
= 0 ∀δ ∈ (0, δ0).

(b) Furthermore, let Assumption 3 hold. For each i ≥ 1, let

Ai(η, b, ϵ, δ,x) =
∆

 max
j∈Ii(η,δ)

η

∥∥∥∥∥∥∥
j∑

n=τ>δ
i−1(η)+1

σ
(
X

η|b
n−1(x)

)
Zn

∥∥∥∥∥∥∥ ≤ ϵ

 ; (3.6)

Ii(η, δ) =
∆

{
j ∈ N : τ>δ

i−1(η) + 1 ≤ j ≤
(
τ>δ
i (η)− 1

)
∧ ⌊1/η⌋

}
. (3.7)

Here we adopt the convention that (under b = ∞)

Ai(η,∞, ϵ, δ, x) =∆

 max
j∈Ii(η,δ)

η

∥∥∥∥∥∥∥
j∑

n=τ>δ
i−1(η)+1

σ
(
Xη

n−1(x)
)
Zn

∥∥∥∥∥∥∥ ≤ ϵ

 .

For any k ≥ 0, N > 0, ϵ > 0 and b ∈ (0,∞], there exists δ0 = δ0(ϵ,N) > 0 such that

lim
η↓0

η−N sup
x∈Rm

P

(( k⋂
i=1

Ai(η, b, ϵ, δ,x)
)c)

= 0 ∀δ ∈ (0, δ0).

Proof. (a) Choose some β such that 1
2∧α < β < 1. Let

Z
(1)
i =∆ ZiI

{
∥Zi∥ ≤ 1

ηβ

}
, Ẑ

(1)
i =∆ Z

(1)
i −EZ

(1)
i , Z

(2)
i =∆ ZiI

{
∥Zi∥ ∈ (

1

ηβ
,
δ

η
]
}
.

Note that
∑j

i=1 Vi−1Zi =
∑j

i=1 Vi−1Z
(1)
i +

∑j
i=1 Vi−1Z

(2)
i on j < τ>δ

1 (η), and hence,

max
j≤⌊t/η⌋∧

(
τ>δ
1 (η)−1

) η
∥∥∥∥∥

j∑
i=1

Vi−1Zi

∥∥∥∥∥
≤ max

j≤⌊t/η⌋
η

∥∥∥∥∥
j∑

i=1

Vi−1Z
(1)
i

∥∥∥∥∥+ max
j≤⌊t/η⌋

η

∥∥∥∥∥
j∑

i=1

Vi−1Z
(2)
i

∥∥∥∥∥
≤ max

j≤⌊t/η⌋
η

∥∥∥∥∥
j∑

i=1

Vi−1EZ
(1)
i

∥∥∥∥∥+ max
j≤⌊t/η⌋

η

∥∥∥∥∥
j∑

i=1

Vi−1Ẑ
(1)
i

∥∥∥∥∥+ max
j≤⌊t/η⌋

η

∥∥∥∥∥
j∑

i=1

Vi−1Z
(2)
i

∥∥∥∥∥ .
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Therefore, it suffices to show the existence of δ0 such that for any δ ∈ (0, δ0),

lim sup
η↓0

sup
(Vi)i≥0∈ΓM

max
j≤⌊t/η⌋

η

∥∥∥∥∥
j∑

i=1

Vi−1EZ
(1)
i

∥∥∥∥∥ < ϵ

3
, (3.8)

lim
η↓0

η−N sup
(Vi)i≥0∈ΓM

P

(
max

j≤⌊t/η⌋
η

∥∥∥∥∥
j∑

i=1

Vi−1Ẑ
(1)
i

∥∥∥∥∥ > ϵ

3

)
= 0, (3.9)

lim
η↓0

η−N sup
(Vi)i≥0∈ΓM

P

(
max

j≤⌊t/η⌋
η

∥∥∥∥∥
j∑

i=1

Vi−1Z
(2)
i

∥∥∥∥∥ > ϵ

3

)
= 0. (3.10)

For (3.8), first observe that∥∥∥EZ
(1)
i

∥∥∥ =
∥∥EZiI{∥Zi∥ > 1/ηβ}

∥∥ due to EZi = 0

≤ E
[
∥Zi∥ I{∥Zi∥ > 1/ηβ}

]
= E

[
(∥Zi∥ − 1/ηβ)I{∥Zi∥ − 1/ηβ > 0}

]
+ 1/ηβ ·P(∥Zi∥ > 1/ηβ).

Since (∥Zi∥ − 1/ηβ)I{∥Zi∥ − 1/ηβ > 0} is non-negative,

E(∥Zi∥ − 1/ηβ)I{∥Zi∥ − 1/ηβ > 0} =

∫ ∞

0

P
(
(∥Zi∥ − 1/ηβ)I{∥Zi∥ − 1/ηβ} > x

)
dx

=

∫ ∞

0

P(∥Zi∥ − 1/ηβ > x)dx =

∫ ∞

1/ηβ

P(∥Z∥ > x)dx.

Recall that H(x) = P(∥Z∥ > x) ∈ RV−α(x) as x→ ∞. Therefore, from Karamata’s theorem,∥∥∥EZ
(1)
i

∥∥∥ ≤
∫ ∞

1/ηβ

P(∥Z∥ > x)dx+ 1/ηβ ·P(∥Z∥ > 1/ηβ) ∈ RV(α−1)β(η) (3.11)

as η ↓ 0. Therefore, there exists some η0 = η0(t,M, ϵ) > 0 such that for any η ∈ (0, η0), we have

t ·M ·
∥∥∥EZ

(1)
i

∥∥∥ < ϵ/3, and hence for any (Vi)i≥0 ∈ ΓM and η ∈ (0, η0),

max
j≤⌊t/η⌋

η

∥∥∥∥∥
j∑

i=1

Vi−1EZ
(1)
i

∥∥∥∥∥ ≤ ⌊t/η⌋ ·M · η
∥∥∥EZ

(1)
i

∥∥∥ < ϵ/3,

from which we immediately get (3.8).
Next, for (3.9), recall our convention that vectors in Euclidean spaces are understood as row vectors

(unless specified otherwise), and write Vt = (Vt;l,k)l∈[m],k∈[d], Ẑt = (Ẑt;1, · · · , Ẑt;d). Since∥∥∥∥∥
j∑

i=1

Vi−1Ẑi

∥∥∥∥∥ =

√√√√ m∑
l=1

( j∑
i=1

d∑
k=1

Vi−1;l,kẐi,k

)2

,

to prove (3.9), it suffices to show that

lim
η↓0

η−N sup
(Vi)i≥0∈ΓM

P

(
max

j≤⌊t/η⌋
η|Yl,k(j;V )| > ϵ

3
√
md2

)
= 0 ∀l ∈ [m], k ∈ [d], (3.12)

where

Yl,k(j;V ) =∆
j∑

i=1

Vi−1;l,kẐi,k.

22



To proceed, we fix a sufficiently large p satisfying

p ≥ 1, p >
2N

β
, p >

2N

1− β
, p >

2N

(α− 1)β
>

2N

(2α− 1)β
, (3.13)

and some l ∈ [m], k ∈ [d]. Note that for (Vi)i≥0 ∈ ΓM and η > 0, {Vi−1;l,kẐ
(1)
i;k : i ≥ 1} is a martingale

difference sequence. Therefore,
(
Yl,k(j;V )

)
j≥0

is a martingale, and

E

( max
j≤⌊t/η⌋

η
∣∣∣Yl,k(j;V )

∣∣∣)p


≤ c1E


⌊t/η⌋∑

i=1

(
ηVi−1;l,kẐ

(1)
i;k

)2p/2


≤ c1M
pE


⌊t/η⌋∑

i=1

(
ηẐ

(1)
i;k

)2p/2
 due to ∥Vs∥ ≤M for all s ≥ 0

≤ c1c2M
pE

( max
j≤⌊t/η⌋

∣∣∣ j∑
i=1

ηẐ
(1)
i;k

∣∣∣)p
 ≤ c1c2

(
p

p− 1

)p

︸ ︷︷ ︸
=∆ c′

MpE


∣∣∣∣∣∣
⌊t/η⌋∑
i=1

ηẐ
(1)
i;k

∣∣∣∣∣∣
p
 (3.14)

for some c1, c2 > 0 that only depend on p and won’t vary with (Vi)i≥0 and η. The first and third
inequalities are from the uppper and lower bounds of Burkholder-Davis-Gundy inequality (Theorem
48, Chapter IV of [53]), respectively, and the fourth inequality is from Doob’s maximal inequality. It
then follows from Bernstein’s inequality that for any η > 0 and any s ∈ [0, t], y ≥ 1

P

(∣∣∣∣ ⌊s/η⌋∑
j=1

ηẐ
(1)
j;l,k

∣∣∣∣p > η2Ny

)
= P

(∣∣∣∣ ⌊s/η⌋∑
j=1

ηẐ
(1)
j;l,k

∣∣∣∣ > η
2N
p y1/p

)

≤ 2 exp

(
−

1
2η

4N
p p
√
y2

1
3η

1−β+ 2N
p p
√
y + t

η · η2 ·E
[
(Ẑ

(1)
1;k)

2
]). (3.15)

Our next goal is to show that t
η · η2 ·E

[
(Ẑ

(1)
1;k)

2
]
< 1

3η
1−β+ 2N

p for any η > 0 small enough. First, due

to (a+ b)2 ≤ 2a2 + 2b2,

E
[
(Ẑ

(1)
1;k)

2
]
= E

[(
Z

(1)
1;k −EZ

(1)
1;k

)2] ≤ 2E
[(
Z

(1)
1;k

)2]
+ 2
[
EZ

(1)
1;k

]2 ≤ 2E

[ ∥∥∥Z(1)
1

∥∥∥2 ]+ 2

[
E
∥∥∥Z(1)

1

∥∥∥ ]2.
Also, it has been shown earlier that E

∥∥∥Z(1)
1

∥∥∥ ∈ RV(α−1)β(η), and hence
[
E
∥∥∥Z(1)

1

∥∥∥ ]2 ∈ RV2(α−1)β(η).

From our choice of p > 2N
(2α−1)β in (3.13), we have 1 + 2(α− 1)β > 1− β + 2N

p , thus implying

t

η
· η2 · 2

[
E
∥∥∥Z(1)

1

∥∥∥ ]2 < 1

6
η1−β+ 2N

p

for any η > 0 sufficiently small. Next, E
[ ∥∥∥Z(1)

1

∥∥∥2 ] = ∫∞
0

2xP(
∥∥∥Z(1)

1

∥∥∥ > x)dx =
∫ 1/ηβ

0
2xP(∥Z1∥ >

x)dx. If α ∈ (1, 2], then Karamata’s theorem implies
∫ 1/ηβ

0
2xP(∥Z1∥ > x)dx ∈ RV−(2−α)β(η) as
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η ↓ 0. Given our choice of p in (3.13), one can see that 1− (2−α)β > 1−β+ 2N
p . As a result, for any

η > 0 small enough we have t
η ·η

2 ·2E
[ ∥∥∥Z(1)

1

∥∥∥2 ] < 1
6η

1−β+ 2N
p . If α > 2, then limη↓0

∫ 1/ηβ

0
2xP(∥Z1∥ >

x)dx =
∫∞
0

2xP(∥Z1∥ > x)dx < ∞. Also, (3.13) implies that 1 − β + 2N
p < 1. As a result, for any

η > 0 small enough we have t
η · η2 · 2E

[ ∥∥∥Z(1)
1

∥∥∥2 ] < 1
6η

1−β+ 2N
p . In summary,

t

η
· η2 ·E

[
(Ẑ

(1)
1;k)

2
]
<

1

3
η1−β+ 2N

p (3.16)

holds for any η > 0 small enough. Along with (3.15), we yield that for any η > 0 small enough,

P

(∣∣∣∣ ⌊s/η⌋∑
j=1

ηẐ
(1)
j;l,k

∣∣∣∣p > η2Ny

)
≤ 2 exp

(
− 1

2y
1/p

2
3η

1−β− 2N
p

)
≤ 2 exp

(
− 3

4
y1/p

)
∀y ≥ 1,

where the last inequality is due to our choice of p in (3.13) that 1 − β − 2N
p > 0. Moreover, since∫∞

0
exp

(
− 3

4y
1/p
)
dy <∞, one can see the existence of some C

(1)
p <∞ such thatE

∣∣∣∑⌊t/η⌋
j=1 ηẐ

(1)
j;l,k

∣∣∣p/η2N <

C
(1)
p for all η > 0 small enough. Combining this bound, (3.14), and Markov inequality, for all η > 0

small enough,

P

(
max

j≤⌊t/η⌋
η|Yl,k(j;V )| > ϵ

3
√
md2

)
≤

E
[
max

j≤⌊t/η⌋

∣∣∣∑j
i=1 ηYl,k(j,V )

∣∣∣p]
ϵp/(3

√
md2)p

≤
c′MpE

∣∣∣∑⌊t/η⌋
j=1 ηẐ

(1)
i;k

∣∣∣p
ϵp/(3

√
md2)p

≤ c′Mp · C(1)
p

ϵp/(3
√
md2)p

· η2N

holds uniformly for all (Vi)i≥0 ∈ ΓM . This proves (3.12) and hence (3.9).
Finally, for (3.10), recall that we have chosen β in such a way that αβ − 1 > 0. Fix a constant

J = ⌈ N
αβ−1⌉+1, and define I(η) =∆ #

{
i ≤ ⌊t/η⌋ : Z

(2)
i ̸= 0

}
. Besides, fix δ0 = ϵ

3MJ . For any δ ∈ (0, δ0)

and (Vi)i≥0 ∈ ΓM , note that on event {I(η) < J}, we must have max
j≤⌊t/η⌋

η
∥∥∥∑j

i=1 Vi−1Z
(2)
i

∥∥∥ <

η ·M · J · δ0/η < MJδ0 < ϵ/3. On the other hand,

P
(
I(η) ≥ J

)
≤
(
⌊t/η⌋
J

)
·
(
H
(
1/ηβ

))J
≤ (t/η)J ·

(
H
(
1/ηβ

))J
∈ RVJ(αβ−1)(η) as η ↓ 0.

Lastly, the choice of J = ⌈ N
αβ−1⌉+ 1 guarantees that J(αβ − 1) > N , and hence,

lim
η↓0

sup
(Vi)i≥0∈ΓM

P

(
max

j≤⌊t/η⌋
η

∥∥∥∥∥
j∑

i=1

Vi−1Z
(2)
i

∥∥∥∥∥ > ϵ

3

)/
ηN ≤ lim

η↓0
sup

(Vi)i≥0∈ΓM

P(I(η) ≥ J)
/
ηN = 0.

This concludes the proof of part (a).

(b) To ease notations, in this proof we write Xη = Xη|∞ for the cases where b = ∞. Due

to Assumption 3, it holds for any x ∈ Rm and any η > 0, n ≥ 0 that
∥∥∥σ(Xη|b

n (x)
)∥∥∥ ≤ C, so

{σ(Xη|b
i (x))}i≥0 ∈ ΓC . By strong Markov property at stopping times

(
τ>δ
j (η)

)
j≥1

,

sup
x∈Rm

P

(( k⋂
i=1

Ai(η, b, ϵ, δ,x)
)c)

≤
k∑

i=1

sup
x∈Rm

P

((
Ai(η, b, ϵ, δ,x)

)c)

24



≤ k · sup
(Vi)i≥0∈ΓC

P

(
max

j≤⌊1/η⌋∧
(
τ>δ
1 (η)−1

) η
∥∥∥∥∥

j∑
i=1

Vi−1Zi

∥∥∥∥∥ > ϵ

)

where C <∞ is the constant in Assumption 3 and the set ΓC is defined in (3.5). Thanks to part (a),
one can find some δ0 = δ0(ϵ, C,N) ∈ (0, δ̄) such that

sup
(Vi)i≥0∈ΓC

P

(
max

j≤⌊1/η⌋∧
(
τ>δ
1 (η)−1

) η
∥∥∥∥∥

j∑
i=1

Vi−1Zi

∥∥∥∥∥ > ϵ

)
= o(ηN )

(as η ↓ 0) for any δ ∈ (0, δ0), which concludes the proof of part (b).

Next, for any c > δ > 0, we study the law of
(
τ>δ
j (η)

)
j≥1

and
(
W>δ

j (η)
)
j≥1

conditioned on event

Eδ
c,k(η) =

∆

{
τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η); η
∥∥W>δ

j (η)
∥∥ > c ∀j ∈ [k]

}
. (3.17)

The intuition is that, on event Eδ
c,k(η), among the first ⌊1/η⌋ steps there are exactly k “large” jumps,

all of which has size larger than c/η. Next, for each c > 0, we consider a random vector W ∗(c) in

Rd with ∥W ∗(c)∥ > c almost surely, whose polar coordinates
(
R∗(c),Θ∗(c)

)
=∆
(
∥W ∗(c)∥ , W ∗(c)

∥W ∗(c)∥

)
admit the law

P

((
R∗(c),Θ∗(c)

)
∈ ·

)
=
(
ν̄α|(c,∞) × S

)
(·). (3.18)

Here, recall the definition of the measure να in (2.5) and the measure S in Assumption 1, and note
that α > 1 is the heavy-tail index in Assumption 1. For any c > 0, we set

ν̄α|(c,∞)

(
·
)
=∆ cα · να

(
· ∩(c,∞)

)
.

to be the restricted and normalized (as a probability measure) version of να over (c,∞). Let(
W ∗

j (c)
)
j≥1

be a sequence of iid copies of W ∗(c). Also, for (Uj)j≥1, a sequence of iid copies of

Unif(0, 1) that is also independent of
(
W ∗

j (c)
)
j≥1

, let U(1;k) ≤ U(2;k) ≤ · · · ≤ U(k;k) be the order

statistics of (Uj)
k
j=1. For any random element X and any Borel measureable set A, let L (X) be the

law of X, and L (X|A) be the conditional law of X given event A.

Lemma 3.4. Let Assumption 1 hold. For any δ > 0, c ≥ δ and k ∈ Z+,

lim
η↓0

P
(
Eδ

c,k(η)
)

λk(η)
=

1/cαk

k!
, (3.19)

and

L
(
ηW>δ

1 (η), ηW>δ
2 (η), · · · , ηW>δ

k (η), ητ>δ
1 (η), ητ>δ

2 (η), · · · , ητ>δ
k (η)

∣∣∣Eδ
c,k(η)

)
→L

(
W ∗

1 (c),W
∗
2 (c), · · · ,W ∗

k (c), U(1;k), U(2;k), · · · , U(k;k)

)
as η ↓ 0.

Proof. Note that
(
τ>δ
i (η)

)
i≥1

is independent of
(
W>δ

i (η)
)
i≥1

. Therefore, P
(
Eδ

c,k(η)
)
= P

(
τ>δ
k (η) ≤

⌊1/η⌋ < τ>δ
k+1(η)

)
·
(
P
(
η
∥∥W>δ

1 (η)
∥∥ > c

))k
. Recall that H(x) = P(∥Z∥ > x). Observe that

P
(
τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η)
)
= P

(
#
{
j ≤ ⌊1/η⌋ : η|Zj | > δ

}
= k

)
=

(
⌊1/η⌋
k

)
︸ ︷︷ ︸
=∆ q1(η)

(
1−H(δ/η)

)⌊1/η⌋−k

︸ ︷︷ ︸
=∆ q2(η)

(
H(δ/η)

)k︸ ︷︷ ︸
=∆ q3(η)

. (3.20)
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For q1(η), note that

lim
η↓0

q1(η)

1/ηk
=

(
⌊1/η⌋

)(
⌊1/η⌋ − 1

)
· · ·
(
⌊1/η⌋ − k + 1

)/
k!

1/ηk
=

1

k!
. (3.21)

Also, since (⌊1/η⌋ − k) ·H(δ/η) = o(1) as η ↓ 0, we have that limη↓0 q2(η) = 1. Lastly, note that

P
(
η
∥∥W>δ

1 (η)
∥∥ > c

)
= H(c/η)

/
H(δ/η),

and hence,

lim
η↓0

q3(η) ·
(
P
(
η
∥∥W>δ

1 (η)
∥∥ > c

))k
(
H(1/η)

)k = lim
η↓0

(
H(δ/η)

)k ·
(
H(c/η)

/
H(δ/η)

)k
(
H(1/η)

)k = lim
η↓0

(
H(c/η)

)k(
H(1/η)

)k = 1/cαk

(3.22)

Plugging (3.21) and (3.22) into (3.20), we obtain (3.19).

Next, we move onto the proof of the weak convergence. We use
(
R>δ

1 (η),Θ>δ
1 (η)

)
=∆
(∥∥W>δ

1 (η)
∥∥ , W>δ

1 (η)

∥W>δ
1 (η)∥

)
to denote the polar coordinates of W>δ

1 (η). Observe the following weak convergence:

P

((
ηR>δ

1 (η),Θ>δ
1 (η)

)
∈ ·

∣∣∣∣ ηR>δ
1 (η) > c

)

=
P
((
ηR>δ

1 (η),Θ>δ
1 (η)

)
∈ · ∩

(
(c,∞) ∩Nd

))
P
(
η
∥∥W>δ

1 (η)
∥∥ > c

)
=

P
((
ηR,Θ

)
∈ · ∩

(
(c,∞) ∩Nd

))/
P(η ∥Z∥ > δ)

P(η ∥Z∥ > c)
/
P(η ∥Z∥ > δ)

with (R,Θ) = (∥Z∥ , Z

∥Z∥
)

=
P
((
ηR,Θ

)
∈ · ∩

(
(c,∞) ∩Nd

))
P(η ∥Z∥ > 1)

· P(η ∥Z∥ > 1)

P(η ∥Z∥ > c)
=

P
((
ηR,Θ

)
∈ · ∩

(
(c,∞) ∩Nd

))
H(η−1)

· H(η−1)

H(c · η−1)

⇒ (ν̄α|(c,∞) × S)(·) as η ↓ 0 by Assumption 1.

As a result, we must have L
(
ηW>δ

1 (η), ηW>δ
2 (η), · · · , ηW>δ

k (η)
∣∣∣Eδ

c,k(η)
)
→ L

(
W ∗

1 (c), · · · ,W ∗
k (c)

)
.

Moreover, one can easily see that, conditioned on the event Eδ
c,k(η), the sequences ηW

>δ
1 (η), · · · , ηW>δ

k (η)

and ητ>δ
1 (η), · · · , ητ>δ

k (η) are conditionally independent. Therefore, as η ↓ 0, the limit of the condi-

tional law L
(
ηW>δ

1 (η), · · · , ηW>δ
k (η)

∣∣∣Eδ
c,k(η)

)
is also independent from that of L

(
ητ>δ

1 (η), · · · , ητ>δ
k (η)

∣∣∣Eδ
c,k(η)

)
,

and it only remains to show that

L
(
ητ>δ

1 (η), ητ>δ
2 (η), · · · , ητ>δ

k (η)
∣∣∣Eδ

c,k(η)
)
→ L

(
U(1;k), · · · , U(k;k)

)
.

Note that since both {ητ>δ
i (η) : i = 1, . . . , k} and {U(i):k : i = 1, . . . , k} are sorted in an ascending

order, the joint CDFs are completely characterized by {ti : i = 1, . . . , k}’s such that 0 ≤ t1 ≤ t2 ≤
· · · ≤ tk ≤ 1. For any such (t1, · · · , tk) ∈ [0, t]k, note that

P
(
ητ>δ

1 (η) > t1, ητ
>δ
2 (η) > t2, · · · , ητ>δ

k (η) > tk

∣∣∣ Eδ
c,k(η)

)
= P

(
ητ>δ

1 (η) > t1, ητ
>δ
2 (η) > t2, · · · , ητ>δ

k (η) > tk

∣∣∣ τ>δ
k (η) < ⌊1/η⌋ < τ>δ

k+1(η)
)

=
P
(
ητ>δ

1 (η) > t1, ητ
>δ
2 (η) > t2, · · · , ητ>δ

k (η) > tk; τ
>δ
k (η) < ⌊1/η⌋ < τ>δ

k+1(η)
)

P
(
τ>δ
k (η) < ⌊1/η⌋ < τ>δ

k+1(η)
)
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and observe that

P
(
ητ>δ

1 (η) > t1, ητ
>δ
2 (η) > t2, · · · , ητ>δ

k (η) > tk; τ
>δ
k (η) < ⌊1/η⌋ < τ>δ

k+1(η)
)

P
(
τ>δ
k (η) < ⌊1/η⌋ < τ>δ

k+1(η)
)

=

∣∣Eη
∣∣ · q2(η)q3(η)

q1(η)q2(η)q3(η)
=
∣∣Eη

∣∣/q1(η)
where Eη =∆

{
(s1, · · · , sk) ∈ {1, 2, · · · , ⌊1/η⌋ − 1}k : ηsj > tj ∀j ∈ [k]; s1 < s2 < · · · < sk

}
. Note

that

|Eη| =
⌊1/η⌋−1∑

sk=⌊ tk
η ⌋+1

sk−1∑
sk−1=⌊

tk−1
η ⌋+1

sk−1−1∑
sk−2=⌊

tk−2
η ⌋+1

· · ·
s3−1∑

s2=⌊ t2
η ⌋+1

s2−1∑
s1=⌊ t1

η ⌋+1

1.

Together with (3.21), we obtain

lim
η↓0

∣∣Eη
∣∣/q1(η) = (k!) · lim

η↓0

∣∣Eη
∣∣

(1/η)k
= (k!)

∫ 1

tk

∫ sk

tk−1

∫ sk−1

tk−2

· · ·
∫ s3

t2

∫ s2

t1

ds1ds2 · · · dsk

= P
(
U(i;k) > ti ∀i ∈ [j]

)
and conclude the proof.

Next, we present useful results about mappings h
(k)
[0,T ] defined in (2.10)–(2.13) and h

(k)|b
[0,T ] defined

in (2.21)–(2.24). These results will serve as crucial tools when establishing Theorems 2.3 and 2.4.

First, recall the definitions of the sets D(k)
A (r) and D(k)|b

A (r) in (2.17) and (2.25), respectively. The

first two results reveal useful properties of D(k)
A (r) and D(k)|b

A (r) when Assumptions 2 and 3 hold. As
their proofs mostly rely on arguments and calculations independent of those in the other sections of
our analyses, we collect the proofs of Lemmas 3.5 and 3.6 in Section C.

Lemma 3.5. Let Assumptions 2 and 3 hold. Given some compact A ⊆ Rm, some B ∈ SD, and some

k ∈ N, r > 0, if B is bounded away from D(k−1)
A (r), then there exist ϵ̄ > 0 and δ̄ > 0 such that the

following claims hold:

(a) For any x ∈ A,

h(k)
(
x, (w1, · · · ,wk), t

)
∈ B ϵ̄ =⇒ ∥wj∥ > δ̄ ∀j ∈ [k];

(b) dJ1

(
B ϵ̄,D(k−1)

A (r)
)
> 0.

Lemma 3.6. Let Assumptions 2 and 3 hold. Given some compact A ⊆ Rm, some B ∈ SD, and some

k ∈ N, b, r > 0, if B is bounded away from D(k−1)|b
A (r), then there exist ϵ̄ > 0 and δ̄ > 0 such that the

following claims hold:

(a) for any x ∈ A, b > 0, and any (v1, · · · ,vk) ∈ Rm×k with maxj∈[k] ∥vj∥ ≤ ϵ̄,

h̄(k)|b
(
x, (w1, · · · ,wk), (v1, · · · ,vk), t

)
∈ B ϵ̄ =⇒ ∥wj∥ > δ̄ ∀j ∈ [k];

(b) dJ1

(
B ϵ̄,D(k−1)|b

A (r)
)
> 0.

The next lemma establishes a convergence result from the measure C(k)|b defined in (2.26) to the
measure C(k) defined in (2.14). Again, we collect the proof in Section C.
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Lemma 3.7. Let Assumptions 2 and 3 hold. Let k ∈ N, r > 0, and A ⊆ Rm be compact. For any

g ∈ C
(
D \ D(k−1)

A (r)
)
and x ∈ A,

lim
b→∞

C(k)|b(g;x) = C(k)(g;x).

In Lemma 3.8, we show that the image of h(1) (resp. h(1)|b) provides good approximations of the

sample path of Xη
j (x) (resp. X

η|b
j (x)) up until τ>δ

1 (η), i.e. the arrival time of the first “large noise”;

see (3.2),(3.3) for the definition of τ>δ
i (η),W>δ

i (η).

Lemma 3.8. Let Assumptions 2 and 3 hold. Let D,C ∈ [1,∞) be the constants in Assumptions 2
and 3, respectively, and let ρ =∆ exp(D).

(a) For any ϵ, δ, η > 0 and any x,y ∈ Rm, it holds on the event{
max

i≤⌊1/η⌋∧
(
τ>δ
1 (η)−1

) η
∥∥∥∥∥∥

i∑
j=1

σ
(
Xη

j−1(x)
)
Zj

∥∥∥∥∥∥ ≤ ϵ

}

that

sup
t∈[0,1]: t<ητ>δ

1 (η)

∥∥∥ξt −Xη
⌊t/η⌋(x)

∥∥∥ ≤ ρ ·
(
ϵ+ ∥x− y∥+ ηC

)
, (3.23)

where

ξ =

{
h(1)

(
y, ηW>δ

1 (η), ητ>δ
1 (η)

)
if ητ>δ

1 (η) ≤ 1,

h(0)(y) if ητ>δ
1 (η) > 1.

(b) For any γ, b > 0, ϵ ∈ (0, 1), δ ∈ (0, b
2C ), η ∈ (0, b∧1

2C ), and x,y ∈ Rm, it holds on the event{
max

i≤⌊1/η⌋∧
(
τ>δ
1 (η)−1

) η
∥∥∥∥∥∥

i∑
j=1

σ
(
X

η|b
j−1(x)

)
Zj

∥∥∥∥∥∥ ≤ ϵ

}
∩
{
η
∥∥W>δ

1 (η)
∥∥ ≤ 1/ϵγ

}
that

sup
t∈[0,1]: t<ητ>δ

1 (η)

∥∥∥ξt −X
η|b
⌊t/η⌋(x)

∥∥∥ ≤ ρ ·
(
ϵ+ ∥x− y∥+ ηC

)
, (3.24)

sup
t∈[0,1]: t≤ητ>δ

1 (η)

∥∥∥ξt −X
η|b
⌊t/η⌋(x)

∥∥∥ ≤ ρD ·
(
ϵ+ ∥x− y∥+ 2ηC

)
· ϵ−γ (3.25)

where

ξ =

{
h(1)|b

(
y, ηW>δ

1 (η), ητ>δ
1 (η)

)
if ητ>δ

1 (η) ≤ 1,

h(0)|b(y) if ητ>δ
1 (η) > 1.

Proof. (a) Recall that yt(x) defined in (2.28) is the solution to ODE dyt(x)/dt = a
(
yt(x)

)
under

initial condition y0(x) = x. By definition of ξ, we have ξt = yt(y) for any t ∈ [0, 1] with t < ητ>δ
1 (η).

Also, since τ>δ
1 (η) only takes integer values, we know that ητ>δ

1 (η) ≤ 1 ⇐⇒ τ>δ
1 (η) ≤ ⌊1/η⌋ and

ητ>δ
1 (η) > 1 ⇐⇒ τ>δ

1 (η) > ⌊1/η⌋.
Let A =∆

{
max

i≤⌊1/η⌋∧
(
τ>δ
1 (η)−1

) η ∥∥∥∑i
j=1 σ

(
Xη

j−1(x)
)
Zj

∥∥∥ ≤ ϵ
}
. Let xη

· (·) be the deterministic

process defined in (C.13). Applying discrete version of Gronwall’s inequality (see, for example, Lemma
A.3 of [41]) we know that on event A,∥∥xη

j (x)−Xη
j (x)

∥∥ ≤ ϵ · exp(ηD · ⌊1/η⌋) ≤ ρϵ ∀j ≤ ⌊1/η⌋ ∧
(
τ>δ
1 (η)− 1

)
. (3.26)
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On the other hand, since ξt = yt(y) for all t < ητ>δ
1 (η), by applying Lemma C.5 we get

sup
t∈[0,1]: t<ητ>δ

1 (η)

∥∥∥ξt − xη
⌊t/η⌋(x)

∥∥∥ ≤
(
ηC + ∥x− y∥

)
· ρ. (3.27)

Combining (3.26) and (3.27), we get

sup
t∈[0,1]:t<ητ>δ

1 (η)

∥∥∥ξt −Xη
⌊t/η⌋(x)

∥∥∥ ≤ ρ ·
(
ϵ+ ∥x− y∥+ ηC

)
. (3.28)

(b) Note that for any x ∈ Rm and any t ∈ [0, 1] with t < ητ>δ
1 (η),

h(0)|b(x)(t) = h(0)(x)(t) = h(1)|b
(
x, ηW>δ

1 (η), ητ>δ
1 (η)

)
(t) = h(1)

(
x, ηW>δ

1 (η), ητ>δ
1 (η)

)
(t) = yt(x).

Also, for any w ∈ Rd with ∥w∥ ≤ δ < b
2C and any x ∈ Rm note that φb

(
ηa(x) + σ(x)w

)
=

ηa(x) + σ(x)w due to η ∥a(x)∥ ≤ ηC < b
2 and ∥σ(x)∥ ∥w∥ ≤ Cδ < b/2 (recall our choice of

ηC < b
2 ∧ 1 and δ < b

2C ). As a result, Xη
j (x) = X

η|b
j (x) for all x ∈ Rm and j < τ>δ

1 (η). It then

follows directly from (3.28) that on event
{
max

i≤⌊1/η⌋∧
(
τ>δ
1 (η)−1

) η ∥∥∥∑i
j=1 σ

(
X

η|b
j−1(x)

)
Zj

∥∥∥ ≤ ϵ
}
, we

have
sup

t∈[0,1]:t<ητ>δ
1 (η)

∥∥∥ξt −X
η|b
⌊t/η⌋(x)

∥∥∥ ≤ ρ ·
(
ϵ+ ∥x− y∥+ ηC

)
.

A direct consequence is (we write y(u;x) = yu(x), y(s−;x) = limu↑s yu(x), and ξ(t) = ξt in this
proof) ∥∥∥y(ητ>δ

1 (η)−;y)−X
η|b
τ>δ
1 (η)−1

(x)
∥∥∥ ≤ ρ ·

(
ϵ+ ∥x− y∥+ ηC

)
. (3.29)

Therefore,∥∥∥ξ(ητ>δ
1 (η)

)
−X

η|b
τ>δ
1 (η)

(x)
∥∥∥

=

∣∣∣∣∣
∣∣∣∣∣y(ητ>δ

1 (η)−;y) + φb

(
ησ
(
y(ητ>δ

1 (η)−;y)
)
W>δ

1 (η)

)

−
[
X

η|b
τ>δ
1 (η)−1

(x) + φb

(
ηa
(
X

η|b
τ>δ
1 (η)−1

(x)
)
+ ησ

(
X

η|b
τ>δ
1 (η)−1

(x)
)
W>δ

1 (η)

)]∣∣∣∣∣
∣∣∣∣∣

≤
∥∥∥y(ητ>δ

1 (η)−;y)−X
η|b
τ>δ
1 (η)−1

(x)
∥∥∥

+

∥∥∥∥φb

(
ησ
(
y(ητ>δ

1 (η)−;y)
)
W>δ

1 (η)

)
− φb

(
ησ
(
X

η|b
τ>δ
1 (η)−1

(x)
)
W>δ

1 (η)

)∥∥∥∥︸ ︷︷ ︸
=∆ I1

+

∥∥∥∥φb

(
ησ
(
X

η|b
τ>δ
1 (η)−1

(x)
)
W>δ

1 (η)

)
− φb

(
ηa
(
X

η|b
τ>δ
1 (η)−1

(x)
)
+ ησ

(
X

η|b
τ>δ
1 (η)−1

(x)
)
W>δ

1 (η)

)∥∥∥∥︸ ︷︷ ︸
=∆ I2

.

First, due to ∥φb(x)− φb(y)∥ ≤ ∥x− y∥,

I1 ≤ η
∥∥W>δ

1 (η)
∥∥ · ∥∥∥σ(y(ητ>δ

1 (η)−;y)
)
− σ

(
X

η|b
τ>δ
1 (η)−1

(x)
)∥∥∥

≤ η
∥∥W>δ

1 (η)
∥∥ ·D ·

∥∥∥y(ητ>δ
1 (η)−;y)−X

η|b
τ>δ
1 (η)−1

(x)
∥∥∥ by Assumption 2
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≤ ρD
(
ϵ+ ∥x− y∥+ ηC

)
· η
∥∥W>δ

1 (η)
∥∥ by (3.29)

≤ ρD
(
ϵ+ ∥x− y∥+ ηC

)
· ϵ−γ on event

{
η
∥∥W>δ

1 (η)
∥∥ ≤ 1/ϵγ

}
.

Similarly, we can get I2 ≤
∥∥∥ηa(Xη|b

τ>δ
1 (η)−1

(x)
)∥∥∥ ≤ ηC. In summary, on event

{
η
∥∥W>δ

1 (η)
∥∥ ≤ 1/ϵγ

}
,

sup
t∈[0,1]: t≤ητ>δ

1 (η)

∥∥∥ξt −X
η|b
⌊t/η⌋(x)

∥∥∥ ≤ ρD
(
ϵ+ ∥x− y∥+ ηC

)
· ϵ−γ + ηC

≤ ρD
(
ϵ+ ∥x− y∥+ 2ηC

)
· ϵ−γ .

This concludes the proof of part (b).

By applying Lemma 3.8 inductively, the next result establishes the conditions under which the

image of the mapping h(k)|b approximates the path of X
η|b
j (x).

Lemma 3.9. Let Assumptions 2 and 3 hold. Let Ai(η, b, ϵ, δ,x) be defined as in (3.6). For any k ∈ N,
x ∈ Rm, b > 0, ϵ ∈ (0, 1), δ ∈ (0, b

2C ), and η ∈ (0, b∧ϵ
2C ), it holds on event( k+1⋂

i=1

Ai(η, b, ϵ, δ,x)

)
∩
{
τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η)
}
∩
{
η
∥∥W>δ

i (η)
∥∥ ≤ 1/ϵ

1
2k ∀i ∈ [k]

}
that

sup
t∈[0,1]

∥∥∥ξt −X
η|b
⌊t/η⌋(x)

∥∥∥ < (2ρD)k+1
√
ϵ,

where
ξ =∆ h(k)|b

(
x,
(
ηW>δ

1 (η), · · · , ηW>δ
k (η)

)
,
(
ητ>δ

1 (η), · · · , ητ>δ
k (η)

))
,

ρ = exp(D) ≥ 1, D ∈ [1,∞) is the Lipschitz coefficient in Assumption 2, and C ≥ 1 is the constant
in Assumption 3.

Proof. It is straightforward to see the claim is an immeidate corollary of (3.25) in Lemma 3.8 when
applied inductively (in particular, with γ = 1

2k , and note that due to our choice of η, we have 2ηC < ϵ).
To avoid repetition, we omit the details. e

To conclude, Lemma 3.10 provides tools for verifying the sequential compactness condition (2.1)
for measures C(k)( · ;x) and C(k)|b( · ;x) when we restrict x over a compact set A.

Lemma 3.10. Let Assumptions 2 and 3 hold. Let T, r > 0 and k ≥ 1. Let A ⊆ Rm be compact.

(a) For any xn ∈ A and x∗ ∈ A such that limn→∞ xn = x∗,

lim
n→∞

C(k)(f ;xn) = C(k)(f ;x∗) ∀f ∈ C
(
D[0, T ] \ D(k−1)

A [0, T ](r)
)
.

(b) Let b > 0. For any xn ∈ A and x∗ ∈ A such that limn→∞ xn = x∗,

lim
n→∞

C(k)|b(f ;xn) = C(k)|b(f ;x∗) ∀f ∈ C
(
D[0, T ] \ D(k−1)|b

A [0, T ](r)
)
.

Proof. For convenience we consider the case T = 1, but the proof can easily extend for arbitrary
T > 0.
(a) Pick some f ∈ C

(
D \ D(k−1)

A (r)
)
, and let ϕ(x) =∆ C(k)(f ;x). We argue that ϕ(·) is a continuous

function using Dominated Convergence theorem. First, from the continuity of f and h(k) (see Lemma
C.4), for any sequence yn ∈ Rm with limn→∞ yn = y ∈ Rm, we have

lim
m→∞

f
(
h(k)(ym,W, t)

)
= f

(
h(k)(y,W, t)

)
∀W ∈ Rd×k, t ∈ (0, 1)k↑.
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Next, by applying Lemma 3.5 onto B = supp(f), which is bounded away from D(k−1)
A (r), we find

δ̄ > 0 such that h(k)
(
x, (w1, · · · ,wk), t

)
∈ B =⇒ ∥wj∥ > δ̄ ∀j ∈ [k]. As a result,∣∣∣f(h(k)(x, (w1, · · · ,wk), t

))∣∣∣ ≤ ∥f∥ · I
{
∥wj∥ > δ̄ ∀j ∈ [k]

}
.

Also, note that
∫
I
{
∥wj∥ > δ̄ ∀j ∈ [k]

}(
(να × S) ◦ Φ

)k
(dW)× Lk↑

1 (dt) ≤ 1/δ̄kα <∞. This allows us
to apply Dominated Convergence theorem and obtain

lim
n→∞

ϕ(xn) = lim
n→∞

C(k)(f ;xn) = C(k)(f ;x∗) = ϕ(x∗),

which the proof of part (a).

(b) The proof is almost identical. The only differences are that we apply Lemma C.3 (resp. Lemma
3.6) instead of Lemma C.4 (resp. Lemma 3.5) so we omit the details.

3.3 Proofs of Theorems 2.3 and 2.4

In the proofs of Theorems 2.3 and 2.4 below, without loss of generality we focus on the case where
T = 1. But we note that the proof for the cases with arbitrary T > 0 is nearly identical. Recall
that, to simplify notations, we write Xη(x) = Xη

[0,1](x) = {Xη
⌊t/η⌋(x) : t ∈ [0, 1]}, and Xη|b(x) =

X
η|b
[0,1](x) = {Xη|b

⌊t/η⌋(x) : t ∈ [0, 1]}.

3.3.1 Proof of Theorem 2.3

Recall the notion of uniform M-convergence introduced in Definition 2.1. At first glance, the uniform
version of M-convergence stated in Theorem 2.3 and 2.4 is stronger than the standard M-convergence
introduced in [42]. Nevertheless, under the conditions stated in Theorem 2.3 or 2.4 regarding the initial
values of Xη or Xη|b, we can show that it suffices to prove the standard notion of M-convergence. In
particular, the proofs to Theorem 2.3 and 2.4 hinge on the following key proposition for Xη|b.

Proposition 3.11. Let ηn be a sequence of strictly positive real numbers with limn→∞ ηn = 0. Let
compact set A ⊆ Rm and xn,x

∗ ∈ A be such that limn→∞ xn = x∗. Under Assumptions 1 and 2, it
holds for all k ∈ N and b, r > 0 that

P
(
Xηn|b(xn) ∈ ·

)/
λk(ηn) → C(k)|b( · ;x∗) in M

(
D \ D(k−1)|b

A (r)
)
as n→ ∞.

As the first application of Proposition 3.11, in Section 3.3.1 we prepare a similar result for the
unclipped dynamics Xη defined in (2.3) and (2.16), which will be the key tool in our proof of Theo-
rem 2.3.

Proposition 3.12. Let ηn be a sequence of strictly positive real numbers with limn→∞ ηn = 0. Let
compact set A ⊆ Rm and xn,x

∗ ∈ A be such that limn→∞ xn = x∗. Under Assumptions 1, 2, and 3,
it holds for all k ∈ N and r > 0 that

P
(
Xηn(xn) ∈ ·

)/
λk(ηn) → C(k)

(
· ;x∗) in M

(
D \ D(k−1)

A (r)
)
as n→ ∞.

Proof. Fix some k = 0, 1, 2, · · · , r > 0, and some g ∈ C
(
D \D(k−1)

A (r)
)
. By virtue of the Portmanteau

theorem for M-convergence (see theorem 2.1 of [42]), it suffices to show that

lim
n→∞

E
[
g
(
Xηn(xn)

)]/
λk(ηn) = C(k)(g;x∗).

To this end, we let B =∆ supp(g) and observe that for any n ≥ 1 and any δ, b > 0,

E
[
g
(
Xηn(xn)

)]
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= E
[
g(Xηn(xn))I

{
Xηn(xn) ∈ B

}]
= E

[
g(Xηn(xn))I

{
τ>δ
k+1(ηn) < ⌊1/ηn⌋; Xηn(xn) ∈ B

}]
+E

[
g(Xηn(xn))I

{
τ>δ
k (ηn) > ⌊1/ηn⌋; Xηn(xn) ∈ B

}]
+E

[
g(Xηn(xn))I

{
τ>δ
k (ηn) ≤ ⌊1/ηn⌋ < τ>δ

k+1(ηn); ηn
∥∥W>δ

j (ηn)
∥∥ > b

2C
for some j ∈ [k]; Xηn(xn) ∈ B

}]
+E

[
g(Xηn(xn))I

{
τ>δ
k (ηn) ≤ ⌊1/ηn⌋ < τ>δ

k+1(ηn); ηn
∥∥W>δ

j (ηn)
∥∥ ≤ b

2C
∀j ∈ [k]; Xηn(xn) ∈ B

}
︸ ︷︷ ︸

=∆ I∗(n,b,δ)

]
,

where C ≥ 1 is the constant in Assumption 3 such that ∥a(x)∥∨∥σ(x)∥ ≤ C for any x, and τ>δ
j (η)’s,

W>δ
j (η)’s are defined in (3.2) and (3.3). Now, we focus on the term I∗(n, b, δ). For any n large

enough, we have ηn · supx∈Rm ∥a(x)∥ ≤ ηnC ≤ b/2. As a result,for such n and any δ ∈ (0, b
2C ), on the

event

Ã(n, b, δ) =∆
{
τ>δ
k (ηn) ≤ ⌊1/ηn⌋ < τ>δ

k+1(ηn); ηn
∥∥W>δ

j (ηn)
∥∥ ≤ b

2C
∀j ∈ [k]; Xηn(xn) ∈ B

}
,

the norm of the step-size (before truncation) ηa
(
X

η|b
j−1(x)

)
+ ησ

(
X

η|b
j−1(x)

)
Zj of X

η|b
j is less than b

for each j ≤ ⌊1/ηn⌋, and hence Xηn(xn) = Xηn|b(xn). This observation leads to the following upper
bound: Given any b > 0 and δ ∈ (0, b

2C ), it holds for any n large enough that

E
[
g
(
Xηn(xn)

)]
≤ ∥g∥P

(
τ>δ
k+1(ηn) ≤ ⌊1/ηn⌋

)︸ ︷︷ ︸
=∆p1(n,δ)

+ ∥g∥P
(
τ>δ
k (ηn) > ⌊1/ηn⌋; Xηn(xn) ∈ B

)︸ ︷︷ ︸
=∆p2(n,δ)

+ ∥g∥P
(
τ>δ
k (ηn) ≤ ⌊1/ηn⌋ < τ>δ

k+1(ηn); ηn
∥∥W>δ

j (ηn)
∥∥ > b

2C
for some j ∈ [k]

)
︸ ︷︷ ︸

=∆p3(n,b,δ)

+E
[
g
(
Xηn|b(xn)

)]
.

Similarly, given any n large enough, any b > 0 and any δ ∈ (0, b
2C ), we have the lower bound

E
[
g
(
Xηn(xn)

)]
≥ E

[
I∗(n, b, δ)

]
= E

[
g
(
Xηn|b(xn)

)
I

(
Ã(n, b, δ)

)]
due to Xηn(xn) = Xηn|b(xn) on Ã(n, b, δ)

≥ E
[
g
(
Xηn|b(xn)

)]
− ∥g∥P

((
Ã(n, b, δ)

)c)
≥ E

[
g
(
Xηn|b(xn)

)]
− ∥g∥ ·

[
p1(n, δ) + p2(n, δ) + p3(n, b, δ)

]
.

We claim that there exists some δ > 0 such that

lim
n→∞

p1(n, δ)
/
λk(ηn) = 0, (3.30)

lim
n→∞

p2(n, δ)
/
λk(ηn) = 0. (3.31)

32



Furthermore, we claim that for any b > 0,

lim sup
n→∞

p3(n, b, δ)
/
λk(ηn) ≤ ψδ(b) =

∆ k

δαk
·
( δ
2C

)α · 1

bα
. (3.32)

Note that limb→∞ ψδ(b) = 0. Lastly, by Lemma 3.7,

lim
b→∞

C(k)|b(g;x∗) = C(k)(g;x∗). (3.33)

Then by combining (3.30)–(3.32) with the upper and lower bounds above for E
[
g(Xηn(xn))

]
, we see

that for any b large enough (such that b
2C > δ),

lim
n→∞

E
[
g(Xηn|b(xn))

]
λk(ηn)

− ∥g∥ψδ(b) ≤ lim
n→∞

E
[
g(Xηn(xn))

]
λk(ηn)

≤ lim
n→∞

E
[
g(Xηn|b(xn))

]
λk(ηn)

+ ∥g∥ψδ(b),

=⇒− ∥g∥ψδ(b) +C(k)|b(g;x∗) ≤ lim
n→∞

E
[
g(Xηn(xn))

]
λk(ηn)

≤ ∥g∥ψδ(b) +C(k)|b(g;x∗).

In the last line of the display, we applied Proposition 3.11. Letting b tend to ∞ and applying the limit
(3.33), we conclude the proof. Now, it only remains to prove (3.30) (3.31) (3.32).

Proof of Claim (3.30):

We show that this claim holds for any δ > 0. Applying (3.4), we see that p1(n, δ) ≤
(
H( δ

ηn
)
/
ηn
)k+1

holds for any δ > 0 and any n ≥ 1. Due to the regularly varying nature of H(·), we then yield

lim supn→∞
p1(n,δ)

λk+1(ηn)
≤ 1/δα(k+1) <∞. Therefore,

lim sup
n→∞

p1(n, δ)

λk(ηn)
≤ lim sup

n→∞

p1(n, δ)

λk+1(ηn)
· lim
n→∞

λ(ηn) ≤
1

δα(k+1)
· lim
n→∞

H(1/ηn)

ηn
= 0

due to H(1/η)
η = λ(η) ∈ RVα−1(η) as η ↓ 0 and α > 1.

Proof of Claim (3.31):
We claim the existence of some ϵ > 0 such that{
τ>δ
k (η) > ⌊1/η⌋; Xη(x) ∈ B

}
∩
( k+1⋂

i=1

Ai(η,∞, ϵ, δ,x)

)
= ∅ ∀x ∈ A, δ > 0, η ∈ (0,

ϵ

Cρ
) (3.34)

where D,C ∈ [1,∞) are the constants in Assumptions 2 and 3 respectively, ρ =∆ exp(D), and event
Ai(η, b, ϵ, δ,x) is defined in (3.6). Then for any δ > 0,

lim sup
n→∞

p2(n, δ)
/
λk(ηn) ≤ lim sup

n→∞
sup
x∈A

P

(( k+1⋂
i=1

Ai(ηn,∞, ϵ, δ,x)

)c
)/

λk(ηn).

Applying Lemma 3.3 (b) with N > k(α − 1), we conclude that claim (3.31) holds for all δ > 0 small
enough. Now, it only remains to find ϵ > 0 that satisfies condition (3.34). To this end, we first recall

that the set B = supp(g) is bounded away from D(k−1)
A (r). By Lemma 3.5, there is ϵ̄ > 0 such that

dJ1

(
B ϵ̄,D(k−1)

A (r)
)
> ϵ̄. W.l.o.g. we pick ϵ̄ small enough such that ϵ̄ ∈ (0, r). Next, we show that

(3.34) holds for any ϵ > 0 small enough with (ρ + 1)ϵ < ϵ̄. To see why, we fix some x ∈ A, δ > 0

and η ∈ (0, ϵ
Cρ ). Define a process X̆η,δ(x) =∆

{
X̆η,δ

t (x) : t ∈ [0, 1]
}
as the solution to (under initial

condition X̆η,δ
0 (x) = x)

dX̆η,δ
t (x)

dt
= a

(
X̆η,δ

t (x)
)

∀t ≥ 0, t /∈ {ητ>δ
j (η) : j ≥ 1},
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X̆η,δ

ητ>δ
i (η)

(x) = Xη

τ>δ
i (η)

(x) ∀j ≥ 1.

On event
(
∩k+1
i=1 Ai(η,∞, ϵ, δ, .x)

)
∩ {τ>δ

k (η) > ⌊1/η⌋}, observe that

dJ1

(
X̆η,δ(x),Xη(x)

)
≤ sup

t∈
[
0,ητ>δ

1 (η)
)
∪
[
ητ>δ

1 (η),ητ>δ
2 (η)

)
∪···∪

[
ητ>δ

k (η),ητ>δ
k+1(η)

) ∥∥∥X̆η,δ
t (x)−Xη

⌊t/η⌋(x)
∥∥∥

≤ ρ ·
(
ϵ+ ηC

)
≤ ρϵ+ ϵ < ϵ̄ because of (3.23) of Lemma 3.8.

In the last line of the display above, we applied η < ϵ
Cρ and our choice of (ρ + 1)ϵ < ϵ̄. However,

from the display above, we also learned that on {τ>δ
k (η) > ⌊1/η⌋}, we have X̆η,δ(x) ∈ D(k−1)

A (ϵ̄) ⊆
D(k−1)

A (r); recall that we picked ϵ̄ ∈ (0, r). As a result, on event
(
∩k+1
i=1 Ai(η,∞, ϵ, δ,x)

)
∩ {τ>δ

k (η) >

⌊1/η⌋} we must have dJ1

(
D(k−1)

A (r),Xη(x)
)
< ϵ̄, and hence Xη(x) /∈ B due to the fact that

dJ1

(
B ϵ̄,D(k−1)

A (r)
)
> ϵ̄. This verifies (3.34).

Proof of Claim (3.32):
Due to the independence between

(
τ>δ
i (η)− τηj−1(δ)

)
j≥1

and
(
W>δ

i (η)
)
j≥1

,

p3(n, b, δ) = P
(
τ>δ
k (ηn) < ⌊1/ηn⌋ < τ>δ

k+1(ηn)
)
·P
(
ηn
∥∥W>δ

j (ηn)
∥∥ > b

2C
for some j ∈ [k]

)
≤ P

(
τ>δ
k (ηn) ≤ ⌊1/ηn⌋

)
·

k∑
j=1

P

(
ηn
∥∥W>δ

j (ηn)
∥∥ > b

2C

)

≤
(H(δ/ηn)

ηn

)k
· k ·

H
(

b
2C · 1

ηn

)
H
(
δ · 1

ηn

) .
Due to H(x) ∈ RV−α(x) as x → ∞ (see Assumption 1), we conclude that lim supn→∞

p4(n,b,δ)
λk(ηn)

≤
k

δαk ·
(

δ
2C

)α · 1
bα = ψδ(b).

With Proposition 3.12 in our arsenal, we prove Theorem 2.3.

Proof of Theorem 2.3. For simplicity of notations we focus on the case where T = 1, but the proof
below can be easily generalized for arbitrary T > 0.

We first prove the uniform M-convergence. Specifically, we proceed with a proof by contradiction.

Fix some r > 0 and k ∈ N, and suppose that there is some f ∈ C
(
D \ D(k−1)

A (r)
)
, some sequence

ηn > 0 with limit limn→∞ ηn = 0, some sequence xn ∈ A, and ϵ > 0 such that∣∣µ(k)
n (f)−C(k)(f ;xn)

∣∣ > ϵ ∀n ≥ 1 with µ(k)
n (·) =∆ P

(
Xηn(xn) ∈ ·

)/
λk(ηn).

Since A ⊆ Rm is compact, by picking a proper subsequence we can assume w.l.o.g. that limn→∞ xn =

x∗ for some x∗ ∈ A. This allows us to apply Proposition 3.12 and yield limn→∞
∣∣µ(k)

n (f)−C(k)(f ;x∗)
∣∣ =

0. On the other hand, using part (a) of Lemma 3.10, we get limn→∞
∣∣C(k)(f ;xn)−C(k)(f ;x∗)

∣∣ = 0.
Therefore, we arrive at the contradiction

lim
n→∞

∣∣µ(k)
n (f)−C(k)(f ;xn)

∣∣ ≤ lim
n→∞

∣∣µ(k)
n (f)−C(k)(f ;x∗)

∣∣+ lim
n→∞

∣∣C(k)(f ;x∗)−C(k)(f ;xn)
∣∣ = 0

and conclude the proof of the uniform M-convergence claim.
Next, we prove the uniform sample-path large deviations stated in (2.18). Part (a) of Lemma

3.10 verifies the compactness condition (2.1) for the family of measures {C(k)( · ;x) : x ∈ A}.
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In light of the Portmanteau theorem for uniform M-convergence (i.e., Theorem 2.2), most claims
follow directly from the uniform M-convergence established above, and it only remains to verify that

supx∈A C(k)
(
B−;x

)
< ∞. To do so, note that B− is bounded away from D(k−1)

A (r). This allows us
to apply Lemma 3.5 and find ϵ̄ > 0, δ̄ > 0 such that, for any x ∈ A and t ∈ (0, 1]k↑,

h(k)
(
x, (w1, · · · ,wk), t

)
∈ B ϵ̄ =⇒ ∥wj∥ > δ̄ ∀j ∈ [k].

Then by the definition of C(k) in (2.14),

sup
x∈A

C(k)(B−;x) = sup
x∈A

∫
I

{
h(k)

(
x, (w1, · · · ,wk), t

)
∈ B−

}(
(να × S) ◦ Φ

)k
(dW)× Lk↑

1 (dtq

≤
∫

I

{
∥wj∥ > δ̄ ∀j ∈ [k]

}(
(να × S) ◦ Φ

)k
(dW)× Lk↑

1 (dt) ≤ 1/δ̄kα <∞.

This concludes the proof.

3.3.2 Proof of Theorem 2.4

Aside from Proposition 3.11, another key tool in our proof of Theorem 2.4 is the following “truncated”
version of the drift and diffusion coefficients a(·),σ(·). Given any M ≥ 1, let

aM (x) =∆
{
a
(
M · x

∥x∥

)
if ∥x∥ > M,

a(x) otherwise.
σM (x) =∆

{
σ
(
M · x

∥x∥

)
if ∥x∥ > M,

σ(x) otherwise.
(3.35)

That is, we project x onto the closed ball {x ∈ Rm : ∥x∥ ≤ M}. For any a(·),σ(·) satisfying
Assumption 2, one can see that aM (·),σM (·) will satisfy Assumptions 2 and 3. Similarly, recall the
definition of the mapping h̄(k)|b in (2.21)-(2.23). We also consider its “truncated” counterpart by

defining the mapping h̄
(k)|b
M↓ : Rm ×Rd×k ×Rm×k × (0, 1]k↑ → D as follows. Given any x ∈ Rm, W =

(w1, · · · ,wk) ∈ Rd×k, V = (v1, · · · ,vj) ∈ Rm×k, t = (t1, · · · , tk) ∈ (0, 1]k↑, let ξ = h̄
(k)|b
M↓ (x,W,V, t)

be the solution to

ξ0 = x; (3.36)

dξt
dt

= aM (ξt) ∀t ∈ [0, 1], t ̸= t1, t2, · · · , tk; (3.37)

ξt = ξt− + vj + φb

(
σM (ξt− + vj)wj

)
if t = tj for some j ∈ [k]. (3.38)

Define mapping h
(k)|b
M↓ : Rm × Rd×k × (0, 1]k↑ → D by

h
(k)|b
M↓

(
x, (w1, · · · ,wk), t

)
=∆ h̄

(k)|b
M↓

(
x, (w1, · · · ,wk), (0, · · · ,0), t

)
. (3.39)

Also, recall that B̄r(x) is the closed ball with radius r centered at x, and set

D(k)|b
A;M↓(r) =

∆ h̄
(k)|b
M↓

(
A× Rm×k ×

(
B̄r(0)

)k × (0, 1]k↑
)
. (3.40)

In short, the difference between h̄
(k)|b
M↓ and h̄(k)|b is that, when constructing h̄

(k)|b
M↓ , we use the truncated

drift and diffusion coefficients aM (·) and σM (·).
The main idea for our proof of Theorem 2.4 is as follows. For large enough M > 0, one can show

that it is very unlikely for the truncated dynamics Xη|b(x) to exit from the the ball B̄r(0) = {y :
∥y∥ ≤M}. Therefore, it suffices to study the M-convergence and large deviation limits of a modified
version of Xη|b(x), where we use aM and σM for the drift and diffusion coefficients, instead of a and
σ. Since aM and σM automatically satisfy the boundedness condition in Assumption 3, we essentially
reduce the problem to a simpler one, whose proof is almost identical to that of Theorem 2.3 and builds
upon the technical tools developed in Section 3.2 again.
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Proof of Theorem 2.4. First, we argue that the proof is almost identical to that of Theorem 2.3 if
Assumption 3 also holds. In particular, the proof-by-contradiction approach in Theorem 2.3 can be
applied here to establish the uniform M-convergence. The only difference is that we apply Proposition
3.11 (resp., part (b) of Lemma 3.10) instead of Proposition 3.12 (resp., part (a) of Lemma 3.10).
Similarly, the proof to the uniform sample-path large deviations stated in (2.27) is almost identical
to that of (2.18) in Theorem 2.3. The only difference is that we apply part (b) of Lemma 3.10 (resp.,
Lemma 3.6) instead of part (a) of Lemma 3.10 (resp., Lemma 3.5). To avoid repetition we omit the
details.

In the remainder of this proof, we discuss how to extend the proof and cover the case where
Assumption 3 is dropped. To prove the uniform M-convergence claim, we proceed again with a proof

by contradiction. Fix some b, r > 0, k ∈ N, and suppose that there are some g ∈ C
(
D \ D(k−1)

A (r)
)
,

some sequence ηn > 0 with limit limn→∞ ηn = 0, some sequence xn ∈ A, and ϵ > 0 such that∣∣µ(k)
n (g)−C(k)|b(g;xn)

∣∣ > ϵ ∀n ≥ 1 with µ(k)
n (·) =∆ P

(
Xηn|b(xn) ∈ ·

)/
λk(ηn). (3.41)

By the compactness of A, we can pick a sub-sequence if needed and w.l.o.g. assume that limn→∞ xn =

x∗ for some x∗ ∈ A. Next, let B =∆ supp(g) and note that B is bounded away from D(k−1)|b
A (r).

Applying Corollary C.2, we can fix some M0 such that the following claim holds for any M ≥ M0 :

for any ξ = h̄
(k)|b
M↓ (x,W,V, t) with t = (t1, · · · , tk) ∈ (0, 1]k↑, W = (w1, · · · ,wk) ∈ Rd×k, V =

(v1, · · · ,vk) ∈ Rm×k with maxj∈[d] ∥vj∥ ≤ r, and x ∈ A,

ξ = h̄(k)|b(x,W,V, t) = h̄
(k)|b
M↓ (x,W,V, t) and sup

t∈[0,1]

∥ξt∥ ≤M0. (3.42)

Here, recall that the mappings h̄
(k)|b
M↓ and h

(k)|b
M↓ are defined in (3.36)–(3.39). Now, we fix some M ≥

M0 + 1 and recall the definitions of aM , σM in (3.35). Define the stochastic processes X̃η|b(x) =∆{
X̃

η|b
⌊t/η⌋(x) : t ∈ [0, 1]

}
by

X̃
η|b
j (x) = X̃

η|b
j−1(x) + φb

(
ηaM

(
X̃

η|b
j−1(x)

)
+ ησM

(
X̃

η|b
j−1(x)

)
Zj

)
∀j ≥ 1 (3.43)

under initial condition X̃
η|b
0 (x) = x. In particular, by comparing the definition of X̃

η|b
j (x) with that

of X
η|b
j (x) in (2.19), one can see that (for any x ∈ Rm, η > 0)

sup
t∈[0,1]

∥∥∥X̃η|b
⌊t/η⌋(x)

∥∥∥ > M ⇐⇒ sup
t∈[0,1]

∥∥∥Xη|b
⌊t/η⌋(x)

∥∥∥ > M, (3.44)

sup
t∈[0,1]

∥∥∥Xη|b
⌊t/η⌋(x)

∥∥∥ ≤M =⇒ Xη|b(x) = X̃η|b(x). (3.45)

Now, we observe a few facts. First, define measure

C̃(k)|b( · ;x) =∆
∫

I

{
h
(k)|b
M↓

(
x,W, t

)
∈ ·

}(
(να × S) ◦ Φ

)k
(dW)× Lk↑

T (dt).

Due to (3.42), we must have

C̃(k)|b( · ;x) = C(k)|b( · ;x) ∀x ∈ A. (3.46)

Next, recall that aM and σM satisfy Assumption 3. Then as has been established at the beginning

of the proof, we have the following uniform M-convergence for X̃η|b(x):

λ−k(η)P
(
X̃η|b(x) ∈ ·

)
→ C̃(k)|b( · ;x) = C(k)|b( · ;x) in M

(
D \ D(k−1)|b

A (r)
)
uniformly in x on A

(3.47)
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as η ↓ 0. By Definition 2.1, for the function g ∈ C
(
D \ D(k−1)

A (r)
)
fixed above, we now have

lim
n→∞

∣∣µ̃(k)
n (g)−C(k)|b(g;xn)

∣∣ = 0 with µ̃(k)
n (·) =∆ P

(
X̃ηn|b(xn) ∈ ·

)/
λk(ηn). (3.48)

On the other hand, for any n ≥ 1 (recall that B = supp(g))

E
[
g
(
Xηn|b(xn)

)]
= E

[
g
(
Xηn|b(xn)

)
I

{
Xηn|b(xn) ∈ B; sup

t∈[0,1]

∥∥∥Xηn|b
⌊t/η⌋(xn)

∥∥∥ ≤M
}]

+E

[
g
(
Xηn|b(xn)

)
I

{
Xηn|b(xn) ∈ B; sup

t∈[0,1]

∥∥∥Xηn|b
⌊t/η⌋(xn)

∥∥∥ > M
}]
.

(3.49)

The following bound then follows immediately from (3.44) and (3.45):∣∣∣∣E[g(Xηn|b(xn)
)]

−E
[
g
(
X̃ηn|b(xn)

)]∣∣∣∣ ≤ ∥g∥P

(
sup

t∈[0,1]

∥∥∥X̃ηn|b
⌊t/η⌋(xn)

∥∥∥ > M

)
. (3.50)

Furthermore, we claim that

lim
n→∞

λ−k(ηn)P

(
sup

t∈[0,1]

∥∥∥X̃ηn|b
⌊t/η⌋(xn)

∥∥∥ > M

)
= 0. (3.51)

Then observe that

lim sup
n→∞

∣∣∣µ(k)
n (g)−C(k)|b(g;xn)

∣∣∣
≤ lim sup

n→∞

∣∣∣µ(k)
n (g)− µ̃(k)

n (g)
∣∣∣+ lim sup

n→∞

∣∣∣µ̃(k)
n (g)−C(k)|b(g;xn)

∣∣∣
≤ lim sup

n→∞
λ−k(ηn)P

(
sup

t∈[0,1]

∥∥∥X̃ηn|b
⌊t/η⌋(xn)

∥∥∥ > M

)
+ 0 due to (3.50) and (3.48)

= 0 due to (3.51).

In summary, we end up with a clear contradiction to (3.41), thus allowing us to conclude the proof.
Now, it only remains to prove claim (3.51).

Proof of Claim (3.51):
Let E =∆ {ξ ∈ D : supt∈[0,1] ∥ξt∥ > M}. Suppose we can show that E is bounded away from

D(k)|b
A (r), then by applying the uniform M-convergence established above in (3.47) for X̃η|b(x), we get

lim supn→∞ P
(
X̃ηn|b(xn) ∈ E

)/
λk+1(ηn) <∞, which then implies (3.51). To see why E is bounded

away from D(k)|b
A (r), note that by (3.42),

ξ ∈ D(k)|b
A (r) =⇒ sup

t∈[0,1]

∥ξt∥ ≤M0 ≤M − 1

due to our choice of M ≥ M0 + 1 at the beginning. Therefore, we yield dJ1

(
D(k)|b

A (r), E
)
≥ 1 and

conclude the proof.

3.3.3 Proof of Proposition 3.11

As has been demonstrated earlier, Proposition 3.11 lays the foundation for the sample path large
deviations of heavy-tailed stochastic difference equations. In Section 3.3.3, we provide the proof of
Proposition 3.11. Analogous to the proof of Theorem 2.4 above, we show that it suffices to prove
the seemingly more restrictive results stated below in Proposition 3.13, where we impose the the
boundedness condition in Assumption 3.
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Proposition 3.13. Let ηn be a sequence of strictly positive real numbers with limn→∞ ηn = 0. Let
compact set A ⊆ Rm and xn,x

∗ ∈ A be such that limn→∞ xn = x∗. Under Assumptions 1, 2, and 3,
it holds for all k ∈ N and b, r > 0 that

P
(
Xηn|b(xn) ∈ ·

)/
λk(ηn) → C(k)|b( · ;x∗) in M

(
D \ D(k−1)|b

A (r)
)
as n→ ∞.

Proof of Proposition 3.11. The proof is almost identical to the second half of the proof for Theo-
rem 2.4. Specifically, we fix some M ≥ M0 + 1 with M0 specified in (3.42), and we arbitrarily pick

some g ∈ C
(
D\D(k−1)

A (r)
)
. Besides, define the stochastic processes X̃η|b(x) =∆

{
X̃

η|b
⌊t/η⌋(x) : t ∈ [0, 1]

}
by (3.43). By repeating the arguments in the proof for Theorem 2.4, we yield (3.46) and (3.50)

again. Next, by applying Proposition 3.13 onto X̃η|b(x), we again obtain (3.48) and (3.51) (in
particular, for the claim (3.51), note that at the end of the proof for Theorem 2.4 we have al-

ready shown that {ξ ∈ D : supt∈[0,1] ∥ξt∥ > M} is bounded away from D(k)|b
A (r)). Now, for

µ
(k)
n (·) =∆ P

(
Xηn|b(xn) ∈ ·

)/
λk(ηn), observe that

lim
n→∞

∣∣∣µ(k)
n (g)−C(k)|b(g;xn)

∣∣∣
≤ lim sup

n→∞

∣∣∣µ(k)
n (g)− µ̃(k)

n (g)
∣∣∣+ lim sup

n→∞

∣∣∣µ̃(k)
n (g)−C(k)|b(g;xn)

∣∣∣
≤ lim sup

n→∞
λ−k(ηn)P

(
sup

t∈[0,1]

∥∥∥X̃ηn|b
⌊t/η⌋(xn)

∥∥∥ > M

)
+ 0 due to (3.50) and (3.48)

= 0 due to (3.51).

By the Portmanteau theorem for M-convergence (see theorem 2.1 of [42]) and the arbitrariness of the

function g ∈ C
(
D \ D(k−1)

A (r)
)
, we conclude the proof.

The rest of Section 3.3.3 is devoted to establishing Proposition 3.13. In light of Lemma 3.2, one
approach to Proposition 3.13 is to construct some process X̂η|b;(k) that is not only asymptotically
equivalent to Xη|b (as η ↓ 0) but also (under the right scaling) converges to C(k)|b. To properly

introduce the process X̂η|b;(k), we set a few notations. For any j ≥ 1 and n ≥ j let

JZ(c, n) =
∆ #

{
i ∈ [n] : ∥Zi∥ ≥ c

}
; Z(j)(η) =∆ max

{
c ≥ 0 : JZ(c, ⌊1/η⌋) ≥ j

}
. (3.52)

In other words, JZ(c, n) counts the number of elements in {Zi : i ∈ [n]} with a norm larger than c,
and Z(j)(η) identifies the value of the jth largest element in {∥Zi∥ : i ≤ ⌊1/η⌋}. Moreover, let

τ
(j)
i (η) =∆ min

{
k > τ

(j)
i−1(η) : ∥Zk∥ ≥ Z(j)(η)

}
, W

(j)
i (η) =∆ Z

τ
(j)
i (η)

∀i = 1, 2, · · · , j (3.53)

with the convention that τ
(j)
0 (η) = 0. Note that

(
τ
(j)
i (η),W

(j)
i (η)

)
i∈[j]

record the arrival time and

size of the top j elements (in terms of L2 norm) of {Zi : i ∈ [n]}. In case that there are ties between
the values of {∥Zi∥ : i ≤ ⌊1/η⌋}, under our definition we always pick the first j elements. Now, for

any j ≥ 1 and any η, b > 0,x ∈ Rm, we define X̂η|b;(j)(x) =∆
{
X̂

η|b;(j)
t (x) : t ∈ [0, 1]

}
as the solution

to

dX̂
η|b;(j)
t (x)

dt
= a

(
X̂

η|b;(j)
t (x)

)
∀t ∈ [0, 1], t /∈

{
ητ

(j)
i (η) : i ∈ [j]

}
, (3.54)

X̂
η|b;(j)
t (x) = X̂

η|b;(j)
t− (x) + φb

(
ησ
(
X̂

η|b;(j)
t− (x)

)
W

(j)
i (η)

)
if t = ητ

(j)
i (η) for some i ∈ [j] (3.55)

with initial condition X̂
η|b;(j)
0 (x) = x. For the case j = 0, we adopt the convention that

dX̂
η|b;(0)
t (x)

/
dt = a

(
X̂

η|b;(0)
t (x)

)
∀t ∈ [0, 1]
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with X̂
η|b;(0)
0 (x) = x. First, by definition of the mapping h(k)|b in (2.21)–(2.24), we have

X̂η|b;(k)(x) = h(k)|b
(
x,
(
ηW

(k)
1 (η), · · · , ηW (k)

k (η)
)
,
(
ητ

(k)
1 (η), · · · , ητ (k)k (η)

))
. (3.56)

Furthermore, the following property is central to our proof: for any η, b > 0, k ∈ N, and x ∈ Rm,

on event
{
τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η)
}
, we have X̂η|b;(k)(x) = h(k)|b

(
x, ηW>δ(η), ητ>δ(η)

)
(3.57)

with W>δ(η) = (W>δ
1 (η), · · · ,W>δ

k (η)) and τ>δ(η) = (τ>δ
1 (η), · · · , τ>δ

k (η)).

We first state two results that allow us to apply Lemma 3.2.

Proposition 3.14. Let ηn be a sequence of strictly positive real numbers with limn→∞ ηn = 0. Let
compact set A ⊆ Rm and xn,x

∗ ∈ A be such that limn→∞ xn = x∗. Under Assumptions 1, 2, 3,
it holds for all k ∈ N and b, r > 0 that Xηn|b(xn) is asymptotically equivalent to X̂ηn|b;(k)(xn) (as

n→ ∞) in M
(
D \ D(k)|b

A (r)
)
w.r.t. λk(ηn).

Proposition 3.15. Let ηn be a sequence of strictly positive real numbers with limn→∞ ηn = 0. Let
compact set A ⊆ Rm and xn,x

∗ ∈ A be such that limn→∞ xn = x∗. Under Assumptions 1, 2, 3, it
holds for all k ∈ N and b, r > 0 that

P
(
X̂ηn|b;(k)(xn) ∈ ·

)/
λk(ηn) → C(k)|b( · ;x∗) in M

(
D \ D(k−1)|b

A (r)
)
as n→ ∞,

where C(k)|b is the measure defined in (2.26).

Proof of Proposition 3.13. In light of Lemma 3.2, it is a direct corollary of Propositions 3.14 and
3.15.

Now, it only remains to prove Propositions 3.14 and 3.15.

Proof of Proposition 3.14. Fix some b, r > 0, k ∈ N, and some sequence of strictly positive real
numbers ηn with limn→∞ ηn = 0. Also, fix a compact set A ⊆ Rm and xn,x

∗ ∈ A such that
limn→∞ xn = x∗. Besides, we arbitrarily pick some ∆ > 0 and some B ∈ SD that is bounded away

from D(k−1)|b
A (r). By Definition 3.1, it suffices to show that

lim
n→∞

P
(
dJ1

(
Xηn|b(xn), X̂

ηn|b;(k)(xn)
)
I
{
Xηn|b(xn) or X̂

ηn|b;(k)(xn) ∈ B
}
> ∆

)/
λk(ηn) = 0.

(3.58)

By Lemma 3.6, there are some ϵ̄ ∈ (0, r) and δ̄ > 0 such that

• for any x ∈ A and b > 0, and any (v1, · · · ,vk) ∈ Rm×k with maxj∈[k] ∥vj∥ ≤ ϵ̄,

h̄(k)|b
(
x, (w1, · · · ,wk), (v1, · · · ,vk), t

)
∈ B ϵ̄ =⇒ ∥wi∥ > δ̄ ∀i ∈ [k]; (3.59)

• furthermore,

dJ1

(
B ϵ̄,D(k−1)|b

A (r)
)
> ϵ̄. (3.60)

Meanwhile, for any η, δ, ϵ > 0 and x ∈ A, let

B0 =∆
{
Xη|b(x) ∈ B or X̂η|b;(k)(x) ∈ B; dJ1

(
Xη|b(x), X̂η|b;(k)(x)

)
> ∆

}
,

B1 =∆
{
τ>δ
k+1(η) > ⌊1/η⌋

}
,
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B2 =∆
{
τ>δ
k (η) ≤ ⌊1/η⌋

}
,

B3 =∆
{
η
∥∥W>δ

i (η)
∥∥ > δ̄ for all i ∈ [k]

}
,

B4 =∆
{
η
∥∥W>δ

i (η)
∥∥ ≤ 1/ϵ

1
2k for all i ∈ [k]

}
.

We have the following decomposition of events:

B0 = (B0 ∩Bc
1) ∪ (B0 ∩B1 ∩Bc

2) ∪ (B0 ∩B1 ∩B2 ∩Bc
3)

∪ (B0 ∩B1 ∩B2 ∩B3 ∩Bc
4) ∪ (B0 ∩B1 ∩B2 ∩B3 ∩B4). (3.61)

To proceed, let ρ = exp(D) and D ∈ [1,∞) is the Lipschitz coefficient in Assumption 2. For any ϵ > 0
small enough such that

(2ρD)k+1
√
ϵ < ∆, 2ρϵ < ϵ̄, ϵ ∈ (0, 1), (3.62)

we claim that

lim
η↓0

sup
x∈A

P
(
B0 ∩Bc

1

)/
λk(η) = 0, (3.63)

lim
η↓0

sup
x∈A

P
(
B0 ∩B1 ∩Bc

2

)/
λk(η) = 0, (3.64)

lim
η↓0

sup
x∈A

P
(
B0 ∩B1 ∩B2 ∩Bc

3

)/
λk(η) = 0, (3.65)

lim sup
η↓0

sup
x∈A

P
(
B0 ∩B1 ∩B2 ∩B3 ∩Bc

4

)/
λk(η) ≤ δ̄−kα · ϵ α

2k , (3.66)

lim
η↓0

sup
x∈A

P
(
B0 ∩B1 ∩B2 ∩B3 ∩B4

)/
λk(η) = 0, (3.67)

if we pick δ > 0 sufficiently small. Under such δ, by the decomposition of event B0 in (3.61), we yield

lim sup
η↓0

sup
x∈A

P
(
B0

)/
λk(η) ≤ δ̄−kα · ϵ α

2k

for all ϵ > 0 small enough. Note that δ̄ > 0 is the constant fixed in (3.59). Driving ϵ ↓ 0, we conclude
the proof of (3.58). The remainder of this proof is devoted to claims (3.63)–(3.67).

Proof of (3.63):

For any δ > 0, (3.4) implies that supx∈A P(B0∩Bc
1) ≤ P(Bc

1) ≤
(
η−1H(δη−1)

)k+1
= O

(
λk+1(η)

)
=

o
(
λk(η)

)
.

Proof of (3.64):
It suffices to show that (for all δ > 0 small enough)

lim
η↓0

sup
x∈A

P
(
B0 ∩

{
τ>δ
k (η) > ⌊1/η⌋

}︸ ︷︷ ︸
=∆ B̃

)/
λk(η) = 0

In particular, we only consider δ ∈ (0, δ̄∧ b
2 ) with δ̄ characterized in (3.59) and C ≥ 1 being the constant

in Assumption 3. On event {τ>δ
k (η) > ⌊1/η⌋} we have #

{
i ∈
[
⌊1/η⌋

]
: η ∥Zi∥ > δ

}
< k. By the defi-

nition of Z(k)(η) in (3.52) and the definition of W
(k)
i (η) in (3.53), we then get mini∈[k] η

∥∥∥W (k)
i (η)

∥∥∥ ≤
δ < δ̄. In light of (3.56) and (3.59), we yield X̂η|b;(k)(x) /∈ B ϵ̄ on event {τ>δ

k (η) > ⌊1/η⌋}. As a result,

B̃ ⊆ {Xη|b(x) ∈ B} ∩ {τ>δ
k (η) > ⌊1/η⌋} ∀x ∈ A.
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Furthermore, let event Ai(η, b, ϵ, δ,x) be defined as in (3.6). We claim that

{Xη|b(x) ∈ B} ∩ {τ>δ
k (η) > ⌊1/η⌋} ∩

(
∩k
i=1 Ai(η, b, ϵ, δ,x)

)
= ∅ (3.68)

holds for all η > 0 small enough with η < min{ b∧1
2C ,

ϵ
C }, all δ ∈ (0, b

2C ), and all x ∈ A. Then

lim
η↓0

sup
x∈A

P
(
B̃
)/
λk(η) ≤ lim

η↓0
sup
x∈A

P

(( k⋂
i=1

Ai(η, b, ϵ, δ,x)
)c)/

λk(η).

To conclude the proof, one only need to apply Lemma 3.3 (b) with some N > k(α − 1) (recall that
λ(η) ∈ RVk(α−1)(η) as η ↓ 0).

Now, we prove claim (3.68) for any η ∈
(
0,min{ b∧1

2C ,
ϵ
C }
)
, δ ∈ (0, b

2C ), and x ∈ A. Define the

stochastic process X̆η|b;δ(x) =∆
{
X̆

η|b;δ
t (x) : t ∈ [0, 1]

}
as the solution to

dX̆
η|b;δ
t (x)

dt
= a

(
X̆

η|b;δ
t (x)

)
∀t ∈ [0,∞) \ {ητ>δ

j (η) : j ≥ 1}, (3.69)

X̆
η|b;δ
ητ>δ

j (η)
(x) = X

η|b
τ>δ
j (η)

(x) ∀j ≥ 1, (3.70)

under the initial condition X̆
η|b;δ
0 (x) = x. For any j ≥ 1, observe that on event

(
∩j
i=1Ai(η, b, ϵ, δ,x)

)
∩

{τ>δ
j (η) > ⌊1/η⌋},

dJ1

(
X̆η|b;δ(x),Xη|b(x)

)
≤ sup

t∈[0,1]

∥∥∥X̆η|b;δ
t (x)−X

η|b
⌊t/η⌋(x)

∥∥∥
≤ sup

t∈
[
0,ητ>δ

1 (η)
)
∪
[
ητ>δ

1 (η),ητ>δ
2 (η)

)
∪···∪

[
ητ>δ

j−1(η),ητ
>δ
j (η)

) ∥∥∥X̆η|b;δ
t (x)−X

η|b
⌊t/η⌋(x)

∥∥∥
≤ ρ ·

(
ϵ+ ηC

)
≤ 2ρϵ < ϵ̄ by (3.24) of Lemma 3.8. (3.71)

In the last line of the display above, note that (i) our choices of η < b∧1
2C and δ < b

2C allow us to apply
part (b) of Lemma 3.8, and (ii) the inequalities then follow from the choice of η < ϵ

C above and the
choice of 2ρϵ < ϵ̄ in (3.62). Moreover, recall that we have fixed ϵ̄ < r at the beginning of the proof,
and note that (3.71) confirms (under the choice of j = k) that on event

X̆η|b;δ(x) ∈ D(k−1)|b
A (ϵ̄) ⊆ D(k−1)|b

A (r) and dJ1

(
X̆η|b;δ(x),Xη|b(x)

)
< ϵ̄.

In light of (3.60), this implies that on event
(
∩k
i=1 Ai(η, b, ϵ, δ,x)

)
∩ {τ>δ

k (η) > ⌊1/η⌋}, we must have

Xη|b(x) /∈ B ϵ̄, thus concluding the proof of claim (3.68).

Proof of (3.65):
On event B1 ∩ B2 = {τ>δ

k (η) ≤ ⌊1/η⌋ < τ>δ
k+1(η)}, recall that (3.57) holds. Furthermore, on Bc

3,

there is some i ∈ [k] such that η
∥∥W>δ

i (η)
∥∥ ≤ δ̄. Combining (3.57) with the choice of δ̄ in (3.59), we

get that for all x ∈ A, it holds on event B1 ∩B2 ∩Bc
3 that X̂η|b;(k)(x) /∈ B, and hence

B0 ∩B1 ∩B2 ∩Bc
3

⊆ {Xη|b(x) ∈ B} ∩
{
τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η); η
∥∥W>δ

i (η)
∥∥ ≤ δ̄ for some i ∈ [k]

}
.

Furthermore, we claim that for all x ∈ A, δ ∈ (0, δ̄ ∧ b
2C ) and η ∈

(
0,min{ b∧1

2C , δ̄}
)
,

{Xη|b(x) ∈ B} ∩
{
τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η); η
∥∥W>δ

i (η)
∥∥ ≤ δ̄ for some i ∈ [k]

}
∩

(
k+1⋂
i=1

Ai(η, b, ϵ, δ,x)

)
= ∅.

(3.72)
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Then for any δ ∈ (0, δ̄ ∧ b
2 ),

lim
η↓0

sup
x∈A

P
(
B0 ∩B1 ∩B2 ∩Bc

3

)/
λk(η) ≤ lim

η↓0
sup
x∈A

P

(( k+1⋂
i=1

Ai(η, b, ϵ, δ,x)
)c)/

λk(η).

Applying Lemma 3.3 (b) with some N > k(α− 1), we conclude the proof of (3.65).
Now, it remains to prove the claim (3.72) for any x ∈ A, δ ∈ (0, δ̄ ∧ b

2C ) and η ∈
(
0,min{ b∧1

2C , δ̄}
)
.

First, on this event, there exists some J ∈ [k] such that η
∥∥W>δ

J (η)
∥∥ ≤ δ̄. Next, recall the definition

of the process X̆
η|b;δ
t (x) in (3.69)–(3.70). Applying (3.71) with j = k + 1, we get that

(
∩k+1
i=1

Ai(η, b, ϵ, δ,x)
)
∩ {τ>δ

k+1(η) > ⌊1/η⌋},

dJ1

(
X̆η|b;δ(x),Xη|b(x)

)
≤ sup

t∈[0,1]

∥∥∥X̆η|b;δ
t (x)−X

η|b
⌊t/η⌋(x)

∥∥∥ < 2ρϵ < ϵ̄. (3.73)

This further confirms that, on the said event, there exists some V = (v1, · · · ,vk) ∈ Rm×k with
∥vj∥ ≤ ϵ̄ < r (recall that we have fixed ϵ̄ < r at the beginning of the proof) such that

X̆η|b;δ(x) = h̄(k)|b
(
x,
(
ηW>δ

1 (η), · · · , ηW>δ
k (η)

)
,V,

(
ητ>δ

1 (η), · · · , ητ>δ
k (η)

))
,

where the mapping h̄(k)|b is defined in (2.10)–(2.12). Due to η
∥∥W>δ

J (η)
∥∥ ≤ δ̄, it follows from

(3.59) that X̆η|b;δ(x) /∈ B ϵ̄. Then by (3.60) and (3.73), we must have Xη|b(x) /∈ B on the event{
τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η); η
∥∥W>δ

i (η)
∥∥ ≤ δ̄ for some i ∈ [k]

}
∩
(⋂k+1

i=1 Ai(η, b, ϵ, δ,x)
)
, thus verify-

ing claim (3.72).

Proof of (3.66):
Recall that H(x) = P(∥Z∥ > x). Due to

B0 ∩B1 ∩B2 ∩B3 ∩Bc
4

⊆
{
τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η)
}
∩
{
η
∥∥W>δ

i (η)
∥∥ > δ̄ ∀i ∈ [k]; η

∥∥W>δ
i (η)

∥∥ > 1/ϵ
1
2k for some i ∈ [k]

}
.

and the independence between
(
τ>δ
i (η)

)
i∈[k]

and
(
W>δ

i (η)
)
i∈[k]

, we get

lim sup
η↓0

sup
x∈A

P
(
B0 ∩B1 ∩B2 ∩B3 ∩Bc

4

)
λk(η)

≤ lim
η↓0

1

λk(η)
·
(
η−1H(δη−1)

)k
· k ·

(
H(δ̄η−1)

H(δη−1)

)k−1

· H(ϵ−
1
2k η−1)

H(δη−1)
by (3.4)

= lim
η↓0

1

λk(η)
·
(
η−1H(η−1)

)k
· k ·

(
H(δ̄η−1)

H(η−1)

)k−1

· H(ϵ−
1
2k η−1)

H(η−1)

= k · lim
η↓0

(
H(δ̄η−1)

H(η−1)

)k−1

· H(ϵ−
1
2k η−1)

H(η−1)
recall that λ(η) = η−1H(η−1)

= δ̄−kα · ϵ α
2k due to H(x) ∈ RV−α(x) as x→ ∞; see Assumption 1.

Proof of (3.67):

We only consider δ ∈ (0, b
2C ). On event B1 ∩ B2 = {τ>δ

k (η) ≤ ⌊1/η⌋ < τ>δ
k+1(η)}, X̂η|b;(k)(x)

admits the expression in (3.57). Then by applying Lemma 3.9 we yield that for any x ∈ A and any
η ∈ (0, ϵ∧b

2C ), the inequality

dJ1

(
X̂η|b;(k)(x),Xη|b(x)

)
≤ sup

t∈[0,1]

∥∥∥X̂η|b;(k)
t (x)−X

η|b
⌊t/η⌋(x)

∥∥∥ < (2ρD)k+1
√
ϵ,

42



holds on event
(⋂k+1

i=1 Ai(η, b, ϵ, δ,x)
)
. Due to our choice of (2ρD)k+1

√
ϵ < ∆ in (3.62), we get(⋂k+1

i=1 Ai(η, b, ϵ, δ,x)
)
∩B1 ∩B2 ∩B3 ∩B4 ∩B0 = ∅. Therefore,

lim sup
η↓0

sup
x∈A

P
(
B1 ∩B2 ∩B3 ∩B0

)/
λk(η) ≤ lim sup

η↓0
sup
x∈A

P

(( k+1⋂
i=1

Ai(η, b, ϵ, δ,x)
)c)/

λk(η).

Again, by applying Lemma 3.3 (b) with some N > k(α− 1), we conclude the proof.

Recall that
(
W ∗

j (c)
)
j≥1

is a sequence of iid copies of W ∗(c) defined in (3.18), and
(
U(j:k)

)
j∈[k]

are the order statistics of k samples of Unif(0, 1). In order to prove Proposition 3.15, we prepare a
lemma regarding a weak convergence on events Eδ

c,k(η) =
{
τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η); η
∥∥W>δ

j (η)
∥∥ >

c ∀j ∈ [k]
}
defined in (3.17).

Lemma 3.16. Let Assumption 1 hold. Let A ⊆ Rm be a compact set. Let bounded function Ψ :
Rm × Rd×k × (0, 1]k↑ → R be continuous on Rm × Rd×k × (0, 1)k↑. For any δ > 0, c > δ and k ∈ N,

lim
η↓0

sup
x∈A

∣∣∣∣∣∣∣
E
[
Ψ
(
x,
(
ηW>δ

1 (η), · · · , ηW>δ
k (η)

)
,
(
ητ>δ

1 (η), · · · , ητ>δ
k (η)

))
IEδ

c,k(η)

]
λk(η)

− (1/cαk)ψc,k(x)

k!

∣∣∣∣∣∣∣ = 0

where ψc,k(x) =
∆ E

[
Ψ
(
x,
(
W ∗

1 (c), · · · ,W ∗
k (c)

)
,
(
U(1;k), · · · , U(k;k)

))]
.

Proof. Fix some δ > 0, c > δ and k ∈ N. We proceed with a proof by contradiction. Suppose there
exist some ϵ > 0, some sequence xn ∈ A, and some sequence ηn ↓ 0 such that∣∣∣λ−k(ηn)E

[
Ψ
(
xn, ηnW

ηn , ηnτ
ηn
)
IEδ

c,k(ηn)

]
− (1/k!) · c−αk · ψc,k(xn)

∣∣∣ > ϵ ∀n ≥ 1 (3.74)

where Wη =∆ (W>δ
1 (η), · · · ,W>δ

k (η)), τ η =∆ (τ>δ
1 (η), · · · , τ>δ

k (η)). Since A is compact, by picking a
sub-sequence if needed we can assume w.l.o.g. that xn → x∗ for some x∗ ∈ A. Now, observe that

lim
n→∞

λ−k(ηn)E

[
Ψ
(
xn, ηnW

ηn , ηnτ
ηn
)
IEδ

c,k(ηn)

]
=

[
lim
n→∞

λ−k(ηn)P
(
Eδ

c,k(ηn)
)]

· lim
n→∞

E

[
Ψ
(
xn, ηnW

ηn , ηnτ
ηn
)∣∣∣Eδ

c,k(ηn)

]
= (1/k!) · c−αk · ψc,k(x

∗) by Lemma 3.4, xn → x∗, and continuous mapping theorem.

However, by Bounded Convergence theorem, we see that ψc,k is also continuous, and hence ψc,k(xn) →
ϕc,k(x

∗). This leads to a contradiction with (3.74) and allows us to conclude the proof.

We are now ready to prove Proposition 3.15.

Proof of Proposition 3.15. Fix some b, r > 0, k ∈ N, and g ∈ C
(
D \ D(k−1)|b

A (r)
)
; i.e. g : D → [0,∞) is

continuous and bounded with support B =∆ supp(g) bounded away from D(k−1)|b
A (r). By Lemma 3.6,

we can fix some ϵ̄ ∈ (0, r) and δ̄ > 0 such that

• for any x ∈ A and b > 0,

h(k)|b
(
x, (w1, · · · ,wk), t

)
∈ B ϵ̄ =⇒ ∥wj∥ > δ̄ ∀j ∈ [k]; (3.75)

• dJ1

(
B ϵ̄,D(k−1)|b

A (r)
)
> ϵ̄.
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Fix some δ ∈ (0, δ̄ ∧ b
2 ), and observe that for any η > 0 and x ∈ A,

g
(
X̂η|b;(k)(x)

)
= g
(
X̂η|b;(k)(x)

)
I

{
τ>δ
k+1(η) ≤ ⌊1/η⌋

}
︸ ︷︷ ︸

=∆ I1(η,x)

+ g
(
X̂η|b;(k)(x)

)
I

{
τ>δ
k (η) > ⌊1/η⌋

}
︸ ︷︷ ︸

=∆ I2(η,x)

+ g
(
X̂η|b;(k)(x)

)
I

{
τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η); η
∥∥W>δ

j (η)
∥∥ ≤ δ̄ for some j ∈ [k]

}
︸ ︷︷ ︸

=∆ I3(η,x)

+ g
(
X̂η|b;(k)(x)

)
I

(
Eδ

δ̄,k(η)
)

︸ ︷︷ ︸
=∆ I4(η,x)

.

For I1(η,x), it follows from (3.4) that supx∈Rm E[I1(η,x)] ≤ ∥g∥ ·
[
1
η · H(δ/η)

]k+1

. Therefore,

limη↓0 supx∈A E[I1(η,x)]
/(
η−1H(η−1)

)k ≤ ∥g∥
δα(k+1) · limn→∞

H(1/η)
η = 0 due to H(x) ∈ RV−α(x) and

α > 1.
Next, for term I2(η,x), it has been shown in the proof of (3.64) for Proposition 3.14 that, for

all δ ∈ (0, δ̄ ∧ b
2 ) and x ∈ A, it holds on event {τ>δ

k (η) > ⌊1/η⌋} that X̂η|b;(k)(x) /∈ B ϵ̄, and hence
I2(η,x) = 0.

For the term I3(η,x), on event {τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η)} the process X̂η|b;(k)(x) admits the

expression in (3.57). In particular, since there is some i ∈ [k] such that η
∥∥W>δ

i (η)
∥∥ ≤ δ̄, by (3.75)

we must have X̂η|b;(k)(x) /∈ B, and hence I3(η,x) = 0.

Lastly, for the term I4(η,x), on event Eδ
δ̄,k

(η) the process X̂η|b;(k)(x) would again admit the form

in (3.57). As a result, for any η > 0 and x ∈ A, we have

E[I4(η,x)] = E

[
Ψ
(
x, ηWη, ητ η

)
IEδ

δ̄,k
(η)

]
,

whereWη =∆ (W>δ
1 (η), · · · ,W>δ

k (η)), τ η =∆ (τ>δ
1 (η), · · · , τ>δ

k (η)), and Ψ(x,W, t) =∆ g
(
h(k)|b(x,W, t)

)
.

Besides, let ψ(x) =∆ E
[
Ψ
(
x,
(
W ∗

1 (c), · · · ,W ∗
k (c)

)
,
(
U(1;k), · · · , U(k;k)

))]
. First, the continuity of map-

ping Ψ on Rm ×Rd×k × (0, 1)k↑ follows directly from the continuity of g and h(k)|b (see Lemma C.3).
Besides, ∥Ψ∥ ≤ ∥g∥ < ∞, so Ψ(·) is also bounded. By Bounded Convergence Theorem, one can see
that ψ(·) is also continuous. Also, ∥ψ∥ ≤ ∥Ψ∥ ≤ ∥g∥ <∞. By Lemma 3.16,

lim
η↓0

sup
x∈A

∣∣∣∣∣λ−k(η)E

[
Ψ
(
x, ηWη, ητ η

)
IEδ

δ̄,k
(η)

]
− (1/k!) · δ̄−αk · ψ(x)

∣∣∣∣∣ = 0.

Meanwhile, due to the continuity of ψ(·), for any xn, x∗ ∈ A with limn→∞ xn = x∗, we have
limn→∞ ψ(xn) = ψ(x∗). To conclude the proof, we only need to show that

(1/δ̄αk)ψ(x∗)

k!
= C(k)|b(g;x∗). (3.76)

To do so, recall the law of W ∗(c) in (3.18). By definition of ψ(·),

ψ(x∗) =

∫
g
(
h(k)|b

(
x∗, (w1θ1, · · · , wkθk), (t1, · · · , tk)

))
I

{
wj > δ̄ ∀j ∈ [k]

}
P
(
U(1;k) ∈ dt1, · · · , U(k;k) ∈ dtk

)
×

(
k×

j=1

(
δ̄α · να(dwj)× S(dθj)

))
.
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By (3.75), we have

g
(
h(k)|b

(
x∗, (w1θ1, · · · , wkθk), (t1, · · · , tk)

))
= g
(
h(k)|b

(
x∗, (w1θ1, · · · , wkθk), (t1, · · · , tk)

))
I

{
wj > δ̄ ∀j ∈ [k]

}
.

Besides, P
(
U(1;k) ∈ dt1, · · · , U(k;k) ∈ dtk

)
= k! · I{0 < t1 < t2 < · · · < tk < 1}Lk↑

1 (dt1, · · · , dtk) where

Lk↑
1 is the Lebesgue measure restricted on (0, 1)k↑. As a result,

ψ(x∗)

= k! · δ̄αk
∫
g
(
h(k)|b

(
x∗, (w1θ1, · · · , wkθk), t

))( k×
j=1

(
να(dwj)× S(dθj)

))
× Lk↑

1 (dt)

= k! · δ̄αk ·C(k)|b(g;x∗)
by the definition of C(k)|b in (2.26), thus verifying (3.76).

4 Metastability Analysis

In this section, we collect the proofs for Section 2.3. Specifically, Section 4.1 develops the general
framework for first exit analysis of Markov processes by establishing Theorem 2.9. Section 4.2 then
applies the framework in the context of heavy-tailed stochastic difference equations and proves The-
orem 2.6.

4.1 Proof of Theorem 2.9

Our proof of Theorem 2.9 hinges on the following proposition.

Proposition 4.1. Suppose that Condition 1 holds.

(i) If C(·) is a probability measure supported on Ic (i.e., C(Ic) = 1), then for each measurable set
B ⊆ S and t ≥ 0, there exists δt,B(ϵ) such that

C(B◦) · e−t − δt,B(ϵ) ≤ lim inf
η↓0

inf
x∈A(ϵ)

P
(
γ(η)τηI(ϵ)c(x) > t; V η

τϵ(x) ∈ B
)

≤ lim sup
η↓0

sup
x∈A(ϵ)

P
(
γ(η)τηI(ϵ)c(x) > t; V η

τϵ(x) ∈ B
)
≤ C(B−) · e−t + δt,B(ϵ)

for all sufficiently small ϵ > 0, where δt,B(ϵ) → 0 as ϵ→ 0.

(ii) If C(Ic) = 0 (i.e., C(·) is trivially zero), then for each t > 0, there exists δt(ϵ) such that

lim sup
η↓0

sup
x∈A(ϵ)

P
(
γ(η)τηI(ϵ)c(x) > t

)
≤ δt(ϵ)

for all ϵ > 0 sufficiently small, where δt(ϵ) → 0 as ϵ→ 0.

Proof. Fix some measurable B ⊆ S and t ≥ 0. Henceforth in the proof, given any choice of 0 < r < R,
we only consider ϵ ∈ (0, ϵB) and T sufficiently large such that Condition 1 holds with T replaced with
1−r
2 T , 2−r

2 T , rT , and RT . Let

ρηi (x) =
∆ inf

{
j ≥ ρηi−1(x) + ⌊rT/η⌋ : V η

j (x) ∈ A(ϵ)
}
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where ρη0(x) = 0. One can interpret these as the ith asymptotic regeneration times after cooling period
rT/η. We start with the following two observations: For any 0 < r < R,

P
(
τηI(ϵ)c(y) ∈

(
RT/η, ρη1(y)

])
≤ P

(
τηI(ϵ)c(y) ∧ ρ

η
1(y) > RT/η

)
≤ P

(
V η
j (y) ∈ I(ϵ) \A(ϵ) ∀j ∈

[
⌊rT/η⌋, RT/η

])
≤ sup

z∈I(ϵ)\A(ϵ)

P
(
τη(I(ϵ)\A(ϵ))c(z) >

R− r

2
T/η

)
= γ(η)T/η · o(1), (4.1)

where the last equality is from (2.38) of Condition 1, and

sup
y∈A(ϵ)

P
(
V η
τϵ(y) ∈ B; τηI(ϵ)c(y) ≤ ρη1(y)

)
≤ sup

y∈A(ϵ)

P
(
V η
τϵ(y) ∈ B; τηI(ϵ)c(y) ≤ RT/η

)
+ sup

y∈A(ϵ)

P
(
τηI(ϵ)c(y) ∈

(
RT/η, ρη1(y)

])
≤ sup

y∈A(ϵ)

P
(
V η
τϵ(y) ∈ B; τηI(ϵ)c(y) ≤ RT/η

)
+ γ(η)T/η · o(1)

≤
(
C(B−) + δB(ϵ, RT ) + o(1)

)
· γ(η)RT/η, (4.2)

where the second inequaility is from (4.1) and the last equality is from (2.37) of Condition 1.

Proof of Case (i).
We work with different choices of R and r for the lower and upper bounds. For the lower bound,

we work with R > r > 1 and set K =
⌈
t/γ(η)
T/η

⌉
. Note that for η ∈

(
0, (r−1)T

)
, we have ⌊rT/η⌋ ≥ T/η

and hence ρηK(x) ≥ K⌊rT/η⌋ ≥ t/γ(η). Note also that from the Markov property conditioning on
Fρη

j (x)
,

inf
x∈A(ϵ)

P
(
γ(η)τηI(ϵ)c(x) > t; V η

τϵ(x) ∈ B
)

≥ inf
x∈A(ϵ)

P(τηI(ϵ)c(x) > ρηK(x); V η
τϵ(x) ∈ B) = inf

x∈A(ϵ)

∞∑
j=K

P
(
τηI(ϵ)c(x) ∈

(
ρηj (x), ρ

η
j+1(x)

]
; V η

τϵ(x) ∈ B
)

≥ inf
x∈A(ϵ)

∞∑
j=K

P
(
τηI(ϵ)c(x) ∈

(
ρηj (x), ρ

η
j (x) + T/η

]
; V η

τϵ(x) ∈ B
)

≥ inf
x∈A(ϵ)

∞∑
j=K

inf
y∈A(ϵ)

P
(
τηI(ϵ)c(y) ≤ T/η; V η

τϵ(y) ∈ B
)
·P
(
τηI(ϵ)c(x) > ρηj (x)

)
.

≥ inf
y∈A(ϵ)

P
(
τηI(ϵ)c(y) ≤ T/η; V η

τϵ(y) ∈ B
)
·

∞∑
j=K

inf
x∈A(ϵ)

P
(
τηI(ϵ)c(x) > ρηj (x)

)
. (4.3)

From the Markov property conditioning on Fρη
j (x)

, the second term can be bounded as follows:

∞∑
j=K

inf
x∈A(ϵ)

P
(
τηI(ϵ)c(x) > ρηj (x)

)
≥

∞∑
j=0

(
inf

y∈A(ϵ)
P
(
τηI(ϵ)c(y) > ρη1(y)

))K+j

=

∞∑
j=0

(
1− sup

y∈A(ϵ)

P
(
τηI(ϵ)c(y) ≤ ρη1(y)

))K+j

=
1

supy∈A(ϵ) P
(
τηI(ϵ)c(y) ≤ ρη1(y)

) ·
(
1− sup

y∈A(ϵ)

P
(
τηI(ϵ)c(y) ≤ ρη1(y)

))⌈ t/γ(η)
T/η

⌉
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≥ 1(
1 + δS(ϵ, RT ) + o(1)

)
· γ(η)RT/η

·
(
1−

(
1 + δS(ϵ, RT ) + o(1)

)
· γ(η)RT/η

) t/γ(η)
T/η

+1

. (4.4)

where the last inequality is from (4.2) with B = S. From (4.3), (4.4), and (2.36) of Condition 1, we
have

lim inf
η↓0

inf
x∈A(ϵ)

P
(
γ(η)τηI(ϵ)c(x) > t; V η

τϵ(x) ∈ B
)

≥ lim inf
η↓0

C(B◦)− δB(ϵ, T ) + o(1)(
1 + δS(ϵ, RT ) + o(1)

)
·R

·
(
1−

(
1 + δS(ϵ, RT ) + o(1)

)
· γ(η)RT/η

) R·t
γ(η)RT/η

+1

.

≥ C(B◦)− δB(ϵ, T )

1 + δS(ϵ, RT )
· exp

(
−
(
1 + δS(ϵ, RT )

)
·R · t

)
.

By taking limit T → ∞ and then considering an R arbitrarily close to 1, it is straightforward to check
that the desired lower bound holds.

Moving on to the upper bound, we set R = 1 and fix an arbitrary r ∈ (0, 1). Set k =
⌊
t/γ(η)
T/η

⌋
and

note that

sup
x∈A(ϵ)

P
(
γ(η)τηI(ϵ)c(x) > t; V η

τϵ(x) ∈ B
)
= sup

x∈A(ϵ)

P
(
τηI(ϵ)c(x) > t/γ(η); V η

τϵ(x) ∈ B
)

= sup
x∈A(ϵ)

P
(
τηI(ϵ)c(x) > t/γ(η) ≥ ρηk(x); V

η
τϵ(x) ∈ B

)
︸ ︷︷ ︸

(I)

+ sup
x∈A(ϵ)

P
(
τηI(ϵ)c(x) > t/γ(η); ρηk(x) > t/γ(η); V η

τϵ(x) ∈ B
)

︸ ︷︷ ︸
(II)

We first show that (II) vanishes as η → 0. Our proof hinges on the following claim:

{
τηI(ϵ)c(x) > t/γ(η); ρηk(x) > t/γ(η)

}
⊆

k⋃
j=1

{
τηI(ϵ)c(x) ∧ ρ

η
j (x)− ρηj−1(x) ≥ T/η

}
Proof of the claim: Suppose that τηI(ϵ)c(x) > t/γ(η) and ρηk(x) > t/γ(η). Let k∗ =∆ max{j ≥ 1 : ρηj (x) ≤
t/γ(η)}. Note that k∗ < k. We consider two cases separately: (i) ρηk∗(x)/k∗ > (t/γ(η)− T/η)/k∗ and
(ii) ρηk∗(x) ≤ t/γ(η) − T/η. In case of (i), since ρηk∗(x)/k∗ is the average of {ρηj (x) − ρηj−1(x) : j =
1, . . . , k∗}, there exists j∗ ≤ k∗ such that

ρηj∗(x)− ρηj∗−1(x) >
t/γ(η)− T/η

k∗
≥ kT/η − T/η

k − 1
= T/η

Note that since ρηj∗(x) ≤ ρηk∗(x) ≤ t/γ(η) ≤ τηI(ϵ)c(x), this proves the claim for case (i). For case (ii),

note that
ρηk∗+1(x) ∧ τ

η
I(ϵ)c(x)− ρηk∗(x) ≥ t/γ(η)− (t/γ(η)− T/η) = T/η,

which proves the claim.
Now, with the claim in hand, we have that

(II) ≤
k∑

j=1

sup
x∈A(ϵ)

P
(
τηI(ϵ)c(x) ∧ ρ

η
j (x)− ρηj−1(x) ≥ T/η

)
=

k∑
j=1

sup
x∈A(ϵ)

E
[
P
(
τηI(ϵ)c(x) ∧ ρ

η
j (x)− ρηj−1(x) ≥ T/η

∣∣Fρη
j−1(x)

)]
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≤
k∑

j=1

sup
y∈A(ϵ)

P
(
τηI(ϵ)c(y) ∧ ρ

η
1(y) ≥ T/η

)
≤ t

γ(η)T/η
· γ(η)T/η · o(1) = o(1)

for sufficiently large T ’s, where the last inequality is from the definition of k and (4.1). We are now
left with bounding (I) from above.

(I) = sup
x∈A(ϵ)

P
(
τηI(ϵ)c(x) > t/γ(η) ≥ ρηK(x); V η

τϵ(x) ∈ B
)
≤ sup

x∈A(ϵ)

P
(
τηI(ϵ)c(x) > ρηK(x); V η

τϵ(x) ∈ B
)

=

∞∑
j=k

sup
x∈A(ϵ)

P
(
τηI(ϵ)c(x) ∈

(
ρηj (x), ρ

η
j+1(x)

]
; V η

τϵ(x) ∈ B
)

=

∞∑
j=k

sup
x∈A(ϵ)

E

[
E
[
I
{
V η
τϵ(x) ∈ B

}
· I
{
τηI(ϵ)c(x) ≤ ρηj+1(x)

}∣∣∣Fρη
j (x)

]
· I
{
τηI(ϵ)c(x) > ρηj (x)

}]

≤
∞∑
j=k

sup
x∈A(ϵ)

E

[
sup

y∈A(ϵ)

P
(
V η
τϵ(y) ∈ B; τηI(ϵ)c(y) ≤ ρη1(y)

)
· I
{
τηI(ϵ)c(x) > ρηj (x)

}]

= sup
y∈A(ϵ)

P
(
V η
τϵ(y) ∈ B; τηI(ϵ)c(y) ≤ ρη1(y)

)
·

∞∑
j=k

sup
x∈A(ϵ)

P
(
τηI(ϵ)c(x) > ρηj (x)

)
The first term can be bounded via (4.2) with R = 1:

sup
y∈A(ϵ)

P
(
V η
τϵ(y) ∈ B; τηI(ϵ)c(y) ≤ ρη1(y)

)
≤
(
C(B−) + δB(ϵ, T ) + o(1)

)
· γ(η)T/η + 1− r

2
· γ(η)T/η · o(1)

whereas the second term is bounded via (2.36) of Condition 1 as follows:

∞∑
j=k

sup
x∈A(ϵ)

P
(
τηI(ϵ)c(x) > ρηj (x)

)
≤

∞∑
j=0

(
sup

y∈A(ϵ)

P
(
τηI(ϵ)c(y) > ⌊rT/η⌋

))k+j

=

∞∑
j=0

(
1− inf

y∈A(ϵ)
P
(
τηI(ϵ)c(y) ≤ rT/η

))k+j

≤ 1

infy∈A(ϵ) P
(
τηI(ϵ)c(y) ≤ rT/η

) ·
(
1− inf

y∈A(ϵ)
P
(
τηI(ϵ)c(y) ≤ rT/η

)) t/γ(η)
T/η

−1

=
1

r ·
(
1− δB(ϵ, rT ) + o(1)

)
· γ(η)T/η

·
(
1− r ·

(
1− δB(ϵ, rT ) + o(1)

)
· γ(η)T/η

) t
γ(η)T/η

−1

Therefore,

lim sup
η↓0

sup
x∈A(ϵ)

P
(
γ(η)τηI(ϵ)c(x) > t; V η

τϵ(x) ∈ B
)
≤ C(B−) + δB(ϵ, T )

r · (1− δB(ϵ, rT ))
· exp

(
− r ·

(
1− δB(ϵ, rT )

)
· t
)
.

Again, taking T → ∞ and considering r arbitrarily close to 1, we can check that the desired upper
bound holds.

Proof of Case (ii).
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We work with R = 1 and set K =
⌈
t/γ(η)
T/η

⌉
. Again, for η ∈

(
0, (r − 1)T

)
, we have ⌊rT/η⌋ ≥ T/η

and hence ρηK(x) ≥ K⌊rT/η⌋ ≥ t/γ(η). By the Markov property conditioning on Fρη
j (x)

,

sup
x∈A(ϵ)

P
(
γ(η)τηI(ϵ)c(x) ≤ t

)
≤ sup

x∈A(ϵ)

P
(
τηI(ϵ)c(x) ≤ ρηK(x)

)
= sup

x∈A(ϵ)

K∑
j=1

P
(
τηI(ϵ)c(x) ∈

(
ρηj−1(x), ρ

η
j (x)

])

≤
K∑
j=1

sup
y∈A(ϵ)

(
1−P

(
τηI(ϵ)c(y) ≤ ρη1(y)

))j−1

· sup
y∈A(ϵ)

P
(
τηI(ϵ)c(y) ≤ ρη1(y)

)
≤ K · sup

y∈A(ϵ)

P
(
τηI(ϵ)c(y) ≤ ρη1(y)

)
≤ K ·

(
δIc(ϵ, T ) + o(1)

)
· γ(η)T/η

by (4.2) (with B = Ic) and the running assumption of Case (ii) that C(·) ≡ 0

≤ 2t/γ(η)

T/η
·
(
δIc(ϵ, T ) + o(1)

)
· γ(η)T/η for all η small enough under K = ⌈ t/γ(η)

T/η
⌉

= 2t ·
(
δIc(ϵ, T ) + o(1)

)
.

Lastly, by Condition 1 (specifically, limϵ↓0 limT↑∞ δIc(ϵ, T ) = 0 in Definition 2.8), we verify the upper
bounds in Case (ii) and conclude the proof.

Now, we are ready to prove Theorem 2.9.

Proof of Theorem 2.9. We focus on the proof of Case (i) since the proof of Case (ii) is almost identical,
with the only key difference being that we apply part (ii) of Proposition 4.1 instead of part (i).

We first claim that for any ϵ, ϵ′ > 0, t ≥ 0, and measurable B ⊆ S,

C(B◦) · e−t − δt,B(ϵ) ≤ lim inf
η↓0

inf
x∈I(ϵ′)

P
(
γ(η) · τηI(ϵ)c(x) > t, V η

τϵ(x) ∈ B
)

≤ lim sup
η↓0

sup
x∈I(ϵ′)

P
(
γ(η) · τηI(ϵ)c(x) > t, V η

τϵ(x) ∈ B
)
≤ C(B−) · e−t + δt,B(ϵ)

(4.5)
where δt,B(ϵ) is characterized in part (i) of Proposition 4.1 such that δt,B(ϵ) → 0 as ϵ→ 0. Now, note
that for any measurable B ⊆ Ic,

P
(
γ(η) · τηIc(x) > t, V η

τ (x) ∈ B
)

= P
(
γ(η) · τηIc(x) > t, V η

τ (x) ∈ B, V η
τϵ(x) ∈ I

)
︸ ︷︷ ︸

(I)

+P
(
γ(η) · τηIc(x) > t, V η

τ (x) ∈ B, V η
τϵ(x) /∈ I

)
︸ ︷︷ ︸

(II)

and since

(I) ≤ P
(
V η
τϵ(x) ∈ I

)
and (II) = P

(
γ(η) · τηϵ (x) > t, V η

τϵ(x) ∈ B \ I
)
,

we have that

lim inf
η↓0

inf
x∈I(ϵ′)

P
(
γ(η) · τηIc(x) > t, V η

τ (x) ∈ B
)
≥ lim inf

η↓0
inf

x∈I(ϵ′)
P
(
γ(η) · τηϵ (x) > t, V η

τϵ(x) ∈ B \ I
)

≥ C
(
(B \ I)◦

)
· e−t − δt,B\I(ϵ)

= C(B◦) · e−t − δt,B\I(ϵ)
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due to B ⊆ Ic, and

lim sup
η↓0

sup
x∈I(ϵ′)

P
(
γ(η) · τηIc(x) > t, V η

τ (x) ∈ B
)

≤ lim sup
η↓0

sup
x∈I(ϵ′)

P
(
γ(η) · τηϵ (x) > t, V η

τϵ(x) ∈ B \ I
)
+ lim sup

η↓0
sup

x∈I(ϵ′)

P
(
V η
τϵ(x) ∈ I

)
≤ C

(
(B \ I)−

)
· e−t + δt,B\I(ϵ) + C(I−) + δ0,I(ϵ)

= C(B−) · e−t + δt,B\I(ϵ) + δ0,I(ϵ).

Taking ϵ→ 0, we arrive at the desired lower and upper bounds of the theorem. Now we are left with
the proof of the claim (4.5) is true. Note that for any x ∈ I,

P
(
γ(η) · τηϵ (x) > t, V η

τϵ(x) ∈ B
)

= E

[
P
(
γ(η) · τηϵ (x) > t, V η

τϵ(x) ∈ B
∣∣∣Fτη

A(ϵ)
(x)

)
·
(
I
{
τηA(ϵ)(x) ≤ T/η

}
+ I
{
τηA(ϵ)(x) > T/η

})]
(4.6)

Fix an arbitrary s > 0, and note that from the Markov property,

P
(
γ(η) · τηϵ (x) > t, V η

τϵ(x) ∈ B
)

≤ E

[
sup

y∈A(ϵ)

P
(
τηϵ (y) > t/γ(η)− T/η, V η

τϵ(y) ∈ B
)
· I
{
τηA(ϵ)(x) ≤ T/η

}]
+P

(
τηA(ϵ)(x) > T/η

)
≤ sup

y∈A(ϵ)

P
(
γ(η) · τηϵ (y) > t− s, V η

τϵ(y) ∈ B
)
+P

(
τηA(ϵ)(x) > T/η

)
for sufficiently small η’s; here, we applied γ(η)/η → 0 as η ↓ 0 in the last inequality. In light of part
(i) of Proposition 4.1, by taking T → ∞ we yield

lim sup
η↓0

sup
x∈I(ϵ′)

P
(
γ(η) · τηϵ (x) > t, V η

τϵ(x) ∈ B
)
≤ C(B−) · e−(t−s) + δt,B(ϵ)

Considering an arbitrarily small s > 0, we get the upper bound of the claim (4.5). For the lower
bound, again from (4.6) and the Markov property,

lim inf
η↓0

inf
x∈I(ϵ′)

P
(
γ(η) · τηϵ (x) > t, V η

τϵ(x) ∈ B
)

≥ lim inf
η↓0

inf
x∈I(ϵ′)

E

[
inf

y∈A(ϵ)
P
(
τηϵ (y) > t/γ(η), V η

τϵ(y) ∈ B
)
· I
{
τηA(ϵ)(x) ≤ T/η

}]
≥ lim inf

η↓0
inf

y∈A(ϵ)
P
(
γ(η) · τηϵ (y) > t, V η

τϵ(y) ∈ B
)
· inf
x∈I(ϵ′)

P
(
τηA(ϵ)(x) ≤ T/η

)
≥ C(B◦)− δt,B(ϵ),

which is the desired lower bound of the claim (4.5). This concludes the proof.

4.2 Proof of Theorem 2.6

In this section, we apply the framework developed in Section 2.3.2 and prove Theorem 2.6. Throughout
this section, we impose Assumptions 1, 2, and 4. Besides, we fix a few useful constants. Recall the
definition of the discretized width metric J I

b defined in (2.33). To prove Theorem 2.6, in this section
we fix some b > 0 such that the conditions in Theorem 2.6 hold. This allows us to fix some qϵ > 0
small enough such that

B̄
qϵ(0) ⊆ I, a(x)x < 0 ∀x ∈ B̄

qϵ(0) \ {0}, inf
{
∥x− y∥ : x ∈ Ic, y ∈ G(J I

b −1)|b(qϵ)
}
> 0. (4.7)
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Here, B̄r(x) = {x : ∥x∥ ≤ r} is the closed ball with radius r centered at x. An direct implication of
the first condition in (4.7) is the following positive invariance property under the gradient field a(·):
for any r ∈ (0,qϵ],

yt(x) ∈ B̄r(0) ∀x ∈ B̄r(0). (4.8)

Next, for any ϵ ∈ (0,qϵ), let

qI(ϵ) =∆
{
x ∈ I :

∥∥y1/ϵ(x)
∥∥ < qϵ

}
(4.9)

with the ODE yt(x) defined in (2.28). By Gronwall’s inequality, it is easy to see that qI(ϵ) is an open

set. Meanwhile, by Assumption 4, given any x ∈ I we must have x ∈ qI(ϵ) for all ϵ > 0 small enough.

As a result, the collection of open sets {qI(ϵ) : ϵ ∈ (0,qϵ)} provides a covering for I:⋃
ϵ∈(0,qϵ)

qI(ϵ) = I.

Next, recall that we use Iϵ = {y ∈ Rn : ∥x− y∥ < ϵ =⇒ x ∈ I} to denote the ϵ-shrinkage
of the set I. Given any ϵ > 0, note that Iϵ is an open set and, by definition, its closure I−ϵ is still
bounded away from Ic, i.e., ∥x− y∥ ≥ ϵ for all x ∈ I−ϵ , y ∈ Ic. Then from the continuity of a(·) (see
Assumption 2), the boundedness of set I and hence I−ϵ ⊆ I, as well as property (4.8), we know that
given any ϵ > 0, the claim

∥yT (x)∥ < qϵ ∀x ∈ I−ϵ

holds for all T > 0 large enough. This confirms that given ϵ > 0, it holds for all ϵ′ > 0 small enough
that

I−ϵ ⊆ qI(ϵ′). (4.10)

As a direct consequence of the discussion above, we highlight another important property of the
sets G(k)|b(ϵ) defined in (2.32). For any k ∈ N, b > 0, and ϵ ≥ 0, let

Ḡ(k)|b(ϵ) =∆
{
yt(x) : x ∈ G(k)|b(ϵ), t ≥ 0

}
, (4.11)

where y·(x) is the ODE defined in (2.28). First, due to (4.10) and the fact that G(J I
b −1)|b(qϵ) is

bounded away from Ic (see (4.7)), given any ϵ ∈ (0,qϵ], it holds for all ϵ′ > 0 small enough that

G(J I
b −1)|b(ϵ) ⊆ qI(ϵ′). Furthermore, we claim that Ḡ(J I

b −1)|b(qϵ) is also bounded away from Ic, i.e.,

inf
{
∥x− z∥ : x ∈ Ḡ(J I

b −1)|b(qϵ), z ∈ Ic
}
> 0. (4.12)

Again, this can be argued with a proof by contradiction. Suppose there exist sequences x′
n ∈

Ḡ(J I
b −1)|b(qϵ) and zn /∈ I such that ∥x′

n − zn∥ ≤ 1/n. By definition of Ḡ(J I
b −1)|b(qϵ), there exist se-

quences xn ∈ G(J I
b −1)|b(qϵ) and tn ≥ 0 such that x′

n = ytn(xn) for all n ≥ 1. Furthermore, recall that

we have G(J I
b −1)|b(qϵ) ⊆ qI(ϵ) for ϵ > 0 small enough. On the other hand, by the definition of qI(ϵ) in

(4.9) and the property (4.8), it holds for all n ≥ 1 that yt(xn) ∈ B̄
qϵ(0) ∀t ≥ 1/ϵ. Since zn /∈ I and

B̄
qϵ(0) ⊆ I (see (4.7)), we must have tn < 1/qϵ for all n. Together with the boundedness of I, by picking

a sub-sequence if necessary, we can w.l.o.g. assume that xn → x∗ for some x∗ ∈
(
G(J I

b −1)|b)− ⊂ I
and tn → t∗ for some t∗ ∈ [0, 1/qϵ]. Since x∗ ∈ I, by Assumption 4 we must have yt∗(x

∗) ∈ I. By the
continuity of the flow (specifically, using Gronwall’s inequality) and the fact that I is an open set, we
have zn = ytn(xn) ∈ I for all n large enough. This contradicts our choice that zn /∈ I for all n, thus
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establishing (4.12). Now, by (4.7), (4.8), and (4.12), we can fix some ϵ̄ > 0 small enough such that
the following claims hold:

B̄ϵ̄(0) ⊆ Iϵ̄, (4.13)

r ∈ (0, ϵ̄], x ∈ B̄r(0) =⇒ yt(x) ∈ B̄r(0) ∀t ≥ 0, (4.14)

inf
{
∥x− z∥ : x ∈ Ḡ(J I

b −1)|b(2ϵ̄), z /∈ Iϵ̄

}
> ϵ̄. (4.15)

Moving on, let

tx(ϵ) =
∆ inf

{
t ≥ 0 : yt(x) ∈ B̄ϵ(0)

}
be the hitting time of the closed ball B̄ϵ(0) for the ODE yt(x), and let

t(ϵ) =∆ sup
{
tx(ϵ) : x ∈ I−ϵ

}
(4.16)

be the upper bound for the hitting times tx(ϵ) over x ∈ I−ϵ . Again, from the continuity of a(·),
the contraction of yt(x) around the origin (see Assumption 4 and its implication (4.14)), and the
boundedness of I and hence I−ϵ , we have t(ϵ) < ∞ for any ϵ > 0. Besides, by definition of t(·), we
have

yt(x) ∈ B̄ϵ(0) ∀x ∈ I−ϵ , t ≥ t(ϵ). (4.17)

Furthermore, by repeating the arguments for (4.12), one can show that (for all ϵ > 0)

inf
{
∥yt(x)− z∥ : x ∈ I−ϵ , t ≥ 0, z /∈ I

}
> 0. (4.18)

Specifically, for the constant ϵ̄ > 0 fixed in (4.13)–(4.15), by (4.18) we can find some c̄ ∈ (0, 1) such
that {

yt(x) : x ∈ I−ϵ̄ , t ≥ 0
}
⊆ Ic̄ϵ̄. (4.19)

Recall that we use E− and E◦ to denote the closure and interior of any Borel set E. In our analysis
below, we make use of the following inequality in Lemma 4.2. We collect its proof in Section D, together
with the proofs of other useful properties regarding measures qC(k)|b.

Lemma 4.2. Let t̄, δ̄ ∈ (0,∞) be the constants characterized in part (b) of Lemma D.2. Given
∆ ∈ (0, ϵ̄), there exists ϵ0 = ϵ0(∆) > 0 such that for any ϵ ∈ (0, ϵ0], T ≥ t̄, and Borel measurable
B ⊆ (Iϵ)

c,

(T − t̄) ·
(

qC(J I
b )|b(B∆)− qc(ϵ0)

)
≤ inf

x: ∥x∥≤ϵ
C

(J I
b )|b

[0,T ]

((
qE(ϵ, B, T )

)◦
; x

)
≤ sup

x: ∥x∥≤ϵ

C
(J I

b )|b
[0,T ]

((
qE(ϵ, B, T )

)−
; x

)
≤ T ·

(
qC(J I

b )|b(B∆) + qc(ϵ0)
)

where

qE(ϵ, B, T ) =∆
{
ξ ∈ D[0, T ] : ∃t ≤ T s.t. ξt ∈ B and ξs ∈ I(ϵ) ∀s ∈ [0, t)

}
, (4.20)

qc(ϵ) =∆ J I
b · (t̄)J

I
b −1 · (δ̄)−α·(J I

b −1) · ϵ
α

2J I
b . (4.21)

To see how we apply the framework developed in Section 2.3.2, let us specialize Condition 1 to
a setting where S = R, A(ϵ) = {x ∈ Rm : ∥x∥ < ϵ}, and the covering I(ϵ) = Iϵ. Let V η

j (x) =
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X
η|b
j (x). Meanwhile, for CI

b = qC(J I
b )|b(Ic), it is shown in Lemma D.3 that CI

b <∞. Now, recall that

H(·) = P(∥Z1∥ > ·) and λ(η) = η−1H(η−1). Recall that in Theorem 2.6, we consider two cases: (i)
CI

b ∈ (0,∞), and (ii) CI
b = 0. We first discuss our choices in Case (i). When CI

b > 0, we set

C( · ) =∆
qC(J I

b )|b( · \ I)
CI

b

, γ(η) =∆ CI
b · η ·

(
λ(η)

)J I
b . (4.22)

The regularity conditions in Theorem 2.6 dictate that qC(J I
b )|b(∂I) = 0, and hence C(∂I) = 0. Besides,

note that C(·) is a probability measure and γ(η)T/η = CI
b T ·

(
λ(η)

)J I
b . Besides, this corresponds to

Case (i) for the location measure in the definition of asymptotic atoms; see the discussion before
Definition 2.8.

The application of the framework developed in Section 2.3.2 (specifically, Theorem 2.9) hinges
on the verification of (2.36)–(2.39). We start by verifying (2.36) and (2.37). First, given any Borel
measurable B ⊆ R, we specify the choice of function δB(ϵ, T ) in Condition 1. From the continuity of

measures, we get lim∆↓0 qC(J I
b )|b
(
(B∆∩Ic)\(B−∩Ic)

)
= 0 and lim∆↓0 qC(J I

b )|b
(
(B◦∩Ic)\(B∆∩Ic)

)
=

0. This allows us to fix a sequence (∆(n))n≥1 such that ∆(n+1) ∈ (0,∆(n)/2) and

qC(J I
b )|b
(
(B∆(n)

∩ Ic) \ (B− ∩ Ic)
)
∨ qC(J I

b )|b
(
(B◦ ∩ Ic) \ (B∆(n) ∩ Ic)

)
≤ 1/2n (4.23)

for each n ≥ 1. Next, recall the definition of set qE(ϵ, B, T ) in Lemma 4.2, and let B̃(ϵ) =∆ B \Iϵ. Using
Lemma 4.2, we are able to fix another sequence of strictly decreasing positive real numbers (ϵ(n))n≥1

such that ϵ(n) ∈ (0, ϵ̄] ∀n ≥ 1 and for any n ≥ 1, ϵ ∈ (0, ϵ(n)], we have

sup
x: ∥x∥≤ϵ

C
(J I

b )|b
[0,T ]

((
qE
(
ϵ, B̃(ϵ), T

))−
; x

)
≤ T ·

(
qC(J I

b )|b
((
B \ Iϵ

)∆(n))
+ qc(ϵ(n))

)
, (4.24)

inf
x: ∥x∥≤ϵ

C
(J I

b )|b
[0,T ]

((
qE
(
ϵ, B̃(ϵ), T

))◦
; x

)
≥ (T − t̄) ·

(
qC(J I

b )|b
((
B \ Iϵ

)
∆(n)

)
− qc(ϵ(n))

)
. (4.25)

Besides, note that given any ϵ ∈ (0, ϵ(1)], there uniquely exists some n = nϵ ≥ 1 such that ϵ ∈
(ϵ(n+1), ϵ(n)]. This allows us to set

qδB(ϵ, T ) (4.26)

= T · qC(J I
b )|b
(
(B∆(n)

∩ Ic)\(B− ∩ Ic)
)
∨ qC(J I

b )|b
(
(B◦ ∩ Ic)\(B∆(n) ∩ Ic)

)
∨ qC(J I

b )|b
(
(∂I)ϵ+∆(n)

)
+ T · qc(ϵ(n)) + t̄ · qC(J I

b )|b(B◦ \ I
)
,

where qc(·) is defined in (4.21). Also, let δB(ϵ, T ) =
∆

qδB(ϵ, T )/(C
I
b · T ). By (4.23) and qC(J I

b )|b(B \ I) ≤
qC(J I

b )|b(Ic) <∞, we get

lim
T→∞

δB(ϵ, T ) ≤
1

CI
b

·
[

qc(ϵ(n)) +
1

2n
∨ qC(J I

b )|b
(
(∂I)ϵ+∆(n)

)]
,

where n is the unique positive integer satisfying ϵ ∈ (ϵ(n+1), ϵ(n)]. Moreover, as ϵ ↓ 0 we get nϵ → ∞.

Since ∂I is closed, we get ∩r>0(∂I)
r = ∂I, which then implies limr↓0 qC(J I

b )|b
(
(∂I)r

)
= qC(J I

b )|b(∂I) =

0 due to continuity of measures. Also, by definition of qc in (4.21), we have limϵ↓0 qc(ϵ) = 0. In summary,
we have verified that limϵ↓0 limT→∞ δB(ϵ, T ) = 0.

Next, in case that CI
b = 0, we set

C(·) ≡ 0, γ(η) =∆ η
(
λ(η)

)J I
b , δB(ϵ, T ) =

∆
qδB(ϵ, T )/T.
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The calculations above again verify that limϵ↓0 limT→∞ δB(ϵ, T ) = 0.
Now, we are ready to verify conditions (2.36) and (2.37). Specifically, we introduce stopping time

τη|bϵ (x) =∆ min
{
j ≥ 0 : X

η|b
j (x) /∈ Iϵ

}
. (4.27)

Lemma 4.3 (Verifying conditions (2.36) and (2.37)). Let t̄ be characterized as in Lemma 4.2. Given
any measurable B ⊆ R, any ϵ ∈ (0, ϵ̄] small enough, and any T > t̄,

C(B◦)− δB(ϵ, T ) ≤ lim inf
η↓0

inf
x: ∥x∥≤ϵ

P
(
τ
η|b
ϵ (x) ≤ T/η; X

η|b
τ
η|b
ϵ (x)

(x) ∈ B
)

γ(η)T/η

≤ lim sup
η↓0

sup
x: ∥x∥≤ϵ

P
(
τ
η|b
ϵ (x) ≤ T/η; X

η|b
τ
η|b
ϵ (x)

(x) ∈ B
)

γ(η)T/η
≤ C(B−) + δB(ϵ, T ).

Proof. Recall that

(i) in case that CI
b ∈ (0,∞), we have γ(η)T/η = CI

b T ·
(
λ(η)

)J I
b , C(·) = qC(J I

b )|b( · \ I)/CI
b , and

δB(ϵ, T ) = qδB(ϵ, T )/(C
I
b · T );

(ii) in case that CI
b = 0, we have γ(η)T/η = T ·

(
λ(η)

)J I
b , C(·) ≡ 0, and δB(ϵ, T ) = qδB(ϵ, T )/T .

In both cases, by rearranging the terms, it suffices to show that

lim sup
η↓0

sup
x: ∥x∥≤ϵ

P
(
τ
η|b
ϵ (x) ≤ T/η; X

η|b
τ
η|b
ϵ (x)

(x) ∈ B
)

(
λ(η)

)J I
b

≤ T · qC(J I
b )|b(B− \ I) + qδB(ϵ, T ), (4.28)

lim inf
η↓0

inf
x: ∥x∥≤ϵ

P
(
τ
η|b
ϵ (x) ≤ T/η; X

η|b
τ
η|b
ϵ (x)

(x) ∈ B
)

(
λ(η)

)J I
b

≥ T · qC(J I
b )|b(B◦ \ I)− qδB(ϵ, T ). (4.29)

Recall the definition of set qE(ϵ, ·, T ) in (4.20). Let B̃(ϵ) =∆ B \ Iϵ. Note that{
τη|bϵ (x) ≤ T/η; X

η|b
τ
η|b
ϵ (x)

(x) ∈ B
}
=
{
τη|bϵ (x) ≤ T/η; X

η|b
τ
η|b
ϵ (x)

(x) ∈ B̃(ϵ)
}
=
{
X

η|b
[0,T ](x) ∈ qE

(
ϵ, B̃(ϵ), T

)}
.

For any ϵ ∈ (0, ϵ̄) and ξ ∈ qE(ϵ, B̃(ϵ), T ), there exists t ∈ [0, T ] such that ξt /∈ I(ϵ). On the other hand,
recall that we use B̄ϵ(0) to denote the closed ball with radius ϵ centered at the origin. By part (a) of

Lemma D.2, given ϵ ∈ (0, ϵ̄], it holds for all ξ ∈ D(J I
b −1)|b

B̄ϵ(0)
[0, T ](ϵ) that ξt ∈ I−2ϵ̄ ∀t ∈ [0, T ]. Therefore,

the claim

d[0,T ]

J1

(
qE
(
ϵ, B̃(ϵ), T

)
, D(J I

b −1)|b
B̄ϵ(0)

[0, T ](ϵ)

)
≥ ϵ̄

for all ϵ ∈ (0, ϵ̄]. Next, recall the strictly decreasing positive real number sequence (ϵ(n))n≥1 specified
in (4.24)–(4.25). For all ϵ > 0 small enough we have ϵ ∈ (0, ϵ(1)], so for such ϵ we can set n = nϵ as
the unique positive integer such that ϵ ∈ (ϵ(n+1), ϵ(n)]. It then follows from Theorem 2.4 that

lim sup
η↓0

sup
x: ∥x∥≤ϵ

P
(
τ
η|b
ϵ (x) ≤ T/η; X

η|b
τ
η|b
ϵ (x)

(x) ∈ B
)

(
λ(η)

)J I
b

≤ sup
x: ∥x∥≤ϵ

C
(J I

b )|b
[0,T ]

((
qE
(
ϵ, B̃(ϵ), T

))−
;x

)

≤ T ·
(

qC(J I
b )|b
(
(B \ Iϵ)∆

(n)
)
+ qc(ϵ(n))

)
,

(4.30)
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where we applied property (4.24) in the last inequality. Furthermore,

qC(J I
b )|b
(
(B \ Iϵ)∆

(n)
)
≤ qC(J I

b )|b
(
B∆(n)

∪ (Icϵ )
∆(n)

)
due to (E ∪ F )∆ ⊆ E∆ ∪ F∆

= qC(J I
b )|b
(
B∆(n)

∪ (Icϵ )
∆(n)

∩ Ic
)
+ qC(J I

b )|b
(
B∆(n)

∪ (Icϵ )
∆(n)

∩ I
)

≤ qC(J I
b )|b
(
B∆(n)

\ I
)
+ qC(J I

b )|b
(
(Icϵ )

∆(n)

∩ I
)

≤ qC(J I
b )|b
(
B∆(n)

\ I
)
+ qC(J I

b )|b
(
(∂I)ϵ+∆(n)

)
≤ qC(J I

b )|b
(
B− \ I

)
+ qC(J I

b )|b
(
(B∆(n)

∩ Ic) \ (B− ∩ Ic)
)
+ qC(J I

b )|b
(
(∂I)ϵ+∆(n)

)
By definition of qδB in (4.26) and the choice of C(·) in (4.22), we can plug this bound back into (4.30)
and yield the upper bound (4.28). Similarly, by Theorem 2.4 and the property (4.25), we obtain (for
all ϵ small enough)

lim inf
η↓0

inf
x: ∥x∥≤ϵ

P
(
τ
η|b
ϵ (x) ≤ T/η; X

η|b
τ
η|b
ϵ (x)

(x) ∈ B
)

(
λ(η)

)J I
b

≥ inf
x: ∥x∥≤ϵ

C
(J I

b )|b
[0,T ]

((
qE
(
ϵ, B̃(ϵ), T

))◦
;x

)

≥ (T − t̄) ·
(

qC(J I
b )|b
(
(B \ Iϵ)∆(n)

)
− qc(ϵ(n))

)
.

(4.31)

Furthermore, from the preliminary bound (E ∩ F )∆ ⊇ E∆ ∩ F∆ we get

qC(J I
b )|b
(
(B \ Iϵ)∆(n)

)
≥ qC(J I

b )|b
(
(B \ I)∆(n)

)
≥ qC(J I

b )|b
(
B∆(n) ∩ Ic∆(n)

)
.

Together with the fact that B∆ \ I = B∆ ∩ Ic ⊆
(
B∆ ∩ (Ic)∆

)
∪
(
Ic \ (Ic)∆

)
, we yield

qC(J I
b )|b
(
(B \ Iϵ)∆(n)

)
≥ qC(J I

b )|b
(
B∆(n) \ I

)
− qC(J I

b )|b
(
Ic \ Ic∆(n)

)
≥ qC(J I

b )|b
(
B∆(n) \ I

)
− qC(J I

b )|b
(
(∂I)∆

(n)
)

≥ qC(J I
b )|b
(
B◦ \ I

)
− qC(J I

b )|b
(
(B◦ ∩ Ic) \ (B∆(n) ∩ Ic)

)
− qC(J I

b )|b
(
(∂I)∆

(n)
)
.

Plugging this bound back into (4.31), we establish the lower bound (4.29) and conclude the proof.

The next two results verify conditions (2.38) and (2.39). Let

Rη|b
ϵ (x) =∆ min

{
j ≥ 0 :

∥∥∥Xη|b
j (x)

∥∥∥ < ϵ

}
(4.32)

be the first time X
η|b
j (x) returns to the ϵ-neighborhood of the origin. Under our choice of A(ϵ) =

{x ∈ Rm : ∥x∥ < ϵ} and I(ϵ) = Iϵ, the event {τη(I(ϵ)\A(ϵ))c(x) > T/η} in condition (2.38) means

that X
η|b
j (x) ∈ Iϵ\{x : ∥x∥ < ϵ} for all j ≤ T/η. Also, recall the definition of t(·) in (4.16) and

that γ(η)T/η = CI
b T ·

(
λ(η)

)J I
b . Therefore, to verify condition (2.38), it suffices to prove the following

result.

Lemma 4.4 (Verifying condition (2.38)). Given k ≥ 1 and ϵ ∈ (0, ϵ̄), it holds for all T ≥ k · t(ϵ/2)
that

lim
η↓0

sup
x∈Iϵ

1

λk−1(η)
P
(
X

η|b
j (x) ∈ Iϵ \ {x : ∥x∥ < ϵ} ∀j ≤ T/η

)
= 0.
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Proof. In this proof, we write ξ(t) = ξt for any ξ ∈ D[0, T ], and set Bϵ(0) = {x ∈ Rm : ∥x∥ < ϵ}.
Note that

{
X

η|b
j (x) ∈ Iϵ \Bϵ(0) ∀j ≤ T/η

}
=
{
X

η|b
[0,T ](x) ∈ E(ϵ)

}
where

E(ϵ) =∆
{
ξ ∈ D[0, T ] : ξ(t) ∈ Iϵ \Bϵ(0) ∀t ∈ [0, T ]

}
.

Recall the definition of D(k)|b
A [0, T ](ϵ) in (2.25). We claim that E(ϵ) is bounded away from D(k−1)|b

I−
ϵ

[0, T ](ϵ).

This allows us to apply Theorem 2.4 and conclude that

sup
x∈Iϵ

P
(
X

η|b
[0,T ](x) ∈ E(ϵ)

)
= O

(
λk(η)

)
= o

(
λk−1(η)

)
as η ↓ 0.

Now, it only remains to verify that E(ϵ) is bounded away from D(k−1)|b
I−
ϵ

[0, T ](ϵ), which can be estab-

lished if we show the existence of some δ > 0 such that

d[0,T ]

J1
(ξ, ξ′) ≥ δ > 0 ∀ξ ∈ D(k−1)|b

I−
ϵ

[0, T ](ϵ), ξ′ ∈ E(ϵ). (4.33)

First, by definition of E(ϵ), we have ξ′t ∈ Iϵ ∀t ∈ [0, T ] for any ξ′ ∈ E(ϵ). Note that inf{∥x− y∥ : x ∈
Iϵ,y /∈ Iϵ/2} ≥ ϵ/2. Therefore, if ξt /∈ Iϵ/2 for some t ≤ T , we must have d[0,T ]

J1
(ξ, ξ′) ≥ ϵ/2 > 0. Now

suppose that ξt ∈ Iϵ/2 for all t ≤ T . Due to ξ ∈ D(k−1)|b
I−
ϵ

[0, T ](ϵ), there is some x ∈ I−ϵ , W ∈ Rd×(k−1),

V ∈
(
B̄ϵ(0)

)k−1
, and (t1, · · · , tk−1) ∈ (0, T ]k−1↑ such that ξ = h̄

(k−1)|b
[0,T ]

(
x,W,V, (t1, · · · , tk−1)

)
.With

the convention that t0 = 0 and tk = T , we have

ξ(t) = yt−tj−1

(
ξ(tj−1)

)
∀t ∈ [tj−1, tj). (4.34)

for each j ∈ [k]. Here, y·(x) is the ODE defined in (2.28). Due to the assumption T ≥ k · t(ϵ/2),
there must be some j ∈ [k] such that tj − tj−1 ≥ t(ϵ/2). However, due to the running assumption
that ξ(t) ∈ Iϵ/2 ∀t ∈ [0, T ], we have ξ(tj−1) ∈ Iϵ/2. Combining (4.34) along with property (4.17), we
get limt↑tj ξ(t) ∈ B̄ϵ/2(0) ⊂ Bϵ(0). On the other hand, by definition of E(ϵ), we have ξ′(t) /∈ Bϵ(0)
for all t ∈ [0, T ], which implies d[0,T ]

J1
(ξ, ξ′) ≥ ϵ

2 . This concludes the proof.

Lastly, we establish condition (2.39). Note that the first visit time τηA(ϵ)(x) therein coincides with

R
η|b
ϵ (x) defined in (4.32) under our choice of A(ϵ) = {x ∈ Rm : ∥x∥ < ϵ}.

Lemma 4.5 (Verifying condition (2.39)). Let t(·) be defined as in (4.16) and

E(η, ϵ,x) =∆
{
Rη|b

ϵ (x) ≤ t(ϵ/2)

η
; X

η|b
j (x) ∈ I ∀j ≤ Rη|b

ϵ (x)

}
.

It holds for all ϵ ∈ (0, ϵ̄) that limη↓0 supx∈I−
ϵ
P
((
E(η, ϵ,x)

)c)
= 0.

Proof. In this proof, we write Bϵ(0) = {x ∈ Rm : ∥x∥ < ϵ} and I(ϵ) = Iϵ. Note that
(
E(η, ϵ,x)

)c ⊆{
X

η|b
[0,t(ϵ/2)](x) ∈ E∗

1 (ϵ) ∪ E∗
2 (ϵ)

}
, where

E∗
1 (ϵ) =

∆

{
ξ ∈ D[0, t(ϵ/2)] : ξ(t) /∈ Bϵ(0) ∀t ∈ [0, t(ϵ/2)]

}
,

E∗
2 (ϵ) =

∆

{
ξ ∈ D[0, t(ϵ/2)] : ∃0 ≤ s ≤ t ≤ t(ϵ/2) s.t. ξ(t) ∈ Bϵ(0), ξ(s) /∈ I

}
.

Recall the definition of D(k)|b
A [0, T ](ϵ) in (2.25). We claim that both E∗

1 (ϵ) and E∗
2 (ϵ) are bounded

away from

D(0)|b
(I(ϵ))− [0, t(ϵ/2)] =

{{
yt(x) : t ∈ [0, t(ϵ/2)]

}
: x ∈

(
I(ϵ)

)−}
.
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To see why, note that inf{∥x− y∥ : x ∈ I(ϵ),y /∈ I(ϵ/2)} ≥ ϵ/2. Meanwhile, properties (4.14) and

(4.17) imply that yt(ϵ/2)(x) ∈ B̄ϵ/2(0) for all x ∈
(
I(ϵ)

)−
. Therefore,

d[0,t(ϵ/2)]

J1

(
D(0)|b

(I(ϵ))− [0, t(ϵ/2)], E
∗
1 (ϵ)

)
≥ ϵ

2
> 0, (4.35)

Meanwhile, by property (4.18), we immediately get

d[0,t(ϵ/2)]

J1

(
D(0)|b

(I(ϵ))− [0, t(ϵ/2)], E
∗
2 (ϵ)

)
≥ δ > 0. (4.36)

This allows us to apply Theorem 2.4 and obtain

sup
x∈(I(ϵ))−

P

((
E(η, ϵ,x)

)c) ≤ sup
x∈(I(ϵ))−

P

(
X

η|b
[0,t(ϵ/2)](x) ∈ E∗

1 (ϵ) ∪ E∗
2 (ϵ)

)
= O

(
λ(η)

)
as η ↓ 0. To conclude the proof, one only needs to note that λ(η) ∈ RVα−1(η) (with α > 1) and hence
limη↓0 λ(η) = 0.

We conclude this section with the proof of Theorem 2.6.

Proof of Theorem 2.6. First, it is established in Lemma D.3 that CI
b <∞. Next, since Lemmas 4.3–

4.5 verify Condition 1, Theorem 2.6 follows immediately from Theorem 2.9.
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Processes and their Applications, 116(4):611–642, 2006.

[33] P. Imkeller and I. Pavlyukevich. Metastable behaviour of small noise lévy-driven diffusions.
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A Results under General Scaling

Below, we present results analogous to those in Section 2 under a general scaling. Specifically, through-

out this section we define (Xη
j (x))j≥0 and (X

η|b
j (x))j≥0 with the recursions in (1.3). Here, we consider

γ ∈ ( 1
2∧α ,∞) where α > 1 is the tail index in Assumption 1. Let

λ(η; γ) = η−1H(η−γ).

We adopt the notations C(k)|b, D(k)|b
A (ϵ), Xη|b(x), etc., as described in Section 2. First, we present

the sample-path large deviations.

Theorem A.1. Let Assumptions 1 and 2 hold. Let γ ∈ ( 1
2∧α ,∞).

(a) For any k ∈ N, any b, T, ϵ > 0, and any compact A ⊆ Rm,

λ−k(η; γ)P
(
X

η|b
[0,T ](x) ∈ ·

)
→ C

(k)|b
[0,T ]( · ;x) in M

(
D[0, T ] \ D(k−1)|b

A [0, T ](ϵ)
)
uniformly in x on A

as η ↓ 0. Furthermore, for any B ∈ SD[0,T ] that is bounded away from D(k−1)|b
A [0, T ](ϵ),

inf
x∈A

C
(k)|b
[0,T ]

(
B◦;x

)
≤ lim inf

η↓0

infx∈A P
(
X

η|b
[0,T ](x) ∈ B

)
λk(η; γ)

≤ lim sup
η↓0

supx∈A P
(
X

η|b
[0,T ](x) ∈ B

)
λk(η; γ)

≤ sup
x∈A

C
(k)|b
[0,T ]

(
B−;x

)
<∞.

(b) Furthermore, suppose that Assumption 3 holds. For any k ∈ N, T, ϵ > 0, and any compact
A ⊆ Rm that

λ−k(η; γ)P
(
Xη

[0,T ](x) ∈ ·
)
→ C

(k)
[0,T ]( · ;x) in M

(
D[0, T ] \ D(k−1)

A [0, T ](ϵ)
)
uniformly in x on A

as η ↓ 0. Furthermore, for any B ∈ SD[0,T ] that is bounded away from D(k−1)
A [0, T ](ϵ),

inf
x∈A

C
(k)
[0,T ](B

◦;x) ≤ lim inf
η↓0

infx∈A P
(
Xη

[0,T ](x) ∈ B
)

λk(η; γ)

≤ lim sup
η↓0

supx∈A P
(
Xη

[0,T ](x) ∈ B
)

λk(η; γ)
≤ sup

x∈A
C

(k)
[0,T ](B

−;x) <∞.

The corresponding conditional limit theorem is identical to Corollary 2.5, under the condition that
γ ∈ ( 1

2∧α ,∞), so we skip the details. Lastly, we present the metastability analysis. Let I ⊆ Rm be

an open set such that 0 ∈ I and Assumption 4 holds. Let the first exit times τη(x) and τη|b(x) be

defined as in (2.29). We adopt the notations J I
b , G(k)|b(ϵ), qCk|b, etc., as described in Section 2.3.

Theorem A.2. Let Assumptions 1, 2, and 4 hold. Let γ ∈ ( 1
2∧α ,∞).

(a) Let b > 0 such that J I
b <∞. Suppose that Ic is bounded away from G(J I

b −1)|b(ϵ) for some (and

hence all) ϵ > 0 small enough, and qC(J I
b )|b(∂I) = 0. Then CI

b =∆ qC(J I
b )|b(Ic) <∞. Furthermore,

if CI
b ∈ (0,∞), then for any ϵ > 0, t ≥ 0, and measurable set B ⊆ Ic,

lim sup
η↓0

sup
x∈Iϵ

P

(
CI

b η · λJ
I
b (η; γ)τη|b(x) > t; X

η|b
τη|b(x)

(x) ∈ B

)
≤

qC(J I
b )|b(B−)

CI
b

· exp(−t),
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lim inf
η↓0

inf
x∈Iϵ

P

(
CI

b η · λJ
I
b (η; γ)τη|b(x) > t; X

η|b
τη|b(x)

(x) ∈ B

)
≥

qC(J I
b )|b(B◦)

CI
b

· exp(−t).

Otherwise, we must have CI
b = 0, and

lim sup
η↓0

sup
x∈Iϵ

P

(
η · λJ

I
b (η; γ)τη|b(x) ≤ t

)
= 0 ∀ϵ > 0, t ≥ 0.

(b) Suppose that qC(∂I) = 0. Then CI
∞ =∆ qC(Ic) < ∞. Furthermore, if CI

∞ > 0, then for any t ≥ 0
and measurable set B ⊆ Ic,

lim sup
η↓0

sup
x∈Iϵ

P

(
CI

∞η · λ(η; γ)τη(x) > t; Xη
τη(x)(x) ∈ B

)
≤

qC(B−)

CI
∞

· exp(−t),

lim inf
η↓0

inf
x∈Iϵ

P

(
CI

∞η · λ(η; γ)τη(x) > t; Xη
τη(x)(x) ∈ B

)
≥

qC(B◦)

CI
∞

· exp(−t).

Otherwise, we must have CI
∞ = 0, and

lim sup
η↓0

sup
x∈Iϵ

P

(
η · λ(η; γ)τη(x) ≤ t

)
= 0 ∀ϵ > 0, t ≥ 0.

The proofs for results in this section will be almost identical to those presented in the main paper.
We omit the details to avoid repetition.

B Results for Lévy-Driven Stochastic Differential Equations

In this section, we collect the results for stochastic differential equations driven by Lévy processes with
regularly varying increments. Specifically, any one-dimensional Lévy process L = {Lt : t ≥ 0} can be
characterized by its generating triplet (cL, σL, ν) where cL ∈ Rm is the drift parameter, the positive
semi-definite matrix ΣL ∈ Rm×m is the magnitude of the Brownian motion term in Lt, and ν is the
Lévy measure of the Lévy process Lt characterizing the intensity of jumps in Lt. More precisely, we
have the following Lévy–Itô decomposition

Lt =
d cLt+Σ

1/2
L Bt +

∫
∥x∥≤1

x
[
N([0, t]× dx)− tν(dx)

]
+

∫
∥x∥>1

xN([0, t]× dx) (B.1)

where B is a standard Brownian motion in Rm, the measure ν satisfies
∫
(∥x∥2 ∧ 1)ν(dx) < ∞, and

N is a Poisson random measure independent of B with intensity measure L∞ × ν. See Chapter 4 of
[58] for details. We impose the following assumption that characterizes the heavy-tailedness in the
increments of Lt.

Assumption 5. EL1 = 0. Besides, there exist α > 1 and a probability measure S(·) on the unit
sphere of Rd such that

• HL(x) =
∆ ν
({

y ∈ Rd : ∥y∥ > x
})

∈ RV−α(x) as x→ ∞,

• As r → ∞, (
ν ◦ Φ−1

r

)
(·)

HL(r)
→ να × S in M

((
[0,∞)×Nd

)
\
(
{0} ×Nd

))
,

where Nd is the unit sphere of Rd, the measure
(
ν ◦ Φ−1

r

)
is defined by(

ν ◦ Φ−1
r

)
(·) =∆ ν

(
Φ−1(r−1·, ·)

)
,

i.e.
(
ν ◦ Φ−1

r

)
(A×B) = ν

(
Φ−1(r−1A,B)

)
for all Borel sets A ⊆ (0,∞) and B ⊆ Nd.
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Consider a filtered probability space
(
Ω,F ,F = (Ft)t≥0,P

)
satisfying the usual hypotheses stated

in Chapter I, [53] and supporting the Lévy process L, where F0 = {∅,Ω} and Ft is the σ-algebra
generated by {Ls : s ∈ [0, t]}. For η ∈ (0, 1] and β ≥ 0, define the scaled process

L̄η =∆
{
L̄η

t = ηLt/ηβ : t ≥ 0
}
, (B.2)

and let Y η
t (x) be the solution to SDE

Y η
0 (x) = x, dY η

t (x) = a
(
Y η
t−(x)

)
dt+ σ

(
Y η
t−(x)

)
dL̄η

t . (B.3)

Henceforth in Section B, we consider β ∈ [0, 2 ∧ α) where α > 1 is the tail index in Assumption 5.
Below, we state the results regarding the sample-path large deviations and metastability of Y η

t (x).

B.1 Sample Path Large Deviations

Recall the definitions of the mapping h
(k)
[0,T ] in (2.10)–(2.12) as well as the measure C

(k)
[0,T ]( · ;x)

in (2.14). Also, recall the notion of uniform M-convergence introduced in Definition 2.1. Define
Y η
[0,T ](x) = {Y η

t (x) : t ∈ [0, T ]} as a random element in D[0, T ]. In case that T = 1, we suppress

[0, 1] and write Y η(x). The next result characterizes the sample-path large deviations for Y η
[0,T ](x) by

establishing M-convergence that is uniform in the initial condition x. The proofs are almost identical
to those of Xη

j (x) and hence omitted to avoid repetition. Recall that HL(x) = ν((∞,−x) ∪ (x,∞)).
Let

λL(η;β) =
∆ η−βHL(η

−1)

where β ∈ [0, 2 ∧ α) determines the time scaling in (B.2).

Theorem B.1. Under Assumptions 2, 3, and 5, it holds for any β ∈ [0, 2 ∧ α), T, ϵ > 0, k ∈ N, and
any compact set A ⊆ Rm that

λ−k
L (η;β)P

(
Y η
[0,T ](x) ∈ ·

)
→ C

(k)
[0,T ]( · ;x) in M

(
D[0, T ] \ D(k−1)

A [0, T ](ϵ)
)
uniformly in x on A

as η → 0. Furthermore, for any B ∈ SD[0,T ] that is bounded away from D(k−1)
A [0, T ](ϵ),

inf
x∈A

C
(k)
[0,T ]

(
B◦;x

)
≤ lim inf

η↓0

infx∈A P
(
Y η
[0,T ](x) ∈ B

)
λkL(η;β)

≤ lim sup
η↓0

supx∈A P
(
Y η
[0,T ](x) ∈ B

)
λkL(η;β)

≤ sup
x∈A

C
(k)
[0,T ]

(
B−;x

)
<∞.

Analogous to the truncated dynamics X
η|b
j (x), we introduce processes Y

η|b
t (x) that can be seen

as a modulated version of Y η
t (x) where all jumps are truncated under the threshold value b. More

generally, we consider a sequence of stochastic processes
(
Y

η|b;(k)
t (x)

)
k≥0

. First, for any x ∈ Rm and

t ≥ 0, let

dY
η|b;(0)
t (x) =∆ a

(
Y

η|b;(0)
t− (x)

)
dt+ σ

(
Y

η|b;(0)
t− (x)

)
dL̄t. (B.4)

Next, building upon the process Y
η|b;(0)
t (x), we define

τ
η|b;(1)
Y (x) =∆ min

{
t > 0 :

∥∥∥σ(Y η|b;(0)
t− (x)

)
∆L̄η

t

∥∥∥ =
∥∥∥∆Y

η|b;(0)
t (x)

∥∥∥ > b
}
, (B.5)

W
η|b;(1)
Y (x) =∆ ∆Y

η|b;(0)
τ
η|b;(1)
Y (x)

(x) (B.6)
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as the arrival time and size of the first jump in Y
η|b;(0)
t (x) that is larger than b. Furthermore, we

define (for any k ≥ 1)

Y
η|b;(k)
τ
η|b;(k)
Y (x)

(x) =∆ Y
η|b;(k)
τ
η|b;(k)
Y (x)−

(x) + φb

(
W

η|b;(k)
Y (x)

)
, (B.7)

dY
η|b;(k)
t (x) =∆ a

(
Y

η|b;(k)
t− (x)

)
dt+ σ

(
Y

η|b;(k)
t− (x)

)
dL̄η

t ∀t > τ
η|b;(k)
Y (x), (B.8)

τ
η|b;(k+1)
Y (x) =∆ min

{
t > τ

η|b;(k)
Y (x) :

∥∥∥σ(Y η|b;(k)
t− (x)

)
∆L̄η

t

∥∥∥ > b
}
, (B.9)

W
η|b;(k+1)
Y (x) =∆ ∆Y

η|b;(k)
τ
η|b;(k+1)
Y (x)

(x) (B.10)

Lastly, for any t ≥ 0, b > 0 and x ∈ R, we define (under convention τ
η|b;(0)
Y (x) = 0)

Y
η|b
t (x) =∆

∑
k≥0

Y
η|b;(k)
t (x) · I

{
t ∈

[
τ
η|b;(k)
Y (x), τ

η|b;(k+1)
Y (x)

)}
(B.11)

and let Y
η|b
[0,T ](x) =

∆
{
Y

η|b
t (x) : t ∈ [0, T ]

}
. By definition, for any t ≥ 0, b > 0, k ≥ 0 and x ∈ R,

Y
η|b
t (x) = Y

η|b;(k)
t (x) ⇐⇒ t ∈

[
τ
η|b;(k)
Y (x), τ

η|b;(k+1)
Y (x)

)
. (B.12)

In case that T = 1, we suppress [0, 1] and write Y η|b(x). The next theorem presents the sample path

large deviations for Y
η|b
t (x). Once again, the proof is omitted as it closely resembles that of X

η|b
j (x).

Theorem B.2. Under Assumptions 2 and 5, it holds for any β ∈ [0, 2 ∧ α), any b, T, ϵ > 0, k ∈ N,
and any compact set A ⊆ Rm that

λ−k
L (η;β)P

(
Y

η|b
[0,T ](x) ∈ ·

)
→ C

(k)|b
[0,T ]( · ;x) in M

(
D[0, T ] \ D(k−1)|b

A [0, T ](ϵ)
)
uniformly in x on A

as η → 0. Furthermore, for any B ∈ SD[0,T ] that is bounded away from D(k−1)|b
A [0, T ](ϵ),

inf
x∈A

C
(k)|b
[0,T ]

(
B◦;x

)
≤ lim inf

η↓0

infx∈A P
(
Y

η|b
[0,T ](x) ∈ B

)
λkL(η;β)

≤ lim sup
η↓0

supx∈A P
(
Y

η|b
[0,T ](x) ∈ B

)
λkL(η;β)

≤ sup
x∈A

C
(k)|b
[0,T ]

(
B−;x

)
<∞.

To conclude this subsection, we present the conditional limit results for Y η and Y η|b.

Corollary B.3. Let Assumptions 2 and 5 hold. Let β ∈ [0, 2 ∧ α).

(i) For some b, ϵ > 0, k ∈ N, x ∈ Rm, and measurable B ⊆ D, suppose that B is bounded away

from D(k−1)|b
{x} (ϵ) and C(k)|b(B◦;x) = C(k)|b(B−;x) > 0. Then

P
(
Y

η|b
[0,1](x) ∈ · |Y η|b

[0,1](x) ∈ B
)
⇒ C(k)|b( · ∩B;x)

C(k)|b(B;x)
as η ↓ 0.

(ii) Furthermore, suppose that Assumption 3 holds. For some k ∈ N, x ∈ Rm, and measurable

B ⊆ D, suppose that B is bounded away from D(k−1)
{x} (ϵ) and C(k)(B◦;x) = C(k)(B−;x) > 0.

Then

P
(
Y η
[0,1](x) ∈ · |Y η

[0,1](x) ∈ B
)
⇒ C(k)( · ∩B;x)

C(k)(B;x)
as η ↓ 0.
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B.2 Metastability Analysis

Consider some open set I ⊆ Rm such that 0 ∈ I and Assumption 4 holds. Define stopping times

τηY (x) =
∆ inf

{
t ≥ 0 : Y η

t (x) /∈ I
}
, τ

η|b
Y (x) =∆ inf

{
t ≥ 0 : Y

η|b
t (x) /∈ I

}
.

as the first exit times of Y η
t (x) and Y

η|b
t (x) from I, respectively. The following result characterizes

the asymptotic law of the first exit times τηY (x) and τ
η|b
Y (x) using the measures qC(k)|b(·) defined in

(2.34) and qC(·) defined in (2.35). We omit the proof due to its similarity to that of Theorem 2.6.

Theorem B.4. Let Assumptions 2, 4, and 5 hold. Let β ∈ [0, 2 ∧ α).

(a) Let b > 0 such that J I
b <∞. Suppose that Ic is bounded away from G(J I

b −1)|b(ϵ) for some (and

hence all) ϵ > 0 small enough, and qC(J I
b )|b(∂I) = 0. Then CI

b =∆ qC(J I
b )|b(Ic) <∞. Furthermore,

if CI
b ∈ (0,∞), then for any ϵ > 0, t ≥ 0, and measurable set B ⊆ Ic,

lim sup
η↓0

sup
x∈Iϵ

P

(
CI

b λ
J I

b

L (η;β)τ
η|b
Y (x) > t; Y

η|b
τ
η|b
Y (x)

(x) ∈ B

)
≤

qC(J I
b )|b(B−)

CI
b

· exp(−t),

lim inf
η↓0

inf
x∈Iϵ

P

(
CI

b λ
J I

b

L (η;β)τ
η|b
Y (x) > t; Y

η|b
τ
η|b
Y (x)

(x) ∈ B

)
≥

qC(J I
b )|b(B◦)

CI
b

· exp(−t).

Otherwise, we must have CI
b = 0, and

lim sup
η↓0

sup
x∈Iϵ

P

(
λ
J I

b

L (η; γ)τ
η|b
Y (x) ≤ t

)
= 0 ∀ϵ > 0, t ≥ 0.

(b) Suppose that qC(∂I) = 0. Then CI
∞ =∆ qC(Ic) < ∞. Furthermore, if CI

∞ > 0, then for any t ≥ 0
and measurable set B ⊆ Ic,

lim sup
η↓0

sup
x∈Iϵ

P

(
CI

∞λL(η;β)τ
η
Y (x) > t; Y η

τη
Y (x)

(x) ∈ B

)
≤

qC(B−)

CI
∞

· exp(−t),

lim inf
η↓0

inf
x∈Iϵ

P

(
CI

∞λL(η;β)τ
η
Y (x) > t; Y η

τη
Y (x)

(x) ∈ B

)
≥

qC(B◦)

CI
∞

· exp(−t).

Otherwise, we must have CI
∞ = 0, and

lim sup
η↓0

sup
x∈Iϵ

P

(
λ(Lη; γ)τ

η
Y (x) ≤ t

)
= 0 ∀ϵ > 0, t ≥ 0.

C Properties of Mappings h̄
(k)
[0,T ] and h̄

(k)|b
[0,T ]

In this section, we collect a few useful results about the mapping h̄
(k)
[0,T ] defined in (2.10)–(2.12) and

h̄
(k)|b
[0,T ] defined in (2.21)–(2.23), and provide the proof of Lemmas 3.5, 3.6, and 3.7.

For any ξ ∈ D, let ∥ξ∥ =∆ supt∈[0,1] ∥ξ(t)∥. Also, recall the definition of D(k)|b
A (r) in (2.25).

Lemma C.1 shows that ∥ξ∥ is uniformly bounded for all ξ ∈ D(k)|b
A (r).

Lemma C.1. Let Assumption 2 hold. Given k ∈ N, b, r > 0, and a compact set A ⊆ Rm, there exists

M =M(k, b, r, A) <∞ such that ∥ξ∥ ≤M ∀ξ ∈ D(k)|b
A (r).
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Proof. Fix some x0 ∈ A, and let ξ∗(t) = yt(x0); see (2.28). Let N = r + supx,y∈A ∥x− y∥ ∨ b and
ρ = exp(D) ≥ 1 where D ∈ [1,∞) is the Lipschitz coefficient in Assumption 2.

By arbitrarily picking an element from D(k)|b
A (r), we get some ξ = h̄(k)|b(x,W,V, t) with x ∈

A, W = (w1, · · · ,wk) ∈ Rd×k, V = (v1, · · · ,vk) ∈ Rm×k, t = (t1, · · · , tk) ∈ (0, 1]k↑. By As-
sumption 2 and Gronwall’s inequality, we get supt∈[0,t1) ∥ξ

∗(t)− ξ(t)∥ ≤ ∥x− x0∥ · exp(Dt1) ≤ ρN.
Since ξ∗(t) is continuous, and ∥ξ(t1)− ξ(t1−)∥ ≤ b + r (see the definition of φb in (2.23)), we get
supt∈[0,t1] ∥ξ

∗(t)− ξ(t)∥ ≤ ρN + b+ r ≤ 2ρN.
Next, we proceed by induction. Adopt the convention that tk+1 = 1, and suppose that for some

j = 1, 2, · · · , k,

sup
t∈[0,tj ]

∥ξ∗(t)− ξ(t)∥ ≤ (2ρ)jN︸ ︷︷ ︸
=∆Mj

.

Then from Gronwall’s inequality again, we get ∥ξ∗(t)− ξ(t)∥ ≤ ρAj for any t ∈ [tj , tj+1). Due to the
continuity of ξ∗ and the truncation threshold b and the upper bound ∥vj∥ ≤ r at step (2.23), we have

∥ξ(tj+1)− ξ∗(tj+1)∥ ≤ ρMj + b+ r ≤ 2ρMj ≤Mj+1.

Therefore, supt∈[0,tj+1] ∥ξ
∗(t)− ξ(t)∥ ≤ Mj+1. By induction, we can conclude the proof with M =

Mk+1 + ∥ξ∗∥ = (2ρ)k+1N + ∥ξ∗∥.

Recall the definitions of aM ,σM in (3.35), the mapping h̄
(k)|b
M↓ in (3.36)–(3.38), and sets D(k)|b

A;M↓(r)

in (3.40). Next, we present a corollary of the boundedness of D(k)|b
A (r) established in Lemma C.1.

Corollary C.2. Let Assumption 2 hold. Let b, r > 0, k ∈ N. Let A ⊆ Rm be compact. There exists
M0 ∈ (0,∞) such that for any M ≥M0,

• supt≤1 ∥ξt∥ ≤M0 ∀ξ ∈ D(k)|b
A (r) ∪ D(k)|b

A;M↓(r);

• For any t = (t1, · · · , tk) ∈ (0, 1]k↑, W = (w1, · · · ,wk) ∈ Rd×k, V = (v1, · · · ,vk) ∈ Rm×k with
maxj∈[d] ∥vj∥ ≤ r, and x ∈ A,

h̄(k)|b(x,W,V, t) = h̄
(k)|b
M↓ (x,W,V, t).

Proof. The claims follow immediately from Lemma C.1, as well as the fact that h̄(k)|b(x,W,V, t) ∈
D(k)|b

A (r) and ξ = h̄
(k)|b
M↓ (x,W,V, t) ∈ D(k)|b

A;M↓(r).

Next, we study the continuity of mappings h̄
(k)
[0,T ] and h̄

(k)|b
[0,T ].

Lemma C.3. Let Assumption 2 hold. Given any b, T > 0 and any k ∈ N, the mapping h̄
(k)|b
[0,T ] is

continuous on Rm × Rd×k × Rm×k × (0, T )k↑.

Proof. To ease notations we focus on the case where T = 1, but the proof is identical for any T > 0.
Arbitrarily pick some b > 0 and k ∈ N, some x∗ ∈ Rm, W∗ = (w∗

1 , · · · ,w∗
k) ∈ Rd×k, V∗ =

(v∗
1 , · · · ,v∗

k) ∈ Rm×k, and t∗ = (t∗1, · · · , t∗k) ∈ (0, 1)k↑. Let ξ∗ = h̄(k)|b(x∗,W∗,V∗, t∗). Also, fix
some ϵ ∈ (0, 1). It suffices to show the existence of some δ ∈ (0, 1) such that dJ1(ξ

∗, ξ′) < ϵ for
all ξ′ = h̄(k)|b(x′,W′,V′, t′) with x′ ∈ Rm, W′ = (w′

1, · · · ,w′
k) ∈ Rd×k, V′ = (v′

1, · · · ,v′
k) ∈

Rm×k, t′ = (t′1, · · · , t′k) ∈ (0, 1)k↑ satisfying

∥x∗ − x′∥ < δ,
∥∥w′

j −w∗
j

∥∥ ∨ ∥∥v∗
j − v′

j

∥∥ ∨ |t′j − t∗j | < δ ∀j ∈ [k]. (C.1)
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We start by setting some constants and notations. First, by Corollary C.2, it follows for any M ∈
(0,∞) large enough that

∥ξ∗∥+ 1 < M and ∥ξ′∥+ 1 < M ∀ξ′ = h̄(k)|b(x′,W′,V′, t′) satisfying (C.1). (C.2)

By picking an even larger M if necessary, we can ensure that M ≥ 1 + maxj∈[k]

∥∥w∗
j

∥∥. In this proof,
we write a∗ = aM , σ∗ = σM (see (3.35) for definitions). Fix the constant

C∗ =∆ sup
y:∥y∥≤M

∥a(y)∥ ∨ ∥σ(y)∥ ∨ 1 <∞.

We also write h∗ = h̄
(k)|b
M↓ in this proof; see (3.36)–(3.38) for definitions. The choice of M ensures that

ξ∗ = h∗(x∗,W∗,V∗, t∗) and, under condition (C.1), ξ′ = h∗(x′,W′,V′, t′).
Let ρ =∆ exp(D) ≥ 1 where D ∈ [1,∞) is the Lipschitz coefficient in Assumption 2. Let R0 = 1,

Rj =
∆ (7C∗ + ρRj−1 + 1)(DM + 1) + C∗ ∀j ≥ 1. (C.3)

We pick some δ̃ > 0 small enough such that

2δ̃ < 1 ∧ ϵ; Rk+1δ̃ < ϵ. (C.4)

Also, by picking δ > 0 small enough, it is guaranteed that (under convention t∗0 = t′0 = 0, t∗k+1 =
t′k+1 = 1)

δ < δ̃ ∨ 1; max
j∈[k]

∣∣∣∣∣ t∗j+1 − t∗j
t′j+1 − t′j

− 1

∣∣∣∣∣ < δ̃ ∀t′ = (t′1, · · · , t′k) ∈ (0, 1)k↑, max
j∈[k]

|t′j − t∗j | < δ. (C.5)

Now it only remains to show that, under the current the choice of δ, the bound dJ1
(ξ, ξ′) < ϵ follows

from condition (C.1). To do so, we fix some ξ′ satisfying condition (C.1). Define λ : [0, 1] → [0, 1] as

λ(u) =

{
0 if u = 0

t∗j +
t∗j+1−t∗j
t′j+1−t′j

· (u− t′j) if u ∈ (t′j , t
′
j+1] for some j = 0, 1, · · · , k.

For any u ∈ (0, 1), let j ∈ {0, 1, · · · , k} be such that u ∈ (t′j , t
′
j+1]. Observe that

|λ(u)− u| =
∣∣∣∣t∗j + t∗j+1 − t∗j

t′j+1 − t′j
· (u− t′j)− u

∣∣∣∣ = ∣∣∣∣t∗j + t∗j+1 − t∗j
t′j+1 − t′j

· v − (v + t′j)

∣∣∣∣ with v =∆ u− t′j

≤ |t∗j − t′j |+
∣∣∣∣ t∗j+1 − t∗j
t′j+1 − t′j

− 1

∣∣∣∣ · v
≤ δ̃ + δ̃ · 1 < ϵ. (C.6)

In summary, we have shown that supu∈[0,1] |λ(u)− u| < ϵ. Moving on, we prove that

sup
u∈[0,1]

∥∥ξ∗(λ(u))− ξ′(u)
∥∥ < ϵ

using an inductive argument. First, Assumption 2 allows us to apply Gronwall’s inequality and get
supu∈(0,t∗1∧t′1)

∥ξ∗(u)− ξ′(u)∥ ≤ exp
(
D · (t∗1 ∧ t′1)

)
∥x∗ − x′∥ ≤ ρδ. As a result, for any u ∈ (0, t∗1 ∧ t′1),∥∥ξ∗(λ(u))− ξ′(u)

∥∥ =

∥∥∥∥ξ∗( t∗1t′1 · u
)
− ξ′(u)

∥∥∥∥ ≤
∥∥∥∥ξ∗( t∗1t′1 · u

)
− ξ∗(u)

∥∥∥∥+ ∥ξ′(u)− ξ∗(u)∥

≤
∥∥∥∥ξ∗( t∗1t′1 · u

)
− ξ∗(u)

∥∥∥∥+ ρδ
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≤ sup
y∈Rm

∥a∗(y)∥ ·
∣∣∣∣ t∗1t′1 − 1

∣∣∣∣ · u+ ρδ by (C.2)

≤ C∗δ̃ + ρδ̃ = (C∗ + ρ)δ̃ due to (C.5).

In case that t′1 ≤ t∗1, we get supu∈(0,t′1)

∥∥ξ∗(λ(u))− ξ′(u)
∥∥ < (C∗ + ρ)δ̃ directly. In case that t∗1 < t′1,

due to ξ′ = h∗(x′,W′,V′, t′) as well as the bounds in (C.5)(C.6), for any u ∈ [t∗1, t
′
1) we have

∥ξ′(u)− ξ′(t∗1)∥ ≤ sup
y∈Rm

∥a∗(y)∥ · |u− t∗1| < C∗δ̃;∥∥ξ∗(λ(u))− ξ∗
(
λ(t∗1)

)∥∥ ≤ sup
y∈Rm

∥a∗(y)∥ ·
∣∣λ(u)− λ(t∗1)

∣∣ < 5C∗δ̃.

As a result, supu∈(0,t′1)

∥∥ξ∗(λ(u))− ξ′(u)
∥∥ < (7C∗ + ρ)δ̃. In addition, due to ∥φb(x)− φb(y)∥ ≤

∥x− y∥,∥∥ξ∗(λ(t′1))− ξ′(t′1)
∥∥

=

∥∥∥∥ξ∗(λ(t′1−)
)
+ v∗

1 + φb

(
σ∗
(
ξ∗
(
λ(t′1−)

)
+ v∗

1

)
w∗

1

)
− ξ′(t′1−)− v′

1 − φb

(
σ∗
(
ξ′(t′1−) + v′

1

)
w′

1

)∥∥∥∥
≤
∥∥ξ∗(λ(t′1−)

)
− ξ′(t′1−)

∥∥+ ∥v∗
1 − v′

1∥+
∥∥∥σ∗

(
ξ∗
(
λ(t′1−)

)
+ v∗

1

)
w∗

1 − σ∗
(
ξ′(t′1−) + v′

1

)
w′

1

∥∥∥
≤
∥∥ξ∗(λ(t′1−)

)
− ξ′(t′1−)

∥∥+ ∥v∗
1 − v′

1∥+
∥∥∥σ∗

(
ξ∗
(
λ(t′1−)

)
+ v∗

1

)
− σ∗

(
ξ′(t′1−) + v′

1

)∥∥∥ · ∥w∗
1∥

+
∥∥∥σ∗

(
ξ′(t′1−) + v′

1

)∥∥∥ · ∥w′
1 −w∗

1∥

≤
∥∥ξ∗(λ(t′1−)

)
− ξ′(t′1−)

∥∥+ δ +
∥∥∥σ∗

(
ξ∗
(
λ(t′1−)

)
+ v∗

1

)
− σ∗

(
ξ′(t′1−) + v′

1

)∥∥∥ ·M + C∗δ

≤ (7C∗ + ρ)δ̃ + δ +M ·D ·
(∥∥ξ∗(λ(t′1−)

)
− ξ′(t′1−)

∥∥+ ∥v∗
1 − v′

1∥
)
+ C∗δ due to Assumption 2

= (7C∗ + ρ)δ̃ + δ +DM
(
(7C∗ + ρ)δ̃ + δ

)
+ C∗δ

≤
[
(7C∗ + ρ+ 1)(DM + 1) + C∗]δ̃ by our choice of δ < δ̃ in (C.4)(C.5).

In summary, we yield supu∈[0,t′1]

∥∥ξ∗(λ(u))− ξ′(u)
∥∥ ≤

[
(7C∗+ρ+1)(DM +1)+C∗]δ̃ = R1δ̃; see defi-

nitions in (C.3). Now, suppose that for some j = 1, 2, · · · , k, we have supu∈[0,t′j ]

∥∥ξ∗(λ(u))− ξ′(u)
∥∥ ≤

Rj δ̃. By repeating the calculations above, one can obtain that supu∈[0,t′j+1]

∥∥ξ∗(λ(u))− ξ′(u)
∥∥ ≤

Rj+1δ̃. To conclude, note that Rk+1δ̃ < ϵ by our choice of parameters in (C.4).

Lemma C.4. Let Assumption 2 and 3 hold. Given any k ∈ N and T > 0, the mapping h̄
(k)
[0,T ] is

continuous on Rm × Rd×k × Rm×k × (0, T )k↑.

Proof. To ease notations we focus on the case where T = 1, but the proof is identical for any T > 0.
Arbitrarily pick some k ∈ N, x∗ ∈ Rm, W∗ = (w∗

1 , · · · ,w∗
k) ∈ Rd×k, V∗ = (v∗

1 , · · · ,v∗
k) ∈ Rm×k, and

t∗ = (t∗1, · · · , t∗k) ∈ (0, 1)k↑. We claim the existence of some b = b(x∗,W∗,V∗, t∗) > 0 such that for
any δ ∈ (0, 1), x′ ∈ Rm, W′ = (w′

1, · · · ,w′
k) ∈ Rd×k, V′ = (v′

1, · · · ,v′
k) ∈ Rm×k, and t′ ∈ (0, 1)k↑

satisfying

∥x∗ − x′∥ < δ,
∥∥w′

j −w∗
j

∥∥ ∨ ∥∥v∗
j − v′

j

∥∥ ∨ |t′j − t∗j | < δ ∀j ∈ [k]. (C.7)

we have h̄(k)(x′,W′,V′, t′) = h̄(k)|b(x′,W′,V′, t′). Then the continuity of h̄(k) follows immediately
from the continuity of h̄(k)|b established in Lemma C.3.

Now, it only remains to find such b > 0. In particular, we can simply set b = C ·
(
max{

∥∥w∗
j

∥∥ :

j ∈ [k]} + 1
)
where C ≥ 1 is the constant in Assumption 3 satisfying supy∈Rm ∥σ(y)∥ ≤ C. Indeed,
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given any δ ∈ (0, 1) and x′ ∈ Rm, W′ ∈ Rd×k, V′ ∈ Rm×k, and t′ ∈ (0, 1)k↑ satisfying (C.7), for
ξ′ = h̄(k)|b(x′,W′,V′, t′) we have∥∥σ(ξ′(t′j−) + vj

)
w′

j

∥∥ ≤ C ·
(
max{∥w∗

i ∥ : i ∈ [k]}+ δ
)
< b ∀j ∈ [d].

As a result, the truncation operator φb at step (2.23) is not in effect, and hence ξ′ = h̄(k)(x′,W′,V′, t′).
This concludes the proof.

Next, we move onto the proofs of Lemmas 3.5, 3.6, and 3.7.

Proof of Lemma 3.5. The claims are trivial if A or B is an empty set. Also, the claims are trivially

true if k = 0 (note that in (b) we would have D(−1)
A (r) = ∅). Therefore, in this proof we focus on the

case where A ̸= ∅, B ̸= ∅, and k ≥ 1.

SinceB is bounded away from D(k−1)
A (r) under dJ1

, there exists ϵ̄ > 0 such that dJ1

(
B ϵ̄,D(k−1)

A (r)
)
>

0 so that part (b) is satisfied. Next, we show that there exists δ̄ > 0, which together with ϵ̄ satisfies (a).
Let D ∈ [1,∞) be the Lipschitz coefficient in Assumption 2. Besides, recall the constant C ∈ (1,∞)
in Assumption 3 that satisfies supx∈R ∥σ(x)∥ ≤ C. Let ρ =∆ exp(D) and

δ̄ =∆
ϵ̄

ρC + 1
. (C.8)

Note that δ̄ < ϵ̄. To show that the claim (a) holds for such ϵ̄ and δ̄, we proceed with proof by
contradiction. Suppose that there is some t = (t1, · · · , tk) ∈ (0, 1]k↑, W = (w1, · · · ,wk) ∈ Rd×k,
and x0 ∈ A such that ξ =∆ h(k)(x0,W, t) ∈ B ϵ̄ yet ∥wJ∥ ≤ δ̄ for some J = 1, 2, · · · , k. We construct

ξ′ ∈ D(k−1)
A (r) such that dJ1

(ξ′, ξ) < ϵ̄. Specifically, we focus on the case where J < k, since the proof

when J = k is almost identical but only slightly simpler. Now, recall the definition of h
(0)
σ (·) given

below (2.12), and construct ξ′ as

ξ′(s) =∆


ξ(s) s ∈ [0, tJ)

h(0)(ξ′(tJ−))(s− tJ) s ∈ [tJ , tJ+1)

ξ(s) s ∈ [tJ+1, t].

That is, ξ′ is driven by the same ODE as ξ on [tJ , tJ+1), except that at the beginning of the intervals,
ξ′ starts from ξ(tJ−) instead of ξ(tJ). On the other hand, ξ′ coincides with ξ outside of [tJ , tJ+1).
To bound the distance between ξ and ξ′, note that from Assumption 3, we have ∥ξ(tJ)− ξ(tJ−)∥ =
∥σ(ξ(tJ−))wJ∥ ≤ Cδ̄. Then using Gronwall’s inequality, we get

∥ξ(s)− ξ′(s)∥ ≤ exp
(
(tJ+1 − tJ)D

)
∥ξ(tJ)− ξ′(tJ−)∥

≤ ρ ∥ξ(tJ)− ξ′(tJ−)∥
≤ ρCδ̄ < ϵ̄ (C.9)

for all s ∈ [tJ , tJ+1). This shows that dJ1(ξ, ξ
′) < ϵ̄. However, this cannot be the case since ξ ∈ B ϵ̄,

ξ′ ∈ D(k−1)
A (r), and we chose ϵ̄ such that dJ1

(B ϵ̄,D(k−1)
A ) > 0. This concludes the proof for the case

with J < k. The proof for the case where J = k is almost identical. The only difference is that ξ′ is
set to be ξ′(s) = ξ(s) for all s < tk, and ξ

′(s) = h(0)
(
ξ′(tk−)

)
(s− tk) for all s ∈ [tk, 1],

Proof of Lemma 3.6. Similar to Lemma 3.5, all claims hold trivially if A or B is empty, or if k = 0.
In this proof, we focus on the case where A ̸= ∅, B ̸= ∅, and k ≥ 1.

We start by fixing some constant. Since B is bounded away from D(k−1)|b
A (r), we can fix some

ϵ̄ > 0 such that dJ1

(
B ϵ̄,D(k−1)|b

A (r)
)
> 0 to conclude the proof of part (b). Next, let D ∈ [1,∞) be

the Lipschitz coefficient in Assumption 2. Besides, recall the constant C ∈ (1,∞) in Assumption 3
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that satisfies supx∈R ∥σ(x)∥ ≤ C. Let ρ =∆ exp(D). By picking an even smaller ϵ̄ > 0 if necessary, we
can w.l.o.g. assume that

2ρϵ̄ < r and dJ1

(
B ϵ̄,D(k−1)|b

A (r)
)
> 2ρϵ̄. (C.10)

Let

δ̄ =∆ ϵ̄/C. (C.11)

To prove that part (a) holds for such δ̄, we proceed with a proof by contradiction. Arbitrarily
pick some x ∈ A, W = (w1, · · · ,wk) ∈ Rd×k, V = (v1, · · · ,vk) ∈ Rm×k with maxj∈[k] ∥vj∥ ≤ ϵ̄,

t = (t1, · · · , tk) ∈ (0, 1)k↑, and b > 0. For ξb = h̄(k)|b(x,W,V, t), suppose that ξb ∈ B ϵ̄ yet there is
some J ∈ [k] such that ∥wJ∥ ≤ δ̄. Next, construct ξ ∈ D as follows: (recall that y·(x) is the ODE
defined in (2.28))

ξ(s) =∆


ξb(s) s ∈ [0, tJ)

ys−tJ (ξ(tJ−)) s ∈ [tJ , tJ+1)

ξb(s) s ∈ [tJ+1, 1].

That is, ξ is a modified version of ξb where the jump at time tJ is removed, but the two paths coincide
on [0, tJ) ∪ [tJ+1, 1]. Note that by Assumption 3,

∥ξ(tJ)− ξb(tJ)∥ = ∥∆ξb(tJ)∥ ≤ ∥vJ∥+
∥∥∥φb

(
σ
(
ξb(tJ−) + vJ

)
wJ

)∥∥∥ ≤ ϵ̄+ Cδ̄.

Applying Gronwall’s inequality, we then yield that for all s ∈ [tJ , tJ−1),

∥ξb(s)− ξ(s)∥ ≤ exp
(
D(s− tJ)

)
· ∥ξ(tJ)− ξb(tJ)∥

≤ ρ · ∥ξ(tJ)− ξb(tJ)∥ where ρ = exp(D)

≤ ρ(ϵ̄+ Cδ̄) = 2ρϵ̄ due to (C.11).

This implies that dJ1
(ξ, ξb) ≤ 2ρϵ̄ and ξ ∈ D(k−1)|b

A (2ρϵ̄) ⊆ D(k−1)|b
A (r); see (C.10). However, in light

of the condition dJ1

(
B ϵ̄,D(k−1)|b

A (r)
)
> 2ρϵ̄ in (C.10), we arrive at the contraction that ξb /∈ B ϵ̄. This

concludes the proof of part (a).

Proof of Lemma 3.7. The proof relies on the following claim: for any S ∈ SD that is bounded away

from D(k−1)
A (r),

lim
b→∞

C(k)|b(S;x) = C(k)(S;x). (C.12)

Then for any g ∈ C
(
D\D(k−1)

A (r)
)
, we know that B = supp(g) is bounded away from D(k−1)

A (r). Also,
given any ∆ > 0, an approximation to g using simple functions implies the existence of some N ∈ N,
some sequence of real numbers

(
c
(i)
g

)N
i=1

, some sequence
(
B

(i)
g

)N
i=1

of Borel measurable sets on D that

are bounded away from D(k−1)
A (r) such that the following claims hold for g∆(·) =

∑N
i=1 c

(i)
g I
(
· ∈ B

(i)
g

)
:

B(i)
g ⊆ B ∀i ∈ [N ];

∣∣g∆(ξ)− g(ξ)
∣∣ < ∆ ∀ξ ∈ D.

Then

lim sup
b→∞

∣∣∣C(k)|b(g;x)−C(k)(g;x)
∣∣∣ ≤ lim sup

b→∞

∣∣∣C(k)|b(g;x)−C(k)|b(g∆;x)
∣∣∣

+ lim sup
b→∞

∣∣∣C(k)|b(g∆;x)−C(k)(g∆;x)
∣∣∣

+ lim sup
b→∞

∣∣∣C(k)(g∆;x)−C(k)(g;x)
∣∣∣
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First, note that C(k)|b(g∆;x) =
∑N

i=1 c
(i)
g C(k)|b(B

(i)
g ;x) and C(k)(g∆;x) =

∑N
i=1 c

(i)
g C(k)(B

(i)
g ;x).

Therefore, applying (C.12), we get lim supb→∞

∣∣∣C(k)|b(g∆;x) − C(k)(g∆;x)
∣∣∣ = 0. Next, note that∣∣∣C(k)|b(g∆;x)−C(k)|b(g;x)

∣∣∣ ≤ ∆·C(k)|b(B;x) and
∣∣∣C(k)(g∆;x)−C(k)(g;x)

∣∣∣ ≤ ∆·C(k)(B;x). Thanks

to (C.12) again, we get lim supb→∞

∣∣∣C(k)|b(g;x)−C(k)(g;x)
∣∣∣ ≤ 2∆ ·C(k)(B;x). The arbitrariness of

∆ > 0 allows us to conclude the proof.
Now, we prove (C.12) using Dominated Convergence theorem. By the definition in (2.26),

C(k)|b(S;x) =∆
∫

I

{
h(k)|b

(
x,W, t

)
∈ S

}(
(να × S) ◦ Φ

)k
(dW)× Lk↑

1 (dt).

where S ∈ SD is bounded away from D(k−1)
A (r). First, we fix some W ∈ Rd×k and t ∈ (0, 1)k↑ and

x0 ∈ R, and let M =∆ maxj∈[k] ∥wj∥ . For any b > MC where C ≥ 1 is the constant satisfying such

that supx∈Rm ∥a(x)∥ ∨ ∥σ(x)∥ ≤ C (see Assumption 3), by the definitions of h(k) and h(k)|b it is easy
to see that h(k)|b(x,W, t) = h(k)(x,W, t). This implies

lim
b→∞

I
{
h(k)|b

(
x,W, t

)
∈ S

}
= I
{
h(k)

(
x,W, t

)
∈ S

}
∀W ∈ Rd×k, t ∈ (0, 1]k↑.

In order to apply Dominated Convergence theorem and conclude the proof of (C.12), it suffices to find
an integrable function that dominates I

{
h(k)|b

(
x,W, t

)
∈ S

}
. Specifically, since S is bounded away

from D(k−1)
A (r), we can find some ϵ̄ > 0 such that dJ1

(
S,D(k−1)

A (r)
)
> ϵ̄. Also, let ρ = exp(D) where

D ∈ [1,∞) is the Lipschitz coefficient in Assumption 2. Fix some δ̄ < ϵ̄
ρC . By part (a) of Lemma 3.6,

we get

I

{
h(k)|b

(
x,W, t

)
∈ S

}
≤ I

{
∥wj∥ > δ̄ ∀j ∈ [k]

}
∀b > 0, W ∈ Rd×k, t ∈ (0, 1)k↑.

From
∫
I
{
∥wj∥ > δ̄ ∀j ∈ [k]

}(
(να×S)◦Φ

)k
(dW)×Lk↑

1 (dt) ≤ 1/δ̄kα <∞, we conclude the proof.

The following result will be applied in the proof of Lemma 3.8. Let xη
j (x) be the solution to

xη
0(x) = x, xη

j (x) = xη
j−1(x) + ηa

(
xη
j−1(x)

)
∀j ≥ 1. (C.13)

After proper scaling of the time parameter, xη
j approximates yt with small η. The next lemma is a

direct result from Gronwall’s inequality and bounds the distance between xη
⌊t/η⌋(x) and yt(y). For

the sake of completeness we provide the proof.

Lemma C.5. Let Assumptions 2 and 3 hold. For any η > 0, t > 0 and x, y ∈ Rm,

sup
s∈[0,t]

∥∥∥ys(y)− xη
⌊s/η⌋(x)

∥∥∥ ≤ (ηC + ∥x− y∥) exp(Dt)

where D,C ∈ [1,∞) are the constants in Assumptions 2 and 3 respectively.

Proof. For any s ≥ 0 that is not an integer, let xη
s(x) =

∆ xη
⌊s⌋(x) and yη

s (y) =
∆ ysη(y). Now observe

that (for any s ≥ 0)

yη
s (y) = yη

⌊s⌋(y) + η

∫ s

⌊s⌋
a(yη

u(y))du

yη
⌊s⌋(y) = y + η

∫ ⌊s⌋

0

a(yη
u(y))du

xη
⌊s⌋(y) = x+ η

∫ ⌊s⌋

0

a(xη
u(y))du.
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Let b(u) =∆ yη
u(y) − xη

u(x). It suffices to show that supu∈[0,t/η] ∥b(u)∥ ≤ (ηC + ∥x− y∥) exp(Dt). To
this end, we observe that (for any s > 0)

∥b(s)∥ ≤ ∥b(⌊s⌋)∥+

∥∥∥∥∥η
∫ s

⌊s⌋
a
(
yη
u(y)

)
du

∥∥∥∥∥ ≤ ∥b(⌊s⌋)∥+ ηC

≤ η

∫ ⌊s⌋

0

∥∥a(yη
u(y)

)
− a

(
xη
u(x)

)∥∥ du+ ∥x− y∥+ ηC

≤ ηD

∫ s

0

∥b(u)∥ du+ ∥x− y∥+ ηC due to Assumption 3.

Apply Gronwall’s inequality (see Theorem V.68 of [53]) to ∥b(u)∥ on interval [0, t/η] and we conclude
the proof.

D Technical Results for Metastability Analysis

We first give the proof for Corollary 2.7. To do so, we provide some straightforward bounds for the
law of geometric random variables.

Lemma D.1. Let a : (0,∞) → (0,∞), b : (0,∞) → (0,∞) be two functions such that limϵ↓0 a(ϵ) =
0, limϵ↓0 b(ϵ) = 0. Let {U(ϵ) : ϵ > 0} be a family of geometric RVs with success rate a(ϵ), i.e.
P(U(ϵ) > k) = (1− a(ϵ))k for k ∈ N. For any c > 1, there exists ϵ0 > 0 such that

exp
(
− c · a(ϵ)

b(ϵ)

)
≤ P

(
U(ϵ) >

1

b(ϵ)

)
≤ exp

(
− a(ϵ)

c · b(ϵ)

)
∀ϵ ∈ (0, ϵ0).

Proof. Note that P(U(ϵ) > 1
b(ϵ) ) =

(
1− a(ϵ)

)⌊1/b(ϵ)⌋
. By taking logarithm on both sides, we have

lnP
(
U(ϵ) >

1

b(ϵ)

)
= ⌊1/b(ϵ)⌋ ln

(
1− a(ϵ)

)
=

⌊1/b(ϵ)⌋
1/b(ϵ)

ln
(
1− a(ϵ)

)
−a(ϵ)

−a(ϵ)
b(ϵ)

.

Since limx→0
ln(1+x)

x = 1, we know that for ϵ sufficiently small, we will have −ca(ϵ)b(ϵ) ≤ lnP
(
U(ϵ) >

1
b(ϵ)

)
≤ − a(ϵ)

c·b(ϵ) . By taking exponential on both sides, we conclude the proof.

Proof of Corollary 2.7. That the value of σ(·) and a(·) outside of the domain I has no impact on the
first exit analysis. Therefore, by modifying the value of σ(·) and a(·) outside of I, we can assume
w.l.o.g. that

∥a(x)∥ ∨ ∥σ(x)∥ ≤ C ∀x ∈ Rm. (D.1)

for some C ∈ (0,∞). That is, we impose the boundedness condition in Assumption 3.
We start with a few observations. First, under any η ∈ (0, b

2C ), on the event {η ∥Zj∥ ≤ b
2C ∀j ≤ t}

the norm of the step-size (before truncation) ηa
(
X

η|b
j−1(x)

)
+ ησ

(
X

η|b
j−1(x)

)
Zj of X

η|b
j (x) is less than

b for each j ≤ t. Therefore, X
η|b
j (x) and Xη

j (x) coincide for such j’s. In other words, for any

η ∈ (0, b
2C ), on event

{
η ∥Zj∥ ≤ b

2C ∀j ≤ t
}
we have

X
η|b
j (x) = Xη

j (x) ∀j ≤ t. (D.2)

More importantly, given any measurable A ⊆ R such that rA = inf{∥x∥ : x ∈ A} > 0, we claim that

lim
b→∞

qC(1)|b(A) = qC(A). (D.3)
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This claim follows from a simple application of the dominated convergence theorem. Indeed, by
definition of qC(1)|b, we get qC(1)|b(A) =

∫
I
{
φb

(
σ(0)w

)
∈ A

}(
(να × S) ◦ Φ

)
(dw). For fb(w) =∆

I
{
φb

(
σ(0)w

)
∈ A

}
, we first note that given w ∈ Rm, we have fb(w) = f(w) =∆ I

{
σ(0)w

)
∈ A

}
for all b > ∥w∥ ∥σ(0)∥. Therefore, limb→∞ fb(w) = f(w) holds for all w ∈ Rm. Next, due to
rA > 0 and (D.1), we have fb(w) ≤ I

{
∥w∥ ≥ rA/C

}
for all b > 0 and w ∈ Rm. Moreover∫

I
{
∥w∥ ≥ rA/C

}(
(να × S) ◦ Φ

)
(dw) = (C/rA)

α < ∞. This allows us to apply dominated conver-
gence theorem and establish (D.3). Besides, for all b large enough, we have

CI
b = qC(1)|b(Ic) =

∫
I

{
φb

(
σ(0)w

)
∈ Ic

}(
(να × S) ◦ Φ

)
(dw)

=

∫
I

{
σ(0)w ∈ Ic

}(
(να × S) ◦ Φ

)
(dw) = qC(Ic) =∆ CI

∞. (D.4)

To see why, we only need to notice that, since I is a bounded set, it holds for all b large enough
enough,

φb

(
σ(0)w

)
/∈ I ⇐⇒ σ(0)w /∈ I.

Now, we fix t ≥ 0 and B ⊆ Ic. Also, henceforth in the proof we only consider b large enough
such that CI

∞ = CI
b . An immediate consequence of this choice of b is that J I

b = 1. We focus on
the case where CI

∞ > 0, but we stress that the proof for the case with CI
∞ = 0 is almost identical.

First, note that λ(η) = η−1H(η−1) and hence η · λ(η) = H(η−1). To analyze the probability of event
A(η,x) =

{
CI

∞H(η−1)τη(x) > t, Xη
τη(x)(x) ∈ B

}
, we arbitrarily pick some T > t and observe that

A(η,x) =
{
CI

∞H(η−1)τη(x) ∈ (t, T ], Xη
τη(x)(x) ∈ B

}
︸ ︷︷ ︸

=∆A1(η,x,T )

∪
{
CI

∞H(η−1)τη(x) > T, Xη
τη(x)(x) ∈ B

}
︸ ︷︷ ︸

=∆A2(η,x,T )

.

(D.5)

Let Eb(η, T ) =
∆
{
η ∥Zj∥ ≤ b

2C ∀j ≤ T
CI

∞H(η−1)

}
. To analyze the probability of A1(η,x, T ), we further

decompose the event as

A1(η,x, T ) =
(
A1(η,x, T ) ∩ Eb(η, T )

)
∪
(
A1(η,x, T ) \ Eb(η, T )

)
.

First, for all η ∈ (0, b
2C ),

P
(
A1(η,x, T ) ∩ Eb(η, T )

)
= P

({
CI

b η · λ(η)τη|b(x) ∈ (t, T ], X
η|b
τη|b(x)

(x) ∈ B
}
∩ Eb(η, T )

)
due to (D.2) and (D.4)

≤ P

(
CI

b η · λ(η)τη|b(x) ∈ (t, T ], X
η|b
τη|b(x)

(x) ∈ B

)
= P

(
CI

b η · λ(η)τη|b(x) > t, X
η|b
τη|b(x)

(x) ∈ B

)
−P

(
CI

b η · λ(η)τη|b(x) > T, X
η|b
τη|b(x)

(x) ∈ B

)
.

By Theorem 2.6 and observation (D.4), we get

lim sup
η↓0

sup
x∈Iϵ

P
(
A1(η,x, T ) ∩ Eb(η, T )

)
≤

qC(1)|b(B−)

CI
∞

· exp(−t)−
qC(1)|b(B◦)

CI
∞

· exp(−T ). (D.6)

Meanwhile, supx∈Iϵ P
(
A1(η,x, T ) \ Eb(η, T )

)
≤ P

(
(Eb(η, T ))

c
)

= P
(
η ∥Zj∥ > b

2C for some j ≤
T

CI
∞H(η−1)

)
. Applying Lemma D.1, we get

lim sup
η↓0

P

(
η ∥Zj∥ >

b

2C
for some j ≤ T

CI
∞H(η−1)

)
= 1− lim inf

η↓0
P

(
Geom

(
H
( b

η · 2C
))

>
T

CI
∞H(η−1)

)
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≤ 1− lim
η↓0

exp

(
−
T ·H(η−1 · b

2C )

CI
∞H(η−1)

)
= 1− exp

(
− T

CI
∞

·
(2C
b

)α)
. (D.7)

Similarly,

A2(η,x, T ) ⊆
{
CI

∞H(η−1)τη(x) > T
}

=

({
CI

∞H(η−1)τη(x) > T
}
∩ Eb(η, T )

)
∪
({

CI
∞H(η−1)τη(x) > T

}
\ Eb(η, T )

)
.

On {CI
∞H(η−1)τη(x) > T} ∩ Eb(η, T ), due to (D.2) we have τη(x) = τη|b(x). By Theorem 2.6 and

(D.4)3 again, we get

lim sup
η↓0

sup
x∈Iϵ

P

({
CI

∞H(η−1)τη(x) > T
}
∩ Eb(η, T )

)
≤ lim sup

η↓0
sup
x∈Iϵ

P
(
CI

b η · λ(η)τη|b(x) > T
)
≤ exp(−T ). (D.8)

Meanwhile, the limit of supx∈Iϵ P
(
CI

∞H(η−1)τη(x) > T} \ Eb(η, T )
)
as η ↓ 0 is again bounded by

(D.7). Collecting (D.6), (D.7), and (D.8), we yield that for all b > 0 large enough and all T > t,

lim sup
η↓0

sup
x∈Iϵ

P
(
A(η,x)

)
≤

qC(1)|b(B−)

CI
∞

· exp(−t)−
qC(1)|b(B◦)

CI
∞

· exp(−T ) + exp(−T ) + 2 ·
[
1− exp

(
− T

CI
∞

·
(2C
b

)α)]
.

In light of claim (D.3), we send b→ ∞ and T → ∞, and conclude the proof of the upper bound.
The lower bound can be established analogously. In particular, from the decomposition in (D.5),

inf
x∈Iϵ

P
(
A(η,x)

)
≥ inf

x∈Iϵ
P
(
A1(η,x, T )

)
≥ inf

x∈Iϵ
P
(
A1(η,x, T ) ∩ Eb(η, T )

)
= inf

x∈Iϵ
P

({
CI

b η · λ(η)τη|b(x) ∈ (t, T ], X
η|b
τη|b(x)

(x) ∈ B
}
∩ Eb(η, T )

)
due to (D.2) and (D.4)

≥ inf
x∈Iϵ

P

(
CI

b η · λ(η)τη|b(x) ∈ (t, T ], X
η|b
τη|b(x)

(x) ∈ B

)
−P

((
Eb(η, T )

)c)
≥ inf

x∈Iϵ
P

(
CI

b η · λ(η)τη|b(x) > t, X
η|b
τη|b(x)

(x) ∈ B

)
− sup

x∈Iϵ

P

(
CI

b η · λ(η)τη|b(x) > T, X
η|b
τη|b(x)

(x) ∈ B

)
−P

((
Eb(η, T )

)c)
.

By Theorem 2.6 and the limit in (D.7), we yield (for all b > 0 large enough and all T > t)

lim inf
η↓0

inf
x∈Iϵ

P
(
A(η,x)

)
≤

qC(1)|b(B◦)

CI
∞

· exp(−t)−
qC(1)|b(B−)

CI
∞

· exp(−T )−
[
1− exp

(
− T

CI
∞

·
(2C
b

)α)]
.

Sending b→ ∞ and then T → ∞, we conclude the proof of the lower bound.

The remainder of this section collects important properties of the measure qC(k)|b(·) defined in
(2.34). In particular, the proof of Lemma 4.2 will be provided at the end of this section. Throughout
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the rest of this section, we impose Assumption 2 and 4, and fix some b > 0 such that the conditions
in Theorem 2.6 hold. We fix some ϵ̄ > 0 small enough such that the conditions in (4.13)–(4.15) hold.

Recall that Iϵ = {y : ∥x− y∥ < ϵ =⇒ x ∈ I} is the ϵ-shrinkage of the domain I, and that I−ϵ
is the closure of Iϵ. We first study the mapping qg(k)|b in (2.31), which is defined based on h̄

(k)|b
[0,T ] and

h
(k)|b
[0,T ] defined in (2.21)–(2.24).

Lemma D.2. Let Assumptions 2 and 4 hold. Let ϵ̄ > 0 be the constant in (4.13)–(4.15). Let
C ∈ [1,∞) be such that supx∈I− ∥a(x)∥∨∥σ(x)∥ ≤ C. (Below, we adopt the convention that t0 = 0.)

(a) Given any T > 0, the claim ξ(t) ∈ I−2ϵ̄ ∀t ∈ [0, T ] holds for all ξ ∈ D(J I
b −1)|b

B̄ϵ̄
[0, T ](ϵ̄).

(b) Let c̄ ∈ (0, 1) be the constant fixed in (4.19). There exist δ̄ > 0 and t̄ > 0 such that the following
claim holds: Given any T > 0 and x0 ∈ Rm with ∥x0∥ ≤ ϵ̄, if

ξ(t) /∈ Ic̄ϵ̄ for some ξ = h
(J I

b −1)|b
[0,T ]

(
x0 + φb

(
σ(x0)w0

)
,W, (t1, · · · , tJ I

b −1)
)
, t ∈ [0, T ],

(D.9)

where W = (w1, · · · ,wJ I
b −1) ∈ Rd×J I

b −1, and (t1, · · · , tJ I
b −1) ∈ (0, T ]J

I
b −1↑, then

(i) ξ(t) ∈ I−2ϵ̄ for all t ∈ [0, tJ I
b −1);

(ii) ξ(tJ I
b −1) /∈ Iϵ̄;

(iii) ∥ξ(t)∥ ≥ ϵ̄ for all t ≤ tJ I
b −1;

(iv) tJ I
b −1 < t̄;

(v) ∥wj∥ > δ̄ for all j = 0, 1, · · · ,J I
b − 1.

(c) Let T > 0, x ∈ Rm, W = (w1, · · · ,wJ I
b
) ∈ Rd×J I

b , (t1, · · · , tJ I
b
) ∈ (0, T ]J

I
b ↑, and ϵ ∈ (0, ϵ̄).

Let

ξ = h
(J I

b )|b
[0,T ]

(
x,W, (t1, · · · , tJ I

b
)
)
,

qξ = h
(J I

b −1)|b
[0,T ]

(
φb

(
σ(0)w1

)
, (w2, · · · ,wJ I

b
), (t2 − t1, t3 − t1, · · · , tJ I

b
− t1)

)
.

If ∥ξ(t1−)∥ < ϵ and ∥wj∥ ≤ ϵ
− 1

2J I
b ∀j ∈ [J I

b ], then

sup
t∈[t1,tJ I

b
]

∥∥∥ξ(t)− qξ(t− t1)
∥∥∥ ≤

(
2 exp

(
D(tJ I

b
− t1)

)
·D
)J I

b +1

· ϵ,

where D ≥ 1 is the constant in Assumption 2.

(d) Let c̄ ∈ (0, 1) be the constant fixed in (4.19). Given ∆ > 0, there exists ϵ0 = ϵ0(∆) ∈
(0, ϵ̄) such that the following claim holds: given T > 0, x ∈ Rm, W = (w1, · · · ,wJ I

b
) ∈

Rd×J I
b , (t1, · · · , tJ I

b
) ∈ (0, T ]J

I
b ↑, if ∥x∥ ≤ ϵ0 and maxj∈[J I

b ] ∥wj∥ ≤ ϵ
− 1

2J I
b

0 , then

ξ(t) /∈ Ic̄ϵ̄ or qξ(t) /∈ Ic̄ϵ̄ for some t ∈ [t1, T − t1] =⇒ sup
t∈[t1,tJ I

b
]

∥∥∥qξ(t− t1)− ξ(t)
∥∥∥ < ∆,

where ξ and qξ are defined as in part (c).
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Proof. Before the proof of the claims, we highlight two facts. First, Assumption 2 and I being a
bounded set (so I− is compact) imply the existence of C ∈ (0,∞) such that supx∈I− ∥a(x)∥∨∥σ(x)∥ ≤
C. Without loss of generality, in the statement of Lemma D.2 we pick some C ≥ 1. Next, one can see
that the validity of all claims do not depend on the values of σ(·) and a(·) outside of I−. Therefore,
throughout this proof below we w.l.o.g. assume that

∥a(x)∥ ∨ ∥σ(x)∥ ≤ C ∀x ∈ Rm. (D.10)

for some C ∈ [1,∞). That is, we impose the boundedness condition in Assumption 3.

(a) Arbitrarily pick some T > 0 and ξ ∈ D(J I
b −1)|b

B̄ϵ̄
[0, T ](ϵ̄). To lighten notations, in the proof of

part (a) we write k = JI
b . By the definition of D(k−1)|b

A (ϵ) in (2.25), there are some x with ∥x∥ ≤ ϵ̄,
some (w1, · · · ,wk−1) ∈ Rd×k−1, some (v1, · · · ,vk−1) ∈ Rm×k−1 with maxj∈[k−1] ∥vj∥ ≤ ϵ̄, and
0 < t1 < t2 < · · · < tk−1 <∞ such that

ξ = h̄
(k−1)|b
[0,T ]

(
x, (w1, · · · ,wk−1), (v1, · · · ,vk−1), (t1, · · · , tk−1)

)
.

Given any t ∈ [0, T ], Let j∗ = j∗(t) = max{j = 0, 1, · · · , k − 1 : tj ≤ t}. By definition of the

mapping h̄
(k−1)|b
[0,T ] in (2.21)–(2.23), we have ξ(t) = yt−tj∗

(
ξ(tj∗)

)
where y·(x) is the ODE under the

vector field a(·); see (2.28). By the definition of G(k)|b(ϵ) and Ḡ(k)|b in (2.32), (4.11), we then yield
ξ(t) ∈ Ḡ(k−1)|b(2ϵ̄). However, by property (4.15), we must have

Ḡ(k−1)|b(2ϵ̄) ⊆ I−2ϵ̄ ⊆ Iϵ̄. (D.11)

and hence ξ(t) ∈ Ḡ(k−1)|b(2ϵ̄) ⊆ I2ϵ̄. This concludes the proof.

(b) For simplicity, in the proof of part (b) we write k = J I
b . For claim (i), note that due to ∥x0∥ ≤ ϵ̄,

we have x0 + φb(σ(x0)w0) ∈ G(1)|b(2ϵ̄). Moreover, for all n = 0, 1, · · · , k − 2 (recall our convention
of t0 = 0), for the cadlag path ξ defined in (D.9) we have ξ(tn) ∈ G(n+1)|b(2ϵ̄) ⊆ G(k−1)|b(2ϵ̄). As a
result, for all t ∈ [0, tk−1) we have ξ(t) ∈ Ḡ(k−1)|b(2ϵ̄) ⊆ I2ϵ̄ due to (D.11). This verifies claim (i).

For claim (ii), we proceed with a proof by contradiction and suppose that ξ(tk−1) ∈ Iϵ̄. By (4.19),
we then get ξ(t) = yt−tk−1

(
ξ(tk−1)

)
∈ Ic̄ϵ̄ for all t ∈ [tk−1, T ]. Together with claim (i), we arrive at

the contradiction that ξ(t) ∈ Ic̄ϵ̄ for all t ∈ [0, T ].
For claim (iii), the fact ∥ξ(tk−1)∥ ≥ ϵ̄ follows directly from claim (ii) and (4.13). For any j =

1, · · · , k − 1 and any t ∈ [tj−1, tj), we proceed with a proof by contradiction and suppose that
∥ξ(t)∥ ≤ ϵ̄. Then we have ∥ξ(tj−)∥ ≤ ϵ̄ due to (4.14), and hence ξ(tj) ∈ G(1)|b(2ϵ̄). As a result, we
arrive at the contradiction that ξ(tk−1) ∈ G(k−1)|b(2ϵ̄) ⊆ Iϵ̄, due to G(k−1)|b(2ϵ̄) ⊆ Ḡ(k−1)|b(2ϵ̄) and
(D.11). This concludes the proof of claim (iii).

We prove claim (iv) for t̄ =∆ k · t(ϵ̄/2) where t(ϵ) is defined in (4.16). Consider the following proof
by contradiction. If tk−1 ≥ t̄ = (k − 1) · t(ϵ̄/2), then there must be some j = 1, 2, · · · , k − 1 such that
tj − tj−1 ≥ t̄(ϵ/2). By claim (i), we have ξ(tj−1) ∈ I−2ϵ̄ ⊆ Iϵ̄/2. Using the property (4.17), we yield
ξ(tj−) = limt↑tj ξ(t) ∈ B̄ϵ̄/2(0), which implies ∥ξ(t)∥ < ϵ for all t less than but close enough to tj and
contradicts claim (iii). This concludes the proof of claim (iv).

Lastly, we prove claim (v) for δ̄ > 0 small enough such that

exp(Dt̄) · Cδ̄ < ϵ̄, Cδ̄ < b,

where D ≥ 1 is the Lipschitz coefficient in Assumption 2 and C ≥ 1 is the constant in (D.10). Again,
we consider a proof by contradiction. Suppose that for the cadlag path ξ in (D.9) there is some
j = 0, 1, · · · , k − 1 such that ∥wj∥ < δ̄. First, we consider the case where j ≤ k − 2. Then note that
(for the proof of claim (v), we interpret ξ(0−) as x0 while, by definition, ξ(0) = x0 + φb

(
σ(x0)w0

)
),

we have

ξ(tj)− ξ(tj−) = φb

(
σ
(
ξ(tj−)wj

)
,
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and hence ∥ξ(tj)− ξ(tj−)∥ ≤ Cδ̄. By Gronwall’s inequality, we then get∥∥yt−tj

(
ξ(tj−)

)
− ξ(t)

∥∥ ≤ exp
(
D(t− tj)

)
· Cδ̄ ∀t ∈ [tj , tj+1).

Recall that we currently focus on the case where j ≤ k − 2. By claim (iv) and our choice of δ̄, we
get exp

(
D(t− tj)

)
· Cδ̄ ≤ exp

(
Dt̄
)
· Cδ̄ < ϵ̄ in the display above. This implies the existence of some

ξ′ ∈ D(k−1)|b
B̄ϵ̄(0)

(ϵ̄) such that supt∈[0,T ] ∥ξ(t)− ξ′(t)∥ < ϵ̄. However, by results in part (a), we must have

ξ′(t) ∈ I−2ϵ̄ ∀t ∈ [0, T ], which leads to ξ(t) ∈ I−ϵ ∀t ∈ [0, T ]. This contradicts the running assumption
of part (b) that ξ(t) /∈ Ic̄ϵ̄ for some t ∈ [0, T ], and allows us to conclude the proof of claim (v) for the
cases where j ≤ k − 2. In case that j = k − 1, by claim (i) we have ξ(tk−1−) = limt↑tk−1

ξ(t) ∈ I−2ϵ̄.

Meanwhile, by definition of the mapping h̄
(k−1)|b
[0,T ] , we have ξ(tk−1) = ξ(tk−1−)+φ

(
σ
(
ξ(tk−1−)

)
wk−1

)
.

By ∥wk−1∥ < δ̄ and our choice of δ̄ above, we have
∥∥∥φ(σ(ξ(tk−1−)

)
wk−1

)∥∥∥ < ϵ̄ and hence ξ(tk−1) ∈
Iϵ̄. Due to the contradiction with claim (ii), we conclude the proof.

(c) The proof is almost identical to that of Lemma 3.9 based on an inductive argument. We omit the
details to avoid repetition.

(d) Let t̄ be the constant specified in part (b). We claim that: if ξ(t) /∈ Ic̄ϵ̄ or qξ(t) /∈ Ic̄ϵ̄ for some
t ∈ [0, T ], then

sup
t∈[t1,tJ I

b
]

∥∥∥qξ(t− t1)− ξ(t)
∥∥∥ < (2 exp (Dt̄) ·D)J I

b +1

︸ ︷︷ ︸
=∆ρ∗

·ϵ0 ∀ϵ0 ∈ (0, ϵ̄]. (D.12)

As a result, claims of part (d) hold for any ϵ0 ∈ (0, ϵ̄) small enough such that ρ∗ϵ0 < ∆. Now, it only
remains to prove claim (D.12). Due to ∥x∥ = ∥ξ(0)∥ < ϵ0 and (4.14), we have ∥ξ(t1−)∥ ≤ ϵ0. This
allows us to apply results in part (c) and get (recall our choice of T = tJ ∗

b
+ 1)

sup
t∈[t1,tJ I

b
]

∥∥∥ξ(t)− qξ(t− t1)
∥∥∥ ≤

(
2 exp

(
D(tJ I

b
− t1)

)
·D
)J I

b +1

· ϵ0,

Lastly, if ξ(t) /∈ Ic̄ϵ̄ for some t ∈ [t1, T ], then tJ I
b
− t1 < t̄ by claim (iv) of part (b). Likewise, if

qξ(t) /∈ Ic̄ϵ̄ for some t ∈ [0, T ], then we get tJ I
b
< t̄. In both cases, we get tJ ∗

b
− t1 ≤ t̄. This concludes

the proof.

The next lemma studies the mass the measure qC(k)|b charges on the boundary of the domain I.

Lemma D.3. Under Assumptions 2 and 4, qC(J I
b )|b(Ic) <∞.

Proof. Let ϵ̄ > 0 be such that the conditions in (4.13)–(4.15) hold. Let t̄ and δ̄ be the constants
characterized in Lemma D.2. Observe that (we write W = (w1, · · · ,wJ I

b
))

qC(J I
b )|b(Ic)

=

∫
I

{
qg(J

I
b −1)|b(φb(σ(0)w1), (w2, · · · ,wJ I

b
), (t1, · · · , tJ I

b −1)
)
/∈ I

}
(
(να × S) ◦ Φ

)J I
b (dW)× LJ I

b −1↑
∞ (dt1, · · · , dtJ I

b −1)

=

∫
I

{
h
(J I

b −1)|b
[0,1+tJ I

b
−1

]

(
φb(σ(0)w1), (w2, · · · ,wJ I

b
), (t1, · · · , tJ I

b −1)
)
(tJ I

b −1) /∈ I

}
(
(να × S) ◦ Φ

)J I
b (dW)× LJ I

b −1↑
∞ (dt1, · · · , dtJ I

b −1)
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≤
∫

I

{
∥wj∥ > δ̄ ∀j ∈ [J I

b ]; tJ I
b −1 < t̄

}(
(να × S) ◦ Φ

)J I
b (dW)× LJ I

b −1↑
∞ (dt1, · · · , dtJ I

b −1)

by part (b) of Lemma D.2

≤ t̄J
I
b −1

/
δ̄αJ

I
b <∞.

This concludes the proof.

To conclude, we provide the proof of Lemma 4.2.

Proof of Lemma 4.2. Let c̄ ∈ (0, 1) be the constant fixed in (4.19). By part (e) of Lemma D.2, for
the fixed ∆ ∈ (0, ϵ̄), we are able to fix some ϵ0 ∈ (0, ∆2 ∧ c̄ϵ̄) such that the following claim holds:

given T > 0, x ∈ Rm, W = (w1, · · · ,wJ I
b
) ∈ Rd×J I

b , (t1, · · · , tJ I
b
) ∈ (0, T ]J

I
b ↑, if ∥x∥ ≤ ϵ0 and

maxj∈[J I
b ] ∥wj∥ ≤ ϵ

− 1

2J I
b

0 , then

ξ(t) /∈ Ic̄ϵ̄ or qξ(t) /∈ Ic̄ϵ̄ for some t ∈ [t1, T − t1] =⇒ sup
t∈[t1,tJ I

b
]

∥∥∥qξ(t− t1)− ξ(t)
∥∥∥ < ∆, (D.13)

where

ξ = h
(J I

b )|b
[0,T ]

(
x,W, (t1, · · · , tJ I

b
)
)
,

qξ = h
(J I

b −1)|b
[0,T ]

(
φb

(
σ(0)w1

)
, (w2, · · · ,wJ I

b
), (t2 − t1, t3 − t1, · · · , tJ I

b
− t1)

)
.

Henceforth in the proof, we fix some ϵ ∈ (0, ϵ0] and B ⊆ (Iϵ)
c. Due to our choice of ϵ ≤ ϵ0 < c̄ϵ̄,

we have B ⊆ (Ic̄ϵ̄)
c. To prove the lower bound, let

Ẽ =
{
ξ ∈ D[0, T ] : ∃t ∈ [0, T ] s.t. ξ(t) ∈ B∆/2, ξ(s) ∈ I2ϵ ∀s ∈ [0, t)

}
.

For any ξ ∈ Ẽ and any ξ′ with d[0,T ]

J1
(ξ, ξ′) < ϵ, due to ϵ ≤ ϵ0 < ∆/2, there must be some t′ ∈ [0, T ]

such that ξ′(t′) ∈ B and ξ′(s) ∈ Iϵ ∀s ∈ [0, t′). This implies that ξ′ ∈ qE(ϵ, B, T ), and hence

Ẽ ⊆
(

qE(ϵ, B, T )
)
ϵ
⊆
(

qE(ϵ, B, T )
)◦
.

Therefore, for any x ∈ Rm with ∥x∥ ≤ ϵ ≤ ϵ0,

C
(J I

b )|b
[0,T ]

((
qE(ϵ, B, T )

)◦
; x

)
≥
∫

I

{
h
(J I

b )|b
[0,T ] (x,W, t) ∈ Ẽ

}(
(να × S) ◦ Φ

)J I
b (dW)× LJ I

b ↑
T (dt)

=

∫
ϕ̃B(t1,x)LT (dt1), (D.14)

where LT is the Lebesgue measure on (0, T ), Lk↑
T is the k-fold ofq Lebesgue measure restricted on

{(t1, · · · , tk) ∈ (0, T )k : t1 < t2 < · · · < tk}, and

ϕ̃B(t1,x) =

∫
I

{
∃t ∈ [0, T ] s.t. h

(J I
b )|b

[0,T ]

(
x,W, (t1, t1 + u2, t1 + u3, · · · , t1 + uJ I

b
)
)
(t) ∈ B∆/2

and h
(J I

b )|b
[0,T ]

(
x,W, (t1, t1 + u2, t1 + u3, · · · , t1 + uJ I

b
)
)
(s) ∈ I2ϵ ∀s ∈ [0, t)

}
(
(να × S) ◦ Φ

)J I
b (dW)× LJ I

b −1↑
T−t1

(du2, · · · , duJ I
b
).
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Set x0 = limt↑t1 yt(x), and note that

h
(J I

b )|b
[0,T ]

(
x, (w1, · · · ,wJ I

b
), (t1, t1 + u2, t1 + u3, · · · , t1 + uJ I

b
)
)
(t1 + s)

= h
(J I

b −1)|b
[0,T−t1]

(
x0 + φb(σ(x0)w1), (w2, · · · ,wJ I

b
), (u2, u3, · · · , uJ I

b
)
)
(s) ∀s ∈ [0, T − t1].

Therefore, for any t1 ∈ [0, T− t̄] and x with ∥x∥ ≤ ϵ, by property (4.14) we have ∥x0∥ ≤ ϵ ≤ ϵ0 ≤ ∆/2,
and

ϕ̃B(t1, x)

≥ inf
x0: ∥x0∥≤∆

2

∫
I

{
∃t ∈ [0, T − t1] s.t. h

(J I
b −1)|b

[0,T−t1]

(
x0 + φb(σ(x0)w1), (w2, · · · ,wJ I

b
), (u2, · · · , uJ I

b
)
)
(t) ∈ B∆/2

and h
(J I

b −1)|b
[0,T−t1]

(
x0 + φb(σ(x0)w1), (w2, · · · ,wJ I

b
), (u2, · · · , uJ I

b
)
)
(s) ∈ I2ϵ ∀s ∈ [0, t)

}
(
(να × S) ◦ Φ

)J I
b (dW)× LJ I

b −1↑
T−t1

(du2, · · · , duJ I
b
)

= inf
x0: ∥x0∥≤∆

2

∫
I

{
h
(J I

b −1)|b
[0,T−t1]

(
x0 + φb(σ(x0)w1), (w2, · · · ,wJ I

b
), (u2, · · · , uJ I

b
)
)
(uJ I

b
) ∈ B∆/2; min

j∈[J I
b ]
∥wj∥ > δ̄

}
(
(να × S) ◦ Φ

)J I
b (dW)× LJ I

b −1↑
T−t1

(du2, · · · , duJ I
b
)

by claims (i), (ii), and (v) in part (b) of Lemma D.2

≥ inf
x0: ∥x0∥≤∆

2

∫
I

{
h
(J I

b −1)|b
[0,T−t1]

(
x0 + φb(σ(x0)w1), (w2, · · · ,wJ I

b
), (u2, · · · , uJ I

b
)
)
(uJ I

b
) ∈ B∆/2;

min
j∈[J I

b ]
∥wj∥ > δ̄, max

j∈[J I
b ]
∥wj∥ ≤ ϵ

− 1

2J I
b

0

}
(
(να × S) ◦ Φ

)J I
b (dW)× LJ I

b −1↑
T−t1

(du2, · · · , duJ I
b
)

≥
∫

I

{
h
(J I

b −1)|b
[0,T−t1]

(
φb(σ(0)w1), (w2, · · · ,wJ I

b
), (u2, · · · , uJ I

b
)
)
(uJ I

b
) ∈ B∆;

min
j∈[J I

b ]
∥wj∥ > δ̄, max

j∈[J I
b ]
∥wj∥ ≤ ϵ

− 1

2J I
b

0

}
(
(να × S) ◦ Φ

)J I
b (dW)× LJ I

b −1↑
T−t1

(du2, · · · , duJ I
b
)

by property (D.13)

=

∫
I

{
qg
(J I

b −1)|b
[0,T−t1]

(
φb(σ(0)w1), (w2, · · · ,wJ I

b
), (u2, · · · , uJ I

b
)
)
∈ B∆;

min
j∈[J I

b ]
∥wj∥ > δ̄, max

j∈[J I
b ]
∥wj∥ ≤ ϵ

− 1

2J I
b

0

}
(
(να × S) ◦ Φ

)J I
b (dW)× LJ I

b −1↑
T−t1

(du2, · · · , duJ I
b
)

by the definition of qg(k)|b in (2.31)

=

∫
I

{
qg
(J I

b −1)|b
[0,T−t1]

(
φb(σ(0)w1), (w2, · · · ,wJ I

b
), (u2, · · · , uJ I

b
)
)
∈ B∆;

min
j∈[J I

b ]
∥wj∥ > δ̄, max

j∈[J I
b ]
∥wj∥ ≤ ϵ

− 1

2J I
b

0

}
(
(να × S) ◦ Φ

)J I
b (dW)× LJ I

b −1↑
t̄ (du2, · · · , duJ I

b
)
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by claim (v) in part (b) of Lemma D.2

≥
∫

I

{
qg
(J I

b −1)|b
[0,T−t1]

(
φb(σ(0)w1), (w2, · · · ,wJ I

b
), (u2, · · · , uJ I

b
)
)
∈ B∆; min

j∈[J I
b ]
∥wj∥ > δ̄

}
(
(να × S) ◦ Φ

)J I
b (dW)× LJ I

b −1↑
t̄ (du2, · · · , duJ I

b
)

−
∫

I

{
min

j∈[J I
b ]
∥wj∥ > δ̄, max

j∈[J I
b ]
∥wj∥ > ϵ

− 1

2J I
b

0

}(
(να × S) ◦ Φ

)J I
b (dW)× LJ I

b −1↑
t̄ (du2, · · · , duJ I

b
).

We focus on the two integrals one the RHS of the last inequality in the display above. It is easy to
see that the latter is upper bounded by

qc(ϵ0) = J I
b · (t̄)J

I
b −1 · (δ̄)−α·(J I

b −1) · ϵ
α

2J I
b

0 .

As for the former, using part (b) of Lemma D.2 and the fact that B∆ ⊆ B ⊆ (Ic̄ϵ̄)
c again, we yield∫

I

{
qg
(J I

b −1)|b
[0,T−t1]

(
φb(σ(0)w1), (w2, · · · ,wJ I

b
), (u2, · · · , uJ I

b
)
)
∈ B∆; min

j∈[J I
b ]
∥wj∥ > δ̄

}
(
(να × S) ◦ Φ

)J I
b (dW)× LJ I

b −1↑
t̄ (du2, · · · , duJ I

b
)

=

∫
I

{
qg
(J I

b −1)|b
[0,T−t1]

(
φb(σ(0)w1), (w2, · · · ,wJ I

b
), (u2, · · · , uJ I

b
)
)
∈ B∆}(

(να × S) ◦ Φ
)J I

b (dW)× LJ I
b −1↑

∞ (du2, · · · , duJ I
b
)

= qC(J I
b )|b(B∆).

In summary, for any x ∈ Rm with ∥x∥ ≤ ϵ and t1 ∈ [0, T − t̄] , we have shown that

ϕ̃B(t1,x) ≥ qC(J I
b )|b(B∆)− qc(ϵ0).

Together with the trivial bound that ϕ̃B(t1,x) ≥ 0 for all t1 > T − t̄, we have in (D.14) that

C
(J I

b )|b
[0,T ]

((
qE(ϵ, B, T )

)◦
; x

)
≥ (T − t̄) ·

(
qC(J I

b )|b(B∆)− qc(ϵ0)
)

for all x ∈ Rm with ∥x∥ ≤ ϵ. This concludes the proof of the lower bound. The proof to the upper
bound is almost identical, so we omit the details here.
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