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Abstract

The empirical success of deep learning is often attributed to SGD’s mysterious ability to
avoid sharp local minima in the loss landscape, as sharp minima are known to lead to poor
generalization. Recently, empirical evidence of heavy-tailed gradient noise was reported in many
deep learning tasks, and it was shown in [28, 29] that SGD can escape sharp local minima under
the presence of such heavy-tailed gradient noise, providing a partial solution to the mystery. In
this work, we analyze a popular variant of SGD where gradients are truncated above a fixed
threshold. We show that it achieves a stronger notion of avoiding sharp minima: it can effectively
eliminate sharp local minima entirely from its training trajectory. We characterize the dynamics
of truncated SGD driven by heavy-tailed noises. First, we show that the truncation threshold
and width of the attraction field dictate the order of the first exit time from the associated local
minimum. Moreover, when the objective function satisfies appropriate structural conditions, we
prove that as the learning rate decreases, the dynamics of the heavy-tailed truncated SGD closely
resemble those of a continuous-time Markov chain that never visits any sharp minima. Real
data experiments on deep learning confirm our theoretical prediction that heavy-tailed SGD with
gradient clipping finds a flatter local minima and achieves better generalization.

1 Introduction

Stochastic gradient descent (SGD) and its variants have seen unprecedented empirical successes in
training deep neural networks. The training of deep neural networks is typically posed as a non-
convex optimization problem without explicit regularization, but the solutions obtained by SGD often
perform surprisingly well on test data. Such an unexpected generalization performance of SGD in
deep neural networks are often attributed to SGD’s ability to avoid sharp local minima in the loss
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landscape, which is well known to lead to poor generalization [7, 11, 14]. Despite significant efforts
to explain such phenomena theoretically, understanding how SGD avoids sharp local minima still
remains as a central mystery of deep learning. Recently, the heavy-tailed dynamics of SGD received
significant attention, and it was suggested that the heavy tails in the stochastic gradients may be a key
ingredient that facilitates SGD’s escape from sharp local minima: for example, [28] and [29] report the
empirical evidence of heavy-tails in stochastic gradient noise in popular deep learning architectures
(see also [30, 3]) and show that SGD can escape sharp local minima in polynomial time under the
presence of the heavy-tailed gradient noise. More specifically, they view heavy-tailed SGDs as discrete
approximations of Lévy driven Langevin equations and argue that the amount of time SGD spends
in each local minimum is proportional to the width of the associated minimum according to the
metastability theory [23, 9, 10] for such simplified heavy-tailed processes.

In this paper, we study the global dynamics and long-run behavior of heavy-tailed SGD and its
practical variant in depth. In particular, we consider a popular version of SGD, where the stochastic
gradient is truncated above a fixed threshold. Such truncation scheme is often called gradient clipping
and employed as default in various contexts [2, 16, 5, 21, 34, 4]. We uncover a rich mathematical
structure in the dynamics of SGD under this scheme and prove that the long-run behavior of such
SGD is fundamentally different from that of the pure form of SGD: in particular, under a suitable
structural condition on the geometry of the loss landscape, we prove that gradient clipping completely
eliminates sharp minima from the trajectory of SGDs. Moreover, we rigorously establish that, under
small learning rates, the dynamics of clipped heavy-tailed SGD closely resemble a continuous-time
Markov chain (CTMC) that never visits sharp local minima in the loss landscape. Our theoretical
results provide critical insights into how heavy-tailed dynamics of SGD can be utilized to find a local
minimum that generalizes better.

Figure 1 (Left, Middle) clearly illustrates these points with the histograms of the sample trajec-
tories of SGDs. Note first that SGDs with light-tailed gradient noise—(c) and (d) of Figure 1 (Left,
Middle)—never manages to escape a (sharp) minimum regardless of gradient clipping. In contrast,
SGDs with heavy-tailed gradient noise—(a) and (b) of Figure 1 (Left, Middle)—easily escapes from
local minima. Moreover, there is a clear difference between SGDs with gradient clipping and with-
out gradient clipping. In (a) of Figure 1 (Left), SGD without gradient clipping spends a significant
amount of time at each of all four local minima ({m1,m2,m3,m4}), although it spends more time
around the wide ones ({m2,m4}) than the sharp ones ({m1,m3}). On the other hand, in (b) of
Figure 1 (Left), SGD with gradient clipping not only escapes from local minima but also avoids sharp
minima ({m1,m3}) almost completely. This means that if we stop training SGD at an arbitrary time
point, it is almost guaranteed that it won’t be at a sharp minimum, effectively eliminating sharp min-
ima from its training trajectories. Behind these phenomena is the different scaling of first exit times
from different attraction fields with different widths. Figure 1 (Right) demonstrates that Theorem 1
(the dashed lines) accurately predicts the first exit times.

We also propose a novel training strategy that takes advantage of the newly discovered global
dynamics of truncated heavy-tailed SGDs. Despite the evidence of heavy tails reported in numerous
statistical learning tasks [29, 28, 3, 6, 8, 19, 15, 30, 34], there seem to be deep learning contexts where
the heavy-tails are lacking; see, for instance, [20, 33]. Given the critical role of the heavy-tails in our
theory, the natural idea is to inflate the tail distribution by carefully injecting heavy-tailed noises.
At first glance, the benefits of introducing heavy-tails may seem unclear, given that we truncate the
stochastic gradient in the end. Nevertheless, in light of the global dynamics of SGD revealed in our
theory (demonstrated in Figure 1), truncation of heavy-tailed noises produces a strong regularization
effect. As detailed in Section 4, we investigate various image classification tasks and deep neural
network architectures and compare the performance of different optimization methods with or without
the tail inflation and gradient clipping mechanism. Results reported in Tables 2 and 3 illustrate that
the tail-inflation strategy we propose here indeed consistently improves the generalization performance
of the SGD and drives the SGD iterates to reach local minima with “flatter” geometry. In contrast,
the pure form of (unclipped) SGD exhibits drastically deteriorated performance when heavy-tails are
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Figure 1: Elimination of Sharp Minima under Truncated Heavy-tailed Noises in R1. (Left) His-
tograms of the locations visited by SGD. With truncated heavy-tailed noises, SGD hardly ever visits
the two sharp minima m1 and m3. The objective function f is plotted at the bottom, and dashed lines
are added as references for the locations of local minima. (Middle) Typical trajectories of SGD in
different cases: (a) Heavy-tailed noises, no gradient clipping; (b) Heavy-tailed noises, gradient clipping
at b = 0.5; (c) Light-tailed noises, no gradient clipping; (d) Light-tailed noises, gradient clipping at
b = 0.5. The objective function f is plotted at the right of each figure, and dashed lines are added as
references for locations of the local minima. (Right) First Exit Time from Ω2 = (−1.3, 0.2). Each dot
represents the average of 20 samples of first exit time. Each dahsed line shows a polynomial function
ci/η

β where β is predicted by Theorem 1 and ci is chosen to fit the dots. The non-solid green dot
indicates that for some of the 20 samples of the termination threshold 5×107 was reached, and hence,
it is an underestimation. Results in (Left) and (Middle) are obtained under learning rate η = 0.001.

injected. This clearly shows that injecting heavy-tailed noises alone may not be sufficient in real-world
deep learning problems, and gradient clipping is indeed a key ingredient. To the best of our knowledge
the idea of adding heavy-tailed noises has not been explored successfully in statistical learning context,
let alone for the purpose of achieving better generalization performance for the test data. For analyses
of injecting light-tailed (Gaussian) noises in deep learning tasks, see [31, 35].

The rest of the paper is organized as follows. Section 2 formulates the problem setting and char-
acterizes the global dynamics of the SGD driven by heavy-tailed noises. Section 3 presents numerical
experiments that confirm our theory. Section 4 proposes a new algorithm that artificially injects
heavy tailed gradient noise in actual deep learning tasks and demonstrates the improved performance.
Section 5 concludes with several potential future directions.

Technical Contributions: 1) We rigorously characterize the global behavior—Eyring-Kramer
type formula and Markov chain model reduction for metastability—of the heavy-tailed SGD with
gradient clipping. We focus on the case where the loss function is in R1 with some (standard)
simplifying assumptions on its geometry. Even with such assumptions, the proofs our theorems involve
substantial technical challenges since the traditional tools for analyzing SGD fail in our context due
to the adaptive nature of its dynamics and non-Gaussian distributional assumptions. Moreover, we
believe that the technical ideas we developed in this paper lays the foundation for a fully general
theory—Freidlin-Wentzell type sample path large deviations and metastability of general heavy-tailed
stochastic processes—that can address the high-dimensional loss landscapes. 2) We propose a novel
computational strategy for improving the generalization performance of SGD by carefully injecting
heavy-tailed noise. We test the proposed algorithm with deep learning tasks and confirm that it
improves the generalization performance of SGD. This also suggests that the key phenomenon we
characterize in our theory— elimination of sharp local minima—manifests itself in real deep learning
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problems.

2 Global Dynamics of Truncated Heavy-tailed SGD

This section characterizes the global dynamics of SGD iterates with gradient clipping when applied
to a non-convex objective function f . Specifically, we provide a sharp characterization of the time
it takes for SGDs to exit from an attraction field: the first exit time is of order O(1/η1+l(α−1)) as
the learning rate η approaches 0, where α > 1 is the heavy-tailed index of noise distribution and
the integer l indicates how “wide” the attraction field is when compared to the gradient clipping
threshold. This characterization immediately reveals a first-exit-time strata on all attraction fields in
the optimization landscape, where the sojourn times at wide attraction fields clearly dominate the
sojourn times at other locations. Moreover, in terms of the global dynamics of clipped heavy-tailed
SGD, we rigorously establish that the time-scaled version of the sample path of clipped heavy-tailed
SGD converges in distribution to a continuous-time Markov chain (CTMC) as η apporaches 0. In
particular, this CTMC only visits flat minima in the optimization landscape and completely avoids
any sharp local minima in narrow attraction fields. As a result, the truncated heavy-tailed noises
exhibit strong regularization effect and eliminate all sharp local minima from SGD trajectories.

2.1 Problem setting

We make the following assumptions for the sake of the simplicity of analysis. However, as illustrated
in Section 3 and 4, we believe that the gist of the phenomena we analyze—elimination of sharp local
minima from the global dynamics of SGD—persists in general contexts where the domain of f is
multi-dimensional, and the stationary points are not necessarily strict local optima separated from
one another.

Assumption 1. Let f : R → R be a C2 function. There exist a positive integer nmin, a real
number L ∈ (0,∞), and an ordered sequence of real numbers m1, s1,m2, s2, · · · , snmin−1,mnmin

such
that (1) −L < m1 < s1 < m2 < s2 < · · · < snmin−1 < mnmin

< L; (2) f ′(x) = 0 iff x ∈
{m1, s1, · · · , snmin−1,mnmin}; (3) For any x ∈ {m1,m2, · · · ,mnmin}, f ′′(x) > 0; (4) For any x ∈
{s1, s2, · · · , snmin−1}, f ′′(x) < 0.

As illustrated in Figure 2 (Left), the assumption above requires that f has finitely many local
minima (to be specific, the count is nmin) and they all lie in the interval [−L,L]. Moreover, the points
s1, · · · , snmin−1 naturally partition the entire real line into different regions Ωi = (si−1, si) (here we
adopt the convention that s0 = −∞, snmin

= +∞). We call each region Ωi the attraction field of
the local minimum mi, as the gradient flow in Ωi always points to mi.

Throughout the optimization procedure, given any location x ∈ R we assume that we have access
to the noisy estimator f ′(x) − Zn of the true gradient f ′(x), and f ′(x) itself is difficult to evaluate.
Specifically, in this work we are interested in the case where the iid sequence of noises (Zn)n≥1 are
heavy-tailed. Typically, the heavy-tailed phenomena are captured by the concept of regular variation:
for a measurable function φ : R+ 7→ R+, we say that φ is regularly varying at +∞ with index β
(denoted as φ ∈ RVβ) if limx→∞ φ(tx)/φ(x) = tβ for all t > 0. For details on the definition and
properties of regularly varying functions, see, for example, chapter 2 of [25]. In this paper, we work
with the following distributional assumption on the gradient noise. Let

H+(x) , P(Z1 > x), H−(x) , P(Z1 < −x), H(x) , H+(x) +H−(x) = P(|Z1| > x).

Assumption 2. EZ1 = 0. Furthermore, there exists some α ∈ (1,∞) such that function H(x)
is regularly varying (at +∞) with index −α. Besides, regarding the positive and negative tail for
distribution of the noises, we have

lim
x→∞

H+(x)

H(x)
= p+, lim

x→∞

H−(x)

H(x)
= p− = 1− p+
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where p+ and p− are constants in interval (0, 1).

Roughly speaking, Assumption 2 means that the shape of the tail for the distribution of noises
Zn resembles a polynomial function x−α, which is much heavier than the exponential tail of Gaussian
distributions. Therefore, large values of Zn are much more likely to be observed under the Assumption
2 compared to the typical Gaussian assumption. Note that the index α of regular variation encodes
the heaviness of the tail—the smaller the heavier—and we are assuming that the left and right tails
share the same index α. We make this simplifying assumption for the purpose of clear presentation,
but it is straightforward to extend this to the case where the left and right tails have different regular
variation indices.

Our work concerns a popular variant of SGD where the stochastic gradient is truncated. Specif-
ically, when updating the SGD iterates with a learning rate η > 0, rather than using the origi-
nal noisy gradient descent step η(f ′(Xn) − Zn), we will truncate it at a threshold b > 0 and use
ϕb
(
η(f ′(Xn)− Zn)

)
instead. Here the truncation operator ϕ·(·) is defined as

ϕc(w) , ϕ(w, c) =∆ (w ∧ c) ∨ (−c) ∀w ∈ R, c > 0 (1)

where u∧v = min{u, v}, u∨v = max{u, v}. Besides truncating the stochastic gradient, we also project
the SGD into [−L,L] at each iteration; recall that L is the constant in Assumption 1. That is, the
main object of our study is the stochastic process {Xη

n}n≥1 driven by the following recursion:

Xη
n =∆ ϕL

(
Xη
n − ϕb

(
η(f ′(Xη

n)− Zn)
))
. (2)

The projection ϕL and truncation ϕb here are common practices in many statistical learning contexts
as well as other optimization tasks for the purpose of ensuring that the SGD does not explode and
drift to infinity. Besides, the projection also allows us to drop the sophisticated assumptions on the
tail behaviors of f that are commonly seen in previous works; see, for instance, the dissipativity
conditions in [19].

For technical reasons, we make the following assumption about the truncation threshold b > 0.
Note that this assumption is a very mild one, as it is obviously satisfied by (Lebesgue) almost every
b > 0.

Assumption 3. For each i = 1, 2, · · · , nmin, min{|si −mi|, |si−1 −mi|}/b is not an integer.

2.2 First exit times

Denote the SGD’s first exit time from the attraction field Ωi with

σi(η) =∆ min{n ≥ 0 : Xη
n /∈ Ωi}.

In this section, we prove that σi(η) converges to an exponential distribution when scaled properly.
To characterize such a scaling, we first introduce a few concepts. For each attraction field Ωi, define
(note that dxe = min{n ∈ Z : n ≥ x}, bxc = max{n ∈ Z : n ≤ x} )

ri =∆ min{|mi − si−1|, |si −mi|}, l∗i =∆ dri/be. (3)

Note that l∗i ’s in fact depend on the the value of gradient clipping threshold b even though this
dependency is not highlighted by the notation. Here ri can be interpreted as the radius or the
effective width of the attraction field, and l∗i is the minimum number of jumps required to escape
Ωi when starting from mi. Indeed, the gradient clipping threshold b dictates that no single SGD
update step can travel more than b, and to exit Ωi when starting from mi (which requires the length
of travel to be at least ri) we can see that at least dri/be steps are required. We can interpret l∗i as
the minimum effort required to exit Ωi. Note that, (for a fixed b) the minimum number of jumps l∗i
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is an indicator of the width of the attraction field Ωi. Theorem 1 states that l∗i dictates the order of
magnitude of the first exit time as well as where the iterates Xη

n land on at the first exit time.
To stress the initial condition, we write Px for the probability law when conditioning on Xη

0 = x,
or simply write Xη

n(x). For each Ωi, define a scaling function

λi(η) =∆ H(1/η)
(H(1/η)

η

)l∗i−1

.

The distribution of the first exit time under this scaling is characterized in Theorem 1.

Theorem 1. Under Assumptions 1-3, there exist constants qi > 0 ∀i ∈ {1, 2, · · · , nmin} and qi,j ≥
0 ∀j ∈ {1, 2, · · · , nmin} \ {i} such that

(i) Suppose that x ∈ Ωk for some k ∈ {1, 2, · · · , nmin}. Under Px, qkλk(η)σk(η) converges in
distribution to an exponential random variable with rate 1 as η → 0.

(ii) For k, l ∈ {1, 2, · · · , nmin} such that k 6= l, we have limη→0 Px(Xη
σk(η) ∈ Ωl) = qk,l/qk.

See Section 2.5 for the proof of Theorem 1. We note here that Theorem 1 implies (i) for Xη
n to

escape the current attraction field, say Ωi, it takes O
(
1/λi(η)

)
time, and (ii) the destination is most

likely to be reachable within l∗i jumps from mi. Before concluding this section, we state the definition
of the constants qi, qi,j in Theorem 1 to show how these constants vary with the loss landscape f and
the shape of gradient noise distributions (in particular α, p+, p−). Let Leb+ denote the Lebesgue
measure restricted on [0,∞), and define a (Borel) measure να on R\{0} as

να(dx) = 1{x > 0} αp+

xα+1
+ 1{x < 0} αp−

|x|α+1
(4)

where α, p−, and p+ are constants in Assumption 2. Define a Borel measure µi on Rl∗i ×
(
R+

)l∗i−1

as the product measure µi = (να)l
∗
i × (Leb+)l

∗
i−1. We also define mappings hi as follows. For a real

sequence w = (w1, w2, · · · , wl∗i ) and a positive real number sequence t = (t′j)
l∗i
j=2, define t1 = t′1 = 0

and tj = t′1 + t′2 + · · · + t′j for j = 2, · · · , l∗i . Now we define a path x̂ : [0,∞) 7→ R as the solution to
the following ODE with jumps:

x̂(0) = ϕL
(
mi + ϕb(w1)

)
; (5)

dx̂(t)

dt
= −f ′(x̂(t)), ∀t ∈ [tj−1, tj), ∀j = 2, · · · , l∗i ; (6)

x̂(tj) = ϕL
(
x̂(tj−) + ϕb(wj)

)
, ∀j = 2, · · · , l∗i . (7)

Now we define the mappings hi : Rl∗i ×
(
R+

)l∗i−1

7→ R as hi(w, t) = x̂(tl∗i ). It is easy to see that hi’s

are continuous mappings. With these mappings, we define the following sets:

Ei =∆ {(w, t) ⊆ Rl
∗
i × Rl

∗
i−1

+ : hi(w, t) /∈ Ωi}; (8)

Ei,j =∆ {(w, t) ⊆ Rl
∗
i × Rl

∗
i−1

+ : hi(w, t) ∈ Ωj}. (9)

Now we can define the constant qi and qi,j as follows:

qi = µi(Ei), qi,j = µi(Ei,j) ∀i 6= j. (10)

We add a few concluding remarks regarding the intuition behind Theorem 1.
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Figure 2: Typical transition graphs G under different gradient clipping thresholds b. (Left) The
function f illustrated here has 3 attraction fields. For the second one Ω2 = (s1, s2), we have s2−m2 =
0.9,m2 − s1 = 0.6. (Middle) The typical transition graph induced by b = 0.5. The entire graph G is
irreducible since all nodes communicate with each other. (Right) The typical transition graph induced
by b = 0.4. When b = 0.4, since 0.6 < 2b and 0.9 > 2b, the SGD can only exit Ω2 from the left with
only 2 jumps if started from m2. Therefore, on the graph G there are two communication classes:
G1 = {m1,m2}, G2 = {m3}; G1 is absorbing while G2 is transient.

• Suppose that Xη
n is started at the ith local minimum mi of f , and consider the behavior of

Xη
n over the time period H1 , {1, . . . , dt/ηe} for a sufficiently large t. The heavy-tailed large

deviations theory [26] and a heuristic application of the contraction principle implies that the
path of Xη

dn/ηe over this period will converge to the gradient flow of f , and the event that Xη
dn/ηe

escapes Ωi within this period is a (heavy-tailed) rare event. This means that the probability
of such an event is of order (1/η)(α−1)l∗i . Moreover, whenever it happens, it is almost always
because Xη

n is shaken by exactly l∗i large gradient noises of size O(1/η), which translates to l∗i
jumps in Xη

dn/ηe’s path, while the rest of its path closely resemble the deterministic gradient

flow. Moreover, conditional on the event that Xη
n fails to escape from Ωi within this period,

the endpoint of the path is most likely to be close to the local minima, i.e., Xη
dt/ηe ≈ mi.

This suggests that over the next time period H2 , {dt/ηe + 1, dt/ηe + 2, . . . , 2dt/ηe} of length
dt/ηe, Xη

n will behave similarly to its behavior over the first period H1. The same argument
applies to the subsequent periods H3, H4, . . . as well. Therefore, over each time period of length
dt/ηe, there is (1/η)(α−1)l∗i probability of exit. In view of this, the exit time should be of order
(1/η)1+(α−1)l∗i and resemble an exponential distribution when scaled properly.

• Part (i) of Theorem 1 builds on this intuition and rigorously prove that the first exit time is
indeed roughly of order 1/λi(η) ≈ (1/η)1+(α−1)l∗i and resembles an exponential distribution.

• Given this, one would expect that Xη
σi(η), the location of SGD right at the time of exit, will

hardly ever be farther than l∗i b away from mi: the length of each update is clipped by b, and
there will most likely be only l∗i large SGD steps during this successful attempt. Indeed, from
the definition of qi,j ’s, one can see that qi,j > 0 if and only if infy∈Ωj |y −mi| < l∗i b.

Summarizing the three bullet points here, we see that the minimum number of jumps l∗i dictates how
heavy-tailed SGD escapes an attraction field, where the SGD lands on upon its exit, and when the
exit occurs.

2.3 Elimination of Small Attraction Fields

In this section, we show that, under proper structural assumptions on the geometry of f , the “sharp
minima” of f can be effectively eliminated from the trajectory of heavy-tailed SGD. Before we state
the result, we first introduce a few new concepts. Similar to the the minimum number of jumps l∗i
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defined in 3, we can define the following quantities as the minimum number of jumps to reach Ωj from
mi for any j 6= i:

li,j =

{
d(sj−1 −mi)/be if j > i,

d(mi − sj)/be if j < i.
(11)

Recall that Theorem 1 dictates that Xη
n is most likely to move out of the current attraction field, say

Ωi, to somewhere else after O
(
1/λi(η)

)
time steps, and the destination is most likely to be reachable

within l∗i jumps from mi. Therefore, the transitions from Ωi to Ωj can be considered typical if Ωj can
be reached from mi with l∗i jumps—that is, li,j = l∗i . Now we define the following directed graph that
only includes these typical transitions.

Definition 1 (Typical Transition Graph). Given a function f satisfying Assumption 1 and gradient
clipping threshold b > 0 satisfying Assumption 3, a directed graph G = (V,E) is the corresponding
typical transition graph if (1) V = {m1, · · · ,mnmin}; (2) An edge (mi → mj) is in E iff li,j = l∗i .

Naturally, the typical transition graph G can be decomposed into different communication classes
G1, · · · , GK that are mutually exclusive by considering the equivalence relation associated with the
existence of the (two-way) paths between i and j. More specifically, for i 6= j, we say that i
and j communicate if and only if there exists a path (mi,mk1

, · · · ,mkn ,mj) as well as a path
(mj ,mk′1

, · · · ,mk′
n′
,mi) in G; in other words, by travelling through edges on G, mi can be reached

from mj and mj can be reached from mi.
We say that a communication class G is absorbing if there does not exist any edge (mi → mj) ∈ E

such that mi ∈ G and mj /∈ G. Otherwise, we say that G is transient. In the case that all mi’s
communicate with each other on graph G, we say G is irreducible. See Figure 2 (Middle) for the
illustration of an irreducible case. When G is irreducible, we define the set of largest attraction fields
M large =∆ {mi : i = 1, 2, · · · , nmin, l

∗
i = llarge} where llarge = maxj l

∗
j ; recall that l∗i characterizes the

width of Ωi. Also, we define the longest time scale λlarge(η) = H(1/η)
(
H(1/η)

η

)llarge−1

. Note that this

corresponds exactly to the order of the first exit time of the largest attraction fields; see Theorem 1.
The following theorem is the main result of this paper.

Theorem 2. Let Assumptions 1-3 hold and assume that the graph G is irreducible. Given t > 0,
β > 1 + (α− 1)llarge, and x ∈ [−L,L],

1

bt/ηβc

∫ bt/ηβc
0

1

{
Xη
buc(x) ∈

⋃
j:mj /∈M large

Ωj

}
du→ 0 (12)

in probability as η → 0.

We refer the readers to Section 2.6 for the proof. Here we briefly discuss the implication of the
result. Suppose that we terminate the training after a reasonably long time, say, bt/ηβc iterations.
Then the random variable that converges to zero in (12) is exactly the proportion of time that Xη

n

spent in the attraction fields that are not wide. Therefore, by truncating the gradient noise of the
heavy-tailed SGD, we can effectively eliminate small attraction fields from its training trajectory. In
other words, it is almost guaranteed that SGD is in one of the widest attraction fields after sufficiently
long training iterations.

Interestingly enough, Theorem 2 is merely a manifestation of the global dynamics of heavy-tailed
SGD, and a lot more can be said even when G is not irreducible. The main message can be summarized
as follows: (a) SGD with truncated and heavy-tailed noise naturally partitions the entire training
landscape into different regions; (b) In each region, the dynamics of Xη

n for small η closely resemble
that of a continuous-time Markov chain that only visits local minima; (3) In particular, any sharp
minima within each region is almost completely avoided by SGD.
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When the typical transition graph (see Definition 1 in the main paper) is not irreducible, there will
be multiple communication classes on the graph. Suppose that there are K communication classes
G1, · · · , GK . From now on, we zoom in on a specific communication class G ∈ {G1, · · · , GK}. For this
communication class G, define l∗G =∆ max{l∗i : i = 1, 2, · · · , nmin; mi ∈ G}. For each local minimum
mi ∈ G, we call its attraction field Ωi a large attraction field if l∗i = l∗G, and a small attraction field
if l∗i < l∗G. We have thus classified all mi in G into two groups: the ones in large attraction fields

mlarge
1 , · · · ,mlarge

iG
and the ones in small attraction fields msmall

1 , · · · ,msmall
i′G

. Also, define a scaling

function λG associated with G as λG(η) =∆ H(1/η)
(
H(1/η)

η

)l∗G−1

.

Theorem 3. Under Assumptions 1-3, if G is absorbing, then there exists a continuous-time Markov
chain Y on {mlarge

1 , · · · ,mlarge
iG
} such that for any x ∈ Ωi, |x| ≤ L (where i ∈ {1, 2, · · · , nmin}) with

mi ∈ G, and

Xη
bt/λG(η)c(x)→ Yt(πG(mi)) as η ↓ 0

in the follwing sense: for any positive integer k and any 0 < t1 < · · · < tk, the random vector(
Xη

b tk
λG(η)

c
(x), · · · , Xη

b tk
λG(η)

c
(x)
)

converges in distribution to
(
Yt1(πG(mi)), · · · , Ytk(πG(mi))

)
as η ↓

0.Here πG is a random mapping satisfying (1) πG(m) ≡ m if m ∈ {mlarge
1 , · · · ,mlarge

iG
}; (2) πG(m) is

a random variable that only takes value in {mlarge
1 , · · · ,mlarge

iG
} if m ∈ {msmall

1 , · · · ,msmall
i′G
}.

The proof is provided in Section 2.6 and we add a few remarks here. Theorem 3 tells us that,
when initialized on a absorbing class G, the dynamics of the clipped heavy-tailed SGD converge to a
continuous-time Markov chain avoiding any local minima that is not in the largest attraction fields
in G. Second, under small learning rate η > 0, if Xη

n(x) is initialized at x ∈ Ωi where Ωi is NOT a
largest attraction field in G, then SGD will quickly escape Ωi and arrive at some Ωj that is indeed
a largest one—i.e., mj ∈ M large; such a transition is so quick that, under time scaling λlarge(η), it
is almost instantaneous as if Xη

n(x) is actually initialized randomly at some of the largest attraction
fields in G. This randomness is compressed in the random mapping πG.

Next, to state the corresponding result for the transient case, we introduce a couple of extra
definitions. We consider a version of Xη

n that is killed when Xη
n leaves G. Define stopping time

τG(η) =∆ min{n ≥ 0 : Xη
n /∈

⋃
i:mi∈G

Ωi} (13)

as the first time the SGD iterates leave all attraction fields in G, and we use a cemetery state † to
construct the following process X†,ηn as a version of Xη

n with killing at τG:

X†,ηn =

{
Xη
n if n < τG(η),

† if n ≥ τG(η).
(14)

Theorem 4. Under Assumptions 1-3, if G is transient, then there exists a continuous-time Markov
chain Y with killing that has state space {mlarge

1 , · · · ,mlarge
iG

, †} (we say the Markov chain Y is
killed when it enters the absorbing cemetery state †) such that for any x ∈ Ωi, |x| ≤ L (where

i ∈ {1, 2, · · · , nmin}) with mi ∈ G, and X†,ηbt/λG(η)c(x) → Yt(πG(mi)) as η ↓ 0 in the sense of

finite-dimensional distributions, where πG is a random mapping satisfying (1) πG(m) ≡ m if m ∈
{mlarge

1 , · · · ,mlarge
iG
}; (2) πG(m) is a random variable that only takes value in {mlarge

1 , · · · ,mlarge
iG

, †}
if m ∈ {msmall

1 , · · · ,msmall
i′G
}.

See Section 2.6 for the proof. Theorem 3 and 4 tell us that, regardless of the initial location of
SGD iterates, the elimination of small attraction fields can be observed on each communication class
in the graph G. In the case that G is indeed irreducible, the following result follows immediately from
Theorem 3 and guarantees the elimination of small attraction fields of the entire loss landscape.
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Theorem 5. Let Assumptions 1-2 hold. Let x ∈ Ωi ∩ [−L,L] for some i = 1, 2, · · · , nmin. If
Assumptions 1-3 hold and G is irreducible, then there exist a continuous-time Markov chain Y on
M large as well as a random mapping π such that the scaled process {Xη

bt/λlarge(η)c(x) : t ≥ 0} converges

to process {Yt(π(mi)) : t ≥ 0} in the sense of finite-dimensional distributions.

2.4 Implications of the theoretical results

Systematic control of the exit times from attraction fields: In light of the wide minima
folklore, one may want to find techniques to modify the sojourn time of SGD at each attraction field.
Theorem 1 suggests that the order of the first exit time (w.r.t. learning rate η) is directly controlled by
the gradient clipping threshold b. Recall that for an attraction field with minimum jump number l∗,
Theorem 1 tells us the exit time from this attraction field is roughly of order (1/η)1+(α−1)l∗ . Given the
width of the attraction field, its minimum jump number l∗ is dictated by gradient clipping threshold
b. Therefore, gradient clipping provides us with a very systematic method to control the exit time
of each attraction field. For instance, given clipping threshold b, the exit time from an attraction
field with width less than b is of order (1/η)α, while the exit time from one larger than b is at least
(1/η)2α−1, which dominates the exit time from smaller ones.

The role of structural properties of G and f : Recall that in order for Theorem 5 to apply,
the irreducibility of G is required. Along with the choice of b, the geometry of function f is a deciding
factor of the irreducibility. For instance, we say that G is symmetric if for any attraction field Ωi such
that i = 2, 3, · · · , nmin − 1 (so that Ωi is not the leftmost or rightmost one at the boundary), we have
qi,i−1 > 0, qi,i+1 > 0. One can see that G is symmetric if and only if, for any i = 2, 3, · · · , nmin − 1,
|si −mi| ∨ |mi − si−1| < l∗i b, and symmetry is a sufficient condition for the irreducibility of G. The
graph illustrated in Figure 2(Middle) is symmetric, while the one in Figure 2(Right) is not. As the
name suggests, in the R1 case the symmetry of G is more likely to hold if the shape of attraction fields
in f is also nearly symmetric around its local minimum. If not, the symmetry (as well as irreducibility)
of G can be violated as illustrated in Figure 2, especially when a small gradient clipping threshold b
is used.

Generally speaking, our results imply that, even with the truncated heavy-tailed noises, the func-
tion f needs to satisfy certain regularity conditions to ensure that SGD iterates avoid undesirable
minima. This is consistent with the observations in [14]: the deep neural nets that are more trainable
with SGD tend to have a much more regular structure in terms of the number and shape of local
minima.

Heavy-tailed SGD without gradient clipping: It is worth mentioning that our results also
characterize the dynamics of heavy-tailed SGDs without gradient clipping. For instance, recall that
we restrict the iterates on the compact set [−L,L]. If we set truncation threshold b > 2L, then the
gradient clipping at norm b becomes superfluous given the weight clipping at ±L and the update
recursion degenerates to

Xη,unclipped
n = ϕL

(
Xη,unclipped
n−1 − ηf ′(Xη,unclipped

n−1 ) + ηZn

)
. (15)

The next result follows immediately from Theorem 1 and 3.

Corollary 6. There exist constants qi > 0 ∀i, qi,j > 0 ∀j 6= i such that the following claims hold for
any i and any x ∈ Ωi, |x| ≤ L.

1) Under Px, qiH(1/η)σi(η) converges weakly to an Exponential random variable with rate 1 as
η ↓ 0;

2) For any j = 1, 2, · · · , nmin such that j 6= i, limη↓0 Px(Xη
σi(η) ∈ Ωj) = qi,j/qi.

3) Let Y be a continuous-time Markov chain on {m1, · · · ,mnmin} with generator matrix Q parametrized

by Qi,i = −qi, Qi,j = qi,j. Then the scaled process {Xη,unclipped
bt/H(1/η)c(x) : t > 0} converges to

{Yt(mi) : t > 0} in the sense of finite-dimensional distributions.
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At first glance, Corollary 6 may seem similar to the results in [28] and [23]. However, the object
studied in [28, 23] is different: they study the following Langevin-type stochastic differential equation
(SDE) driven by an α-stable Lévy process Lt: dY

η
t = −f ′(Y ηt−)dt + ηdLt. In particular, [23] studies

the metastability of Y ηt and concludes that as the scaling factor η ↓ 0, the first exit time and global
dynamics of Y ηt admit a similar characterization as described in our Theorem 6. Then Theorem 4 in
[28] argues that when the learning rate η is sufficiently small, the distribution of the first exit time of
the SGD Xη

n and that of the Lévy-driven Langevin SDE Y ηt are similar. However, the analysis of [28]
hinges critically on the assumption that Lαt is symmetric and α-stable. While such an assumption is
convenient for their analysis, it is a strong assumption. It implies that the gradient noise distribution
belongs to a very specific parametric family and excludes all the other heavy-tailed distributions. In
particular, the assumption precludes analysis of any heavy tails with finite variance. On the contrary,
our work directly analyzes the SGD Xη

n and reveals the heavy-tailed SGD dynamics at a much greater
level of generality. Specifically, we allow the noise to have general regularly varying distributions
with arbitrary tail index—which includes α-stable distributions as a (very) special case—and extend
the characterization of global dynamics of heavy-tailed SGD to the adaptive versions of SGD where
gradient clipping is applied.

2.5 Proof of Theorem 1

This section is organized as follows. We first introduce some key lemmas that analyze the dynamics of
truncated heavy-tailed SGD before the first exit from an attraction field. Building upon these lemmas,
we then present the proof of Theorem 1. We detail the proof of the technical lemmas in Appendix B.

As stated above, the proof of Theorem 1 hinges on the following two lemmas that characterize the
behavior of Xη

n in two different phases respectively. Let k ∈ [nmin] and x ∈ Ωk. We consider the SGD
iterates initialized at Xη

0 = x. In the first phase, the SGD iterates return to [mk − 2ε,mk + 2ε], a
small neighborhood of the local minimizer in attraction field Ωk; in other words, it ends at

T
(k)
return(η, ε) =∆ min{n ≥ 0 : Xη

n ∈ [mk − 2ε,mk + 2ε]}. (16)

During this phase, we show that for all learning rate η that is sufficiently small, it is almost always

the case that Xη
n would quickly return to [mk − 2ε,mk + 2ε], and it never leaves Ωk before T

(k)
return.

Lemma 7. Under Assumptions 1-3, there exists some c ∈ (0,∞) such that for any k ∈ [nmin], the
following claim holds for all ε > 0 small enough:

lim
η↓0

inf
y∈[−L,L]: y∈(sk−1+ε,sk−ε)

Py
(
Xη
n ∈ Ωk ∀n ∈

[
T

(k)
return(η, ε)

]
, T

(k)
return(η, ε) ≤ c log(1/ε)

η

)
= 1.

During the second phase, Xη
n starts from somewhere in [mk − 2ε,mk + 2ε] and tries to escape

from Ωk, meaning that the phase ends at σk(η). During this phase, we show that the distributions of
the first exit time σk(η) and the location Xη

σk(η) do converge to the ones described in Theorem 1 as

learning rate η tends to 0.

Lemma 8. Let Assumptions 1-3 hold. Given C > 0, u > 0 and k, l ∈ [nmin] with k 6= l, the following
claims

lim sup
η↓0

sup
x∈[−L,L], x∈(mk−2ε,mk+2ε)

Px
(
qkλk(η)σk(η) > u

)
≤ C + exp

(
− (1− C)u

)
(17)

lim inf
η↓0

inf
x∈[−L,L], x∈(mk−2ε,mk+2ε)

Px
(
qkλk(η)σk(η) > u

)
≥ −C + exp

(
− (1 + C)u

)
(18)

lim sup
η↓0

sup
x∈[−L,L], x∈(mk−2ε,mk+2ε)

Px
(
Xη
σk(η) ∈ Ωl

)
≤ qk,l + C

qk
(19)

lim inf
η↓0

inf
x∈[−L,L], x∈(mk−2ε,mk+2ε)

Px
(
Xη
σk(η) ∈ Ωl

)
≥ qk,l − C

qk
(20)
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hold for all ε > 0 that are sufficiently small.

Now we are ready to show Theorem 1.

Proof of Theorem 1. Fix some k ∈ [nmin] and x ∈ Ωk ∩ [−L,L]. Let qk and qk,l be the constants in
Lemma 8.

We first prove the weak convergence claim in Theorem 1(i). Arbitrarily choose some u > 0 and
C ∈ (0, 1). It suffices to show that

lim sup
η↓0

Px(qkλk(η)σk(η) > u) ≤ 2C + exp
(
− (1− C)u

)
,

lim inf
η↓0

Px(qkλk(η)σk(η) > u) ≥ (1− C)
(
− C + exp

(
− (1 + C)u

))
.

Recall the definition of the stopping time T
(k)
return in (16). Define event

Ak(η, ε) =∆
{
Xη
n ∈ Ωk ∀n ∈

[
T

(k)
return(η, ε)

]
, T

(k)
return(η, ε) ≤ c log(1/ε)

η

}
where c <∞ is the constant in Lemma 7. First, since x ∈ Ωk = (sk−1, sk), it holds for all ε > 0 small
enough that x ∈ (sk−1 + ε, sk − ε). Next, one can find some ε > 0 such that

• (Due to Lemma 7)

Px
(
(Ak(η, ε))c

)
≤ C ∀η sufficiently small;

• (Due to (17)(18) and strong Markov property) For all η sufficiently small,

Px
(
qkλk(η)

(
σ(η)− T (k)

return(η, ε)
)
> (1− C)u

∣∣∣ Ak(η, ε)
)
≤ C + exp

(
− (1− C)u

)
,

Px
(
qkλk(η)

(
σ(η)− T (k)

return(η, ε)
)
> u

∣∣∣ Ak(η, ε)
)
≥ −C + exp

(
− (1 + C)u

)
.

Fix such ε. Lastly, for this fixed ε, due to λk ∈ RV−1−l∗k(α−1)(η) and α > 1, we have qkλk(η)· c log(1/ε)
η <

Cu for all η sufficiently small. In summary, for all η sufficiently small, we have

Px(qkλk(η)σk(η) > u)

≤Px
(
(Ak(η, ε))c

)
+ Px

({
qkλk(η)σk(η) > u

}
∩Ak(η, ε)

)
≤C + Px

({
qkλk(η)σk(η) > u

}
∩Ak(η, ε)

)
=C + Px

(
qkλk(η)

(
σ(η)− T (k)

return(η, ε)
)
> u− qkλk(η)T

(k)
return(η, ε)

∣∣∣ Ak(η, ε)
)
· Px(Ak(η, ε))

≤C + Px
(
qkλk(η)

(
σ(η)− T (k)

return(η, ε)
)
> (1− C)u

∣∣∣ Ak(η, ε)
)

≤2C + exp
(
− (1− C)u

)
and

Px(qkλk(η)σk(η) > u)

≥Px
({
qkλk(η)σk(η) > u

}
∩Ak(η, ε)

)
=Px

(
qkλk(η)

(
σ(η)− T (k)

return(η, ε)
)
> u− qkλk(η)T

(k)
return(η, ε)

∣∣∣ Ak(η, ε)
)
· Px(Ak(η, ε))

≥Px
(
qkλk(η)

(
σ(η)− T (k)

return(η, ε)
)
> u− qkλk(η)T

(k)
return(η, ε)

∣∣∣ Ak(η, ε)
)
· (1− C)
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≥Px
(
qkλk(η)

(
σ(η)− T (k)

return(η, ε)
)
> u

∣∣∣ Ak(η, ε)
)
· (1− C)

≥(1− C)
(
− C + exp

(
− (1 + C)u

))
so this concludes the proof for Theorem 1(i).

In order to prove claims in Theorem 1(ii), we first observe that on event Ak(η, ε) we must have

σ(η) > T
(k)
return(η, ε). Next, arbitrarily choose some C ∈ (0, 1), and note that it suffices to show that

Px(Xη
σ(η) ∈ Ωl) ∈

(
(1 − C)

qk,l−C
qk

, C +
qk,l+C
qk

)
holds for all η sufficiently small. Again, we can find

ε > 0 such that

• (Due to Lemma 7)

Px
(
(Ak(η, ε))c

)
≤ C ∀η sufficiently small;

• (Due to (19)(20) and strong Markov property) For all η sufficiently small,

qk,l − C
qk

≤ Px
(
Xη
σk(η) ∈ Ωl

∣∣∣ Ak(η, ε)
)
≤ qk,l + C

qk
.

In summary, for all η sufficiently small, we have

Px
(
Xη
σk(η) ∈ Ωl

)
≤ Px

(
(Ak(η, ε))c

)
+ Px

({
Xη
σk(η) ∈ Ωl

}
∩Ak(η, ε)

)
≤ C + Px

(
Xη
σk(η) ∈ Ωl

∣∣∣ Ak(η, ε)
)
Px(Ak(η, ε))

≤ C +
qk,l + C

qk
,

Px
(
Xη
σk(η) ∈ Ωl

)
≥ Px

({
Xη
σk(η) ∈ Ωl

}
∩Ak(η, ε)

)
= Px

(
Xη
σk(η) ∈ Ωl

∣∣∣ Ak(η, ε)
)
Px(Ak(η, ε))

≥ (1− C)
qk,l − C
qk

and this concludes the proof.

2.6 Proofs of Section 2.3

In this section, we first present some key lemmas and then use them to prove the Theorem 2-5. The
proofs of the technical lemmas are deferred to Appendix C.

In order to prove Theorem 2, we will make use of the following lemma, where we show that the
type of claim in Theorem 2 is indeed valid if we look at a much shorter time interval. Then when we
move onto the proof of Theorem 2, it suffices to partition the entire horizon into pieces of these short
time intervals, on each of which we analyze the dynamics of SGD respectively.

Lemma 9. Let Assumptions 1-3 hold. Assume the graph G is irreducible, and let ε > 0, δ > 0 be any
positive real numbers. For the following random variables (indexed by η)

V small(η, ε, t) =∆
1

bt/λlarge(η)c

∫ bt/λlarge(η)c

0

1

{
Xη
buc ∈

⋃
j:mj /∈M large

Ωj

}
du, (21)

the following claim holds for any sufficiently small t > 0:

lim sup
η↓0

sup
x∈[−L,L]

Px
(
V small(η, ε, t) > ε

)
≤ 5δ
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Proof of Theorem 2. It suffices to show that for any ε > 0, δ ∈ (0, ε), we have

lim sup
η↓0

Px
(
V ∗(η, t, κ) > 3ε

)
< δ.

Let us fix some ε > 0, δ ∈ (0, ε). First, let

N(η) = d bt/ηκc
bt/λlarge(η)c

e.

The regularly varying nature of H implies that λlarge ∈ RV−(1+llarge(α−1)). Since κ > 1 + llarge(α−1),
we know that limη↓0N(η) = ∞. Next, due to Lemma 9, we can find t0 > 0 and η̄ > 0 such that for
any η ∈ (0, η̄)

sup
y∈[−L,L]

Py(V small(η, ε, t0) > ε) < δ. (22)

For any k ≥ 1, define

Vk(η) =∆
1

bt0/λlarge(η)c

∫ kbt0/λlarge(η)c

(k−1)bt0/λlarge(η)c
1

{
Xη
buc ∈

⋃
j:mj /∈M large

Ωj

}
du. (23)

It is clear from its definition that Vk stands for the proportion of time that the SGD iterates are
outside of large attraction fields on the interval [(k−1)b t0

λlarge(η)
c, kb t0

λlarge(η)
c]. From (22) and Markov

property, one can see that for any η ∈ (0, η̄)

sup
x∈[−L,L]

Px(Vk(η) > ε | Xη
0 , · · · , X

η
(k−1)bt0/λlarge(η)c) ≤ δ

uniformly for all k ≥ 1. Now define K(η) =∆ #{n = 1, 2, · · · , N(η) : Vk(η) > ε}. By a simple
stochastic dominance argument, we have

sup
x∈[−L,L]

Px(K(η) ≥ j) ≤ P(Binomial(N(η), δ) ≥ j) ∀j = 1, 2, · · · .

Meanwhile, strong law of large numbers implies the existence of some η̄1 > 0 such that P(Binomial(N(η),δ)
N(η) >

2δ) < δ for all η ∈ (0, η̄1), thus

sup
|x|≤L

Px(K(η)/N(η) > 2δ) ≤ δ ∀η ∈ (0, η̄1 ∧ η̄).

Lastly, from the definition of K(η) and N(η), we know that for all the N(η) intervals [(k −
1)b t0

λlarge(η)
c, kb t0

λlarge(η)
c] with k ∈ [N(η)], only on K(η) of them did the SGD iterates spent more then

ε proportion of time outside of the large attraction fields, hence

V ∗(η, t, κ) ≤ ε+
K(η)

N(η)
.

In summary, we now have

Px(V ∗(η, t, κ) > 3ε) < δ

for all η ∈ (0, η̄1 ∧ η̄). This concludes the proof.
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To show Theorem 3 and 4, we introduce the following concepts. First, we consider the case where
the SGD iterates Xη

n is initialized on the communication class G and G is absorbing. For some
∆ > 0, η > 0, define (let B(u, v) =∆ [u− v, u+ v])

σG0 (η,∆) =∆ min{n ≥ 0 : Xη
n ∈

⋃
i: mi∈G

B(mi, 2∆)} (24)

τG0 (η,∆) =∆ min{n ≥ σG0 (η,∆) : Xη
n ∈

⋃
i:mi /∈Gsmall

B(mi, 2∆)} (25)

IG0 (η,∆) = j ⇐⇒ Xη

τG0
∈ B(mj , 2∆), ĨG0 (η,∆) = j ⇐⇒ Xη

σG0
∈ B(mj , 2∆) (26)

σGk (η,∆) =∆ min{n > τGk−1(η,∆) : Xη
n ∈

⋃
i:mi∈G, i 6=IGk−1

B(mi, 2∆)} ∀k ≥ 1 (27)

τGk (η,∆) =∆ min{n ≥ σGk−1(η,∆) : Xη
n ∈

⋃
i:mi /∈Gsmall

B(mi, 2∆)} ∀k ≥ 1 (28)

IGk (η,∆) = j ⇐⇒ Xη

τGk
∈ B(mj , 2∆), ĨGk (η,∆) = j ⇐⇒ Xη

σGk
∈ B(mj , 2∆)∀k ≥ 1. (29)

Intuitively speaking, at each τGk the SGD iterates visits a minimizer that is not in a small attraction
field on G, and we use IGk to mark the label of that large attraction field. Stopping time σGk is the
first time that SGD visits a minimizer that is different from the one visited at τGk , and τGk+1 is the first

time that a minimizer not in a small attraction field of G is visited again since σGk (and including σGk ).
It is worth mentioning that, under this definition, we could have IGk = IGk+1 for any k ≥ 0. Meanwhile,

define the following process that only keeps track of the updates on the labels (IGk )k≥0 instead of the
information of the entire trajectory of (Xη

n)n≥0:

X̂η,∆
n =

{
mIGk

if ∃k ≥ 0 such that τGk ≤ n < τGk+1

0 otherwise
(30)

In other words, when n < τG0 we simply let X̂η,∆
n = 0, otherwise it is equal to the latest “marker” for

the last visited wide minimum up until step n. This marker process X̂ jumps between the different
minimizers of the large attractions in G. In particular, if for some n we have Xη

n ∈ B(mj , 2∆) for

some j with mj ∈ Glarge, then we must have X̂η,∆
n = mj , which implies that, in this case, X̂η,∆

n indeed
indicates the location of Xη

n.
Note that results in Theorem 3 and 4 concern a scaled version of Xη. Here we also define the

corresponding scaled version of the processes

X∗,ηt =∆ Xη
bt/λG(η)c (31)

X̂∗,η,∆t =∆ X̂η,∆
bt/λG(η)c, (32)

a mapping T∗(n, η) =∆ nλG(η) that translates a step n to the corresponding timestamp for the scaled
processes, and the following series of scaled stopping times

τ∗k (η,∆) = T∗
(
τGk (η,∆), η

)
, σ∗k(η,∆) = T∗

(
σGk (η,∆), η

)
. (33)

Before presenting the proof of Theorem 3 and 4, we make several preparations. First, our proof is
inspired by ideas in [22] and here we provide a briefing. At any time t > 0, if we can show that X∗,ηt is
almost always in set

⋃
i:mi∈Glarge B(mi, 2∆) (so the SGD iterates is almost always close to a minimizer

in a large attraction field), then the marker process X̂∗,η,∆t is a pretty accurate indicator of the location

of X∗,ηt , so it suffices to show that the marker process X̂∗,η,∆t converges to a continuous-time Markov
chain Y .
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Second, we construct the limiting process Y and the random mapping πG before utilizing them
in Theorem 3 and 4. As an important building block for this purpose, we start by considering the
following discrete time Markov chain (DTMC) on the entire graph G = (V,E). Let PDTMC be a
transition matrix with PDTMC(mi,mj) = µi(Ei,j)/µi(Ei) for all j 6= i, and Y DTMC = (Y DTMC

j )j≥0

be the DTMC induced by the said transition matrix. Let

TDTMC
G =∆ min{j ≥ 0 : Y DTMC

j /∈ Gsmall} (34)

be the first time this DTMC visits a large attraction field on the communication class G, or escapes
from G. Lastly, define (for any j such that mj /∈ Gsmall)

pi,j =∆ P
(
Y DTMC
TDTMCG

(mi) = mj

)
(35)

as the probability that the first large attraction field on G visited by Y DTMC is mj when initialized
at mi.

We add a comment regarding the stopping times TDTMC
G and probabilities pi,j defined above. In

the case that G is absorbing, we have Y DTMC
j (mi) ∈ G for all j ≥ 0 if mi ∈ G. Therefore, in this

case, given any i with mi ∈ G, we must have

TDTMC
G = min{j ≥ 0 : Y DTMC

j (mi) ∈ Glarge},
∑

j: mj∈Glarge

pi,j = 1.

On the contrary, when G is transient we may have
∑
j: mj∈Glarge pi,j < 1 and

∑
j: mj /∈G pi,j > 0.

Lastly, whether G is absorbing or transient, we always have pi,j = 1{i = j} if mi ∈ Glarge.
Next, consider the following definition of (continuous-time) jump processes.

Definition 2. A continuous-time process Yt on R is a
(

(Uj)j≥0, (Vj)j≥0

)
jump process if

Yt =

{
0 if t < U0∑
j≥0 Vj1[U0+U1+···+Uj , U0+U1+···+Uj+1)(t) otherwise

,

where (Uj)j≥0 is a sequence of non-negative random variables such that Uj > 0 ∀j ≥ 1 almost surely,
and (Vj)j≥0 is a sequence of random variables in R.

Obviously, the definition above implies that Yt = Vj for any t ∈ [Uj , Uj+1).
Now we are ready to construct the limiting continuous-time Markov chain Y . To begin with, we

address the case where G is absorbing. For any m′ ∈ Glarge, let Y (m′) be a
(
(Sk)k≥0, (Wk)k≥0

)
-jump

process where S0 = 0,W0 = m′ and (for all k ≥ 0 and i, j with mi ∈ Glarge,mj /∈ Gsmall)

P
(
Wk+1 = mj , Sk+1 > t

∣∣∣ Wk = mi, (Wl)
k−1
l=0 , (Sl)

k
l=0

)
(36)

=P
(
Wk+1 = mj , Sk+1 > t

∣∣∣ Wk = mi

)
= exp(−qit)

qi,j
qi
∀t > 0 (37)

where

qi = µi(Ei) (38)

qi,j = 1{i 6= j}µi(Ei,j) +
∑

k: mk∈Gsmall

µi(Ei,k)pk,j (39)

and pk,j is defined in (35). In other words, conditioning on Wk = mi, the time until next jump Sk+1

and the jump location Wk+1 are independent, where Sk+1 is Exp(qi) and Wk+1 = mj with probability
qi,j/qi. First, it is easy to see that Y is a continuous-time Markov chain. Second, under this definition
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Y is allowed to have some dummy jumps where Wk = Wk+1: in this case the process Yt does not
move to a different minimizer after the k+ 1-th jump, and by inspecting the path of Y we cannot tell
that this dummy jump has occurred. As a result, that generator Q of this Markov chain admits the
form (for all i 6= j with mi,mj ∈ Glarge)

Qi,i = −
∑

k:k 6=i, mk∈Glarge

qi,k, Qi,j = qi,j .

Moreover, define the following random function πG(·) such that for any mi ∈ G,

πG(mi) =

{
mj with probability qi,j/qi if mi ∈ Gsmall

mi if mi ∈ Glarge
(40)

By Y (πG(mi)) we refer to the version of the Markov chain Y where we randomly initialize W0 =
πG(mi). The following lemma is the key tool for proving Theorem 3.

Lemma 10. Let Assumptions 1-3 hold. Assume that the communication class G is absorbing. Given
any mi ∈ G, x ∈ Ωi, finitely many real numbers (tl)

k′

l=1 such that 0 < t1 < t2 < · · · < tk′ , and
a sequence of strictly positive real numbers (ηn)n≥1 with limn→0 ηn = 0, there exists a sequence of
strictly positive real numbers (∆n)n≥1 with limn ∆n = 0 such that

• As n tends to ∞,(
X̂∗,ηn,∆n

t1 (x), · · · , X̂∗,ηn,∆n

tk′
(x)
)
⇒
(
Yt1(πG(mi)), · · · , Ytk′ (πG(mi))

)
(41)

• For all k ∈ [k′],

lim
n→∞

Px
(
X∗,ηntk

/∈
⋃

j: mj∈Glarge

B(mj ,∆n)
)

= 0. (42)

Now we address the case where G is transient, let † be a real number such that † /∈ [−L,L], and
we use † as the cemetery state since the processes Xη

n or X∗,ηt are restricted on [−L,L]. Recall the
definition of τG defined in (13). Analogous to the process X† in (14), we can also define

X†,∗,ηt =

{
X∗,ηt if t < T∗(τG(η), η)

† otherwise
, X̂†,∗,η,∆t =

{
X̂∗,η,∆t if t < T∗(τG(η), η)

† otherwise,
. (43)

Next, analogous to τG, consider the stopping time

τYG =∆ min{t > 0 : Yt /∈ G}.

When G is transient, due to the construction of Y we know that τYG < ∞ almost surely. The
introduction of τYG allows us to define

Y †t =

{
Yt if t < τYG
† otherwise.

(44)

The following Lemma will be used to prove Theorem 4.

Lemma 11. Let Assumptions 1-3 hold. Assume that the communication class G is transient. Given
any mi ∈ G, x ∈ Ωi, finitely many real numbers (tl)

k′

l=1 such that 0 < t1 < t2 < · · · < tk′ , and
a sequence of strictly positive real numbers (ηn)n≥1 with limn→0 ηn = 0, there exists a sequence of
strictly positive real numbers (∆n)n≥1 with limn ∆n = 0 such that

17



• As n tends to ∞,(
X̂†,∗,ηn,∆n

t1 (x), · · · , X̂†,∗,ηn,∆n

tk′
(x)
)
⇒
(
Y †t1(πG(mi)), · · · , Y †tk′ (πG(mi))

)
(45)

• For all k ∈ [k′],

lim
n→∞

Px
(
X†,∗,ηntk

/∈
⋃

j: mj∈Glarge

B(mj ,∆n) and X†,∗,ηntk
6= †
)

= 0. (46)

Proof of Theorem 3 and 4. We first address the case where G is absorbing. Arbitrarily choose some
∆ > 0, a sequence of strictly positive real numbers (ηn)n≥1 with limn ηn = 0, a positive integer k′, a

series of real numbers (tj)
k′

j=1 with 0 < t1 < · · · < tk′ , and a sequence (wj)
k′

j=1 with wj ∈ Glarge for all
j ∈ [k′]. It suffices to show that

lim
n

Px
(
X∗,ηntk

∈ B(wk,∆) ∀k ∈ [k′]
)

= P
(
Ytk(πG(mi)) = wk ∀k ∈ [k′]

)
.

Using Lemma 10, we can find a sequence of strictly positive real numbers (∆n)n≥1 with limn ∆n = 0
such that (41) and (42) hold. From the weak convergence in (41), we only need to show

lim
n

Px
(
X∗,ηntk

/∈ B(X̂∗,ηn,∆n

tk
,∆)

)
= 0 ∀k ∈ [k′].

For all n large enough, we have 2∆n < ∆. For such large n, observe that

Px
(
X∗,ηntk

/∈ B(X̂∗,ηn,∆n

tk
,∆)

)
≤Px

(
X∗,ηntk

/∈
⋃

j:mj∈Glarge

B(mj , 2∆n)
)

due to definition of marker process X̂ in (24)-(32),

≤Px
(
X∗,ηntk

/∈
⋃

j:mj∈Glarge

B(mj ,∆n)
)

and by applying (42) we conclude the proof for Theorem 3.
The proof of Theorem 4 is almost identical, with the only modification being that we apply Lemma

11 instead of Lemma 10. In doing so, we are able to find a sequence of (∆n)n≥1 with limn ∆n = 0
such that (45) and (46) hold. Given the weak convergence claim in (45), it suffices to show that

lim
n

Px
(
X†∗,ηntk

/∈ B(X̂†,∗,ηn,∆n

tk
,∆)

)
= 0 ∀k ∈ [k′].

If X†,∗,ηntk
= †, we must have X̂†,∗,ηn,∆n

tk
= † as well. Therefore, for all n large enough so that 3∆n < ∆,

Px
(
X†∗,ηntk

/∈ B(X̂†,∗,ηn,∆n

tk
,∆)

)
=Px

(
X†∗,ηntk

/∈ B(X̂†,∗,ηn,∆n

tk
,∆), X†∗,ηntk

6= †
)

≤Px
(
X†∗,ηntk

/∈
⋃

j: mj∈Glarge

B(mj , 2∆n), X†∗,ηntk
6= †
)

≤Px
(
X†∗,ηntk

/∈
⋃

j: mj∈Glarge

B(mj ,∆n), X†∗,ηntk
6= †
)
.

Apply (46) and we conclude the proof.
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3 Simulation Experiments

3.1 R1 experiment

Our numerical experiments in this section demonstrate that, (a) as indicated by Theorem 1, the
minimum jump number defined in (3) accurately characterizes the first exit times of the SGDs with
clipped heavy-tailed gradient noises; (b) with clipped heavy-tailed noises, sharp minima can be ef-
fectively eliminated from SGD; (c) properties studied in this paper are exclusive to heavy-tailed
noises; under light-tailed noises SGDs are trapped in sharp minima for extremely long time. The
test function f ∈ C2(R) is the same one depicted in Figure 1 (Left,e). Note that m1 and m3 are
sharp minima in narrow attraction fields, while m2 and m4 are flatter and located in larger attraction
fields. For all experiments on this f , heavy-tailed noises are Zn = 0.1UnWn where Wn are sampled
from Pareto distributions with shape parameter α = 1.2 and the signs Un are iid RVs such that
P(Un = 1) = P(Un = −1) = 1/2; All light-tailed noises are N (0, 1). See Appendix A for exact
expression for test function f and experiment details.

In the first experiment, we compare the first exit time of heavy-tailed SGD (when initialized at
-0.7) from Ω2 = (−1.3, 0.2) under 3 different clipping mechanism: (1) b = 0.28, where the minimum
jump number required to escape is l∗ = 3; (2) b = 0.5, where l∗ = 2; (3) no gradient clipping, where
l∗ = 1 obviously. To prevent excessively long running time, each simulation run is forced to terminate
after 5 × 107 SGD iterations. According to Theorem 1, the first exit times for the aforementioned
3 clipping mechanism are of order (1/η)1.6, (1/η)1.4 and (1/η)1.2 respectively. As demonstrated in
Figure 1 (Right), our results accurately predict how first exit time varies with learning rate and
gradient clipping scheme.

Next, we investigate the global dynamics of heavy-tailed SGD. We compared the clipped case (with
b = 0.5) against the case without gradient clipping. For each scenario we simulate 10 SGD paths, each
of length 10, 000, 000 iterations and initialized at X0 = 0.3. Figure 1 (Left, a, b) show the histograms
of the empirical distributions of SGD, and Figure 1(Middle, a,b) plots the SGD trajectories. We can
clearly see that, without gradient clipping, Xn still visits the two sharp minima m1,m3; under gradient
clipping, the time spent at m1,m3 is almost completely eliminated and is negligible compared to the
time Xn spent at m2,m4, both of which are in larger attraction fields. This is exactly the dynamics
predicted by Theorem 2-5: the elimination of sharp minima with truncated heavy-tailed noises. We
stress that the said properties are exclusive to heavy-tailed SGD. As shown in Figure 1(Left,c,d) and
Figure 1(Middle, c,d), light-tailed SGD are easily trapped at sharp minima for extremely long time.

3.2 Rd experiment

Figure 3 illustrates that the same phenomena are observed in R2. The details of the experiment are
provided in Appendix A, but here we point out that the objective function f in this experiment has
several saddle points and infinitely many local minima—the local minima of Ω2 form a line segment,
which is an uncountably infinite set. Besides, under gradient clipping threshold b, attraction fields Ω1

and Ω2 are the larger ones since the escape from them requires at least two jumps. This suggests that
the theoretical results proved in Section 2 holds under more general contexts than Assumptions 1-3.

4 Improving Generalization Performance in Deep Learning
with Injected Heavy-Tailed Noises

In this section, we verify our theoretical results and demonstrate the effectiveness of clipped heavy-
tailed noise in the deep learning context. Theorems in Section 2 suggest the possibility of modifying
gradient noise distributions to drive SGD to “flatter” local minima and achieve better generalization
performance. Meanwhile, recent experiments (such as [20, 33]) show that SGD noises in image classi-
fication tasks might be light-tailed in several cases. (As displayed in Appendix A, for tasks considered
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Figure 3: Experiment result of heavy-tailed SGD when optimizing the modified Himmelblau function.
(a) Contour plot of the test function f . (b) Different shades of gray are used to indicate the area of
the four different attraction fields Ω1,Ω2,Ω3,Ω4 of f . We say that a point belongs to an attraction
field Ωi if, when initializing at this point, the gradient descent iterates converge to the local minima
in Ωi, which are indicated by the colored dots. The circles are added to imply whether the SGD
iterates can escape from each Ωi with one large jump or not under clipping threshold b. (c) The time
heavy-tailed SGD spent at different region. An iterate Xk is considered “visiting” Ωi if its distance
to the local minimizer of Ωi is less than 0.5; otherwise we label Xk as “out”. (d) The transition
trajectories of heavy-tailed SGD. The dots represent the attraction field each iteration lies in.

in this section, the gradient noise distributions are not heavy-tailed either when models are randomly
initialized.) Inspired by these facts, we conduct experiments to show that SGD with gradient clipping
exhibits improved performance and prefers solutions with a flatter geometry if we make the SGD noise
heavy-tailed. Let θ be the current model weight of a neural net during training, gSB(θ) be the typical
small-batch gradient direction, and gGD(θ) be the true, deterministic gradient direction evaluated on
the entire training dataset. Then by evaluating gSB(θ)− gGD(θ) we obtain a sample of gradient noise
in SGD. Due to the prohibitive cost of evaluating the true gradient in real-world deep learning tasks,
we consider using gSB(θ)− gLB(θ) as its approximation where gLB denotes the gradient evaluated on
a large batch of samples. This approximation is justified by the unbiasedness in EgLB(θ) = gGD(θ).
For some heavy-tailed random variable Z, by multiplying Z with SGD noise, we obtain the following
perturbed gradient direction

gheavy(θ) = gSB(θ) + Z
(
gSB∗(θ)− gLB(θ)

)
(47)

where SB and SB∗ are two mini batches that may or may not be identical. In other words, we consider
the following update recursion under gradient clipping threshold b: Xη

k+1 = Xη
k − ϕb(ηgheavy(Xη

k ))
where ϕb is the truncation operator. In particular, we consider two different implementations: in our
method 1 (labeled as “our 1” in Table 2), SB and SB∗ are chosen independently, while in our method
2 (labeled as “our 2” in Table 2), we use the same batch of samples for SB and SB∗. In summary,
by simply multiplying gradient noise with heavy-tailed random variables, we inject heavy-tailed noise
into the optimization procedure.

To concretely demonstrate the effect of clipped heavy-tailed noise, we benchmark the proposed
clipped heavy-tailed methods against the following optimization methods. LB : large-batch SGD with
Xη
k+1 = Xη

k −ηgLB(Xη
k ); SB : small-batch SGD with Xη

k+1 = Xη
k −ηgSB(Xη

k ); SB + Clip: the update
recursion is Xη

k+1 = Xη
k−ϕb(ηgSB(Xη

k )); SB + Noise: Our method 2 WITHOUT the gradient clipping
mechanism, leading to the update recursion Xη

k+1 = Xη
k − ηgheavy(Xη

k ).
The experiment setting and choice of hyperparameters are mostly adapted from [35]. We consider

three different tasks: (1) LeNet [13] on corrupted FashionMNIST [32]; we use a 1200-sample subset
of the original training dataset, and 200 samples points thereof are randomly assigned a label; (2)
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Table 1: Hyperparameters for Training in Different Tasks
Hyperparameters FashionMNIST, LeNet SVHN, VGG11 CIFAR10, VGG11
learning rate 0.05 0.05 0.05
batch size for gSB 100 100 100
training iterations 10,000 30,000 30,000
gradient clipping threshold 5 20 20
c 0.5 0.5 0.5
α 1.4 1.4 1.4

Table 2: Test accuracy and expected sharpness of different methods across different tasks. The
reported numbers are averaged over 5 replications. All the data points are provided in the appendix.

Test accuracy LB SB SB + Clip SB + Noise Our 1 Our 2
FashionMNIST, LeNet 68.66% 69.20% 68.77% 64.43% 69.47% 70.06%
SVHN, VGG11 82.87% 85.92% 85.95% 38.85% 88.42% 88.37%
CIFAR10, VGG11 69.39% 74.42% 74.38% 40.50% 75.69% 75.87%
Expected Sharpness LB SB SB + Clip SB + Noise Our 1 Our 2
FashionMNIST, LeNet 0.032 0.008 0.009 0.047 0.003 0.002
SVHN, VGG11 0.694 0.037 0.041 0.012 0.002 0.005
CIFAR10, VGG11 2.043 0.050 0.039 2.046 0.024 0.037

VGG11 [27] on SVHN [17], where we use a 25000-sample subset of the training dataset; (3) VGG11
on CIFAR10 [12] using the entire training dataset. For all tasks we use the entire test dataset when
evaluating test accuracy. Whenever heavy-tailed noise is needed, the heavy-tailed multipliers used in
the experiment are Zn = cWn where Wn are iid Pareto(α) RVs. For details of the hyperparameters
for training, see Table 1. Here we highlight a few points: First, within the same task, for all the 6
candidate methods will use the same η, batch size, training iteration, and (when needed) the same
clipping threshold b and heavy-tailed multiplier Zn for a fair comparison; the training duration is
long enough so that LB and SB have attained 100% training accuracy and close-to-0 training loss
long before the end of training (the exception here is “SB + Noise” method; see Appendix A for
the details); Second, to facilitate convergence to local minima for our methods 1 and 2, we remove
heavy-tailed noise for last final 5,000 iterations and run LB instead1.

Table 2 shows that in all 3 tasks both our method 1 and our method 2 attain better test accuracy
than the other candidate methods. Meanwhile, both methods exhibit similar test performance, im-
plying that the implementation of the heavy-tailed method may not be a the deciding factor. We also
report the expected sharpness metric Eν∼N (0,δ2I)|L(θ∗ + ν)−L(θ∗)| used in [35, 18]: where N (0, δ2I)
is a Gaussian distribution, θ∗ is the trained model weight and L is training loss. In our experiment,

1Another interpretation of our proposed heavy-tailed methods is that it is a simplified version of GD + annealed
heavy-tailed perturbation, where a detailed annealing is substituted by a two-phase training schedule.

Table 3: Our method’s gain on test accuracy persists even when applied with standard techniques for
high-quality predictions: data augmentation and scheduled learning rates.

CIFAR10-VGG11 Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Average
SB+Clip 89.40% 89.41% 89.89% 89.52% 89.47% 89.54%
Our method 90.76% 90.57% 90.49% 90.85% 90.79% 90.67%
CIFAR100-VGG16 Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Average
SB+Clip 55.76% 56.8% 56.38% 56.35% 56.32% 56.32%
Our method 67.43% 65.12% 65.14% 65.96% 63.57% 65.44%
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we use δ = 0.01 and the expectation is evaluated by averaging over 100 samples. We conduct 5
replications for each experiment scenario and report the averaged performance in Table 2. Smaller
sharpness of clipped heavy-tailed SGD confirms its preference for minimizers that have a “flatter”
geometry. In particular, the comparisons to SB confirm that, even in the deep learning context,
clipped heavy-tailed noise can drive SGD to explore “wider” attraction fields, thus attaining better
test performances.

Results in Table 2 shows that both heavy-tailed noise and gradient clipping are necessary to achieve
better generalization, which is expected from our theoretical analyses. SB and SB + Clip achieve
similar inferior performances, confirming that clipping does not help when noise is light-tailed. In
SB + Noise, we inject heavy-tailed noise without gradient clipping, which still achieves an inferior
performance. The poor performance of this method—even after extensive parameter tuning and
engineering (see Appendix A for more details)—demonstrates the difficulty on the optimization front
when heavy-tailed noise is present yet little effort is put into controlling the highly volatile gradient
noises. This is aligned with the observations in [34, 4] where adaptive gradient clipping methods
are proposed to improve convergence of SGD under heavy-tailed noises. This confirms that gradient
clipping is crucial for heavy-tailed SGD.

Lastly, Table 3 shows that the gain of truncated heavy-tailed noise persists even when trained
together with more sophisticated techniques—in particular, data augmentation and scheduled learning
rates—to achieve higher performances. For experiment details, see Appendix A.

5 Conclusion

We characterized the global dynamics of SGD with truncated heavy-tailed gradient noise and illus-
trated our theoretical results with numerical experiments. Our characterizations provide key insights
into the global dynamics of SGD and reveal the strong regularization effects of truncated heavy-tailed
noises.

For the sake of analysis and presentation, we made some simplifying assumptions. However, as
indicated by our numerical experiments, it is very likely that the same overall principle—elimination
of sharp minima—persists in high-dimensional optimization landscapes that arise in deep learning
contexts. We aim to develop the theories of heavy-tailed SGD at the full level of generality.

Also, the conditions—irreducibility and symmetry of graph G—we impose on the geometry of
f in Theorem 2 are likely to be stronger than necessary for eliminating sharp minima. In view of
these, a natural next step is to investigate how the structures of state-of-the-art deep neural nets lend
themselves to the SGD’s global dynamics under general conditions.

Lastly, the results of our deep learning experiments suggest the possibility of a full-fledged, rigor-
ously justified large-batch SGD algorithm with heavy-tailed perturbations that can overcome the gen-
eralization gap between small-batch and large-batch optimization methods. For instance, it is worth
exploring whether the training would benefit from a more delicate approach for inducing heavy-tailed
noises or a detailed annealing of the noise magnitude.
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equations. The European Physical Journal Special Topics, 191(1):211–222, 2010.

[11] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-batch train-
ing for deep learning: Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836,
2016.

[12] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[13] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard, and L. D.
Jackel. Handwritten digit recognition with a back-propagation network. In Advances in neural
information processing systems, pages 396–404, 1990.

[14] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape of neural nets.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
pages 6391–6401, 2018.

[15] M. Mahoney and C. Martin. Traditional and heavy tailed self regularization in neural network
models. In International Conference on Machine Learning, pages 4284–4293. PMLR, 2019.

[16] S. Merity, N. S. Keskar, and R. Socher. Regularizing and optimizing LSTM language models. In
International Conference on Learning Representations, 2018.

[17] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural
images with unsupervised feature learning. 2011.

[18] B. Neyshabur, S. Bhojanapalli, D. Mcallester, and N. Srebro. Exploring generalization in deep
learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

[19] T. H. Nguyen, U. Simsekli, and G. Richard. Non-asymptotic analysis of fractional langevin
monte carlo for non-convex optimization. In International Conference on Machine Learning,
pages 4810–4819. PMLR, 2019.

[20] A. Panigrahi, R. Somani, N. Goyal, and P. Netrapalli. Non-gaussianity of stochastic gradient
noise. arXiv preprint arXiv:1910.09626, 2019.

23



[21] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks.
In International conference on machine learning, pages 1310–1318. PMLR, 2013.

[22] I. Pavlyukevich. Metastable behaviour of small noise lévy-driven diffusion. arXiv preprint
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A Details of Numerical Experiments

A.1 Details of the R1 simulation experiment

The function f used in the experiments is

f(x) =(x+ 1.6)(x+ 1.3)2(x− 0.2)2(x− 0.7)2(x− 1.6)
(
0.05|1.65− x|

)0.6(
1 +

1

0.01 + 4(x− 0.5)2

)(
1 +

1

0.1 + 4(x+ 1.5)2

)(
1− 1

4
exp(−5(x+ 0.8)(x+ 0.8))

)
.

The four isolated local minimizers of f are m1 = −1.51, s1 = −1.3,m2 = −0.66, s2 = 0.2,m3 =
0.49, s3 = 0.7,m4 = 1.32, and in our experiment we restrict the iterates on [−L,L] with L = 1.6.

A.2 Details of the Rd simulation experiment

As illustrated in the contour plot in Figure 3 (a), the function f in this experiment is a modified
version of Himmelblau function, a commonly used test function for optimization algorithm. The
modifications serve two purposes. First, as shown in Figure 3 (b), for the modified function the four
attraction fields Ω1,Ω2,Ω3,Ω4 have different sizes; in particular, under gradient clipping threshold
b = 2.15, from the local minimizers of Ω1 and Ω2 (indicated by red dots in the corresponding area)
at least two jumps are required to escape from the attraction field, while from the local minimizer in
Ω3 or Ω4 it is possible to escape with one jump. Therefore, for the minimum jump number required
to escape, we have l∗1 = l∗2 = 2 > l∗3 = l∗4 = 1 in this case. Second, for the modified test function f ,
the local minimizer in Ω2 is not a single point but a connected line segment, which is indicated by the
dark line in bottom-left region in Figure 3 (a) and the red line segment in in Figure 3 (b).

Now we describe the construction of the test function f . Let h be the Himmelblau function
with expression h(x, y) = (x2 + y − 11)2 + (x + y2 − 7)2. Next, define the following transformation

for coordinates: φ(x, y) =
(
x(exp(c0(x − cx) + 1)), y(exp(c0(x − cx) + 1)

)
. Let the composition be

hφ(x, y) = h
(
φ(x − ax, y)

)
. To create the connected region of local minimizers, define the following

locally “cut” version of hφ:

i(x, y) = 1{x ∈ [bl, br], |y − ay| < by},
h∗(x, y) = (1− i(x, y))hφ(x, y) + i(x, y) min{hφ(x, y), c1|y − ay|1.1}.

Lastly, the test function we use in the experiment is f = 0.1h∗, with ax = 1.5, ay = −2.9, bl =
−5.5, br = −0.5, by = 2.0, c0 = 0.4, c1 = 12.

In the experiment, we initialize the SGD iterates at X0 = (2.9, 1.0), which is very close to the
local minimizer in Ω3. For both the clipped and unclipped SGD, we perform updates for 3×107 steps
under learning rate 5× 10−4 and heavy-tailed noise Zk = 0.75Wk where Wk are isotropic and the law
of ‖Wk‖, the size of the noise, is Pareto(1.2). For clipped SGD, we use threshold b = 2.15. To prevent
the iterates from drifting to infinity, after each update Xk is projected back to the L2 ball centered
at origin with radius 4.2.

A.3 Details of the deep learning experiments comparing different methods

We first mention that the all experiments using neural networks are conducted on Nvidia GeForce
GTX 1080 T, and the scripts are adapted from the ones in [35].2. In Figure A.1 (Top), we display the
gradient noise distribution in the three tasks after the model is randomly initialized.

The hyperparameters and training procedures for “SB + Noise” method is different from the other
methods: we use learning rate η = 0.005; for FashionMNIST task we train for 100,000 iterations and

2https://github.com/uuujf/SGDNoise
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the heavy-tailed noise is removed for the final 50,000 iterations; for SVHN and CIFAR10 tasks, we
train for 150,000 iterations and heavy-tailed noise is removed for the last 70,000 iterations. Besides,
for this method we always clip the model weights if its L∞ norm exceeds 1. The reason for the
extra tuning and extended training in “SB + Noise” method is that, without the said modifications,
in all three tasks we observed that the model weights quickly drift to infinity and explodes; even
with the weight clipping implemented, the model performance stays at random level with no signs of
improvements if we do not tune down learning rate. In Figure A.1 (Bottom), we plot the test accuracy
of our method against that of the SGD for all 5 replications and 3 tasks.
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Figure A.1: (Top) Distribution of gradient noise in different tasks. (Bottom) Test accuracy of the
proposed clipped heavy-tailed methods vs. test accuracy of vanilla SGD in different tasks.

A.4 Details of CIFAR10 experiments with data augmentation

For both methods, we train the model for 300 epochs. The initial learning rate is set at 0.1, and the
training can be partitioned into two phases. In the first phase (the first 200 epochs), the learning rate
is kept at a constant. In the second phase, for every 30 epoch we reduce the learning rate by half. Also,
an L2 weight decaying with coefficient 5× 10−4 is enforced. As for parameters for heavy-tailed noises
in (47), we use c = 0.5 and α = 1.4 in the first phase, and in the second phase we remove heavy-tailed
noise and use SB to update weights. In both methods for the small-batch direction gSB the batch size
is 128, while for gLB we evaluate the gradient on a large sample batch of size 1,024. Under the epoch
number 300 and batch size 128, the count of total iterations performed during training is 1.17× 105.
To augment the dataset, random horizontal flipping and cropping with padding size 4 is applied for
each training batch. Lastly, gradient clipping scheme is applied for both methods, and we fix b = 0.5.
In other words, when the learning rate is η (note that due to the scheduling of learning rates, η will
be changing throughout the training), the gradient is clipped if its L2 norm is larger than b/η. The
scripts are adapted from the ones in https://github.com/chengyangfu/pytorch-vgg-cifar10.
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B Proofs of Lemma 7, 8

First, note that Assumption 1 implies the following:

• There exist c0 > 0, ε0 ∈ (0, 1) such that for any x ∈ {m1, s1, · · · , snmin−1,mnmin
}, |y − x| < ε0,

|f ′(y)| > c0|y − x|, (B.1)

and for any y ∈ [−L,L] such that |y − x| ≥ ε0 for all x ∈ {m1, s1, · · · , snmin−1,mnmin
}, we have

|f ′(y)| > c0; (B.2)

• There exist constants L ∈ (0,∞),M ∈ (0,∞) such that |m0| < L, |mnmin
| < L, and (for any

x ∈ [−L,L])

|f ′(x)| ≤M, |f ′′(x)| ≤M. (B.3)

Recall that in (1) we define the truncation operator as ϕc(w) , ϕ(w, c) =∆ (w ∧ c) ∨ (−c). Also, in (2)
we defined the update recursion for SGD iterates under clipping threshold b as

Xη
n = ϕL

(
Xη
n − ϕb

(
η(f ′(Xη

n)− Zn+1)
))
. (B.4)

Here η > 0 is the learning rate (step length) and b > 0 is the gradient clipping threshold. Also, recall
that we let σk(η) =∆ min{n ≥ 0 : Xη

n /∈ Ωk} to be the first exit time of Xη
n from the k−th attraction

field Ωk. Meanwhile, recall that in (3) we have defined

ri =∆ min{mi − si−1, si −mi}, (B.5)

l∗i =∆ dri/be. (B.6)

Intuitively speaking, l∗i tells us the minimum number of jumps with size no larger than b required
in order to escape the attraction field if we start from the local minimum of this attraction field Ωi.
Lastly, recall the definition of H(·) = P(|Z1| > ·) and the scaling function for the i−th attraction field

λi(η) =∆ H(1/η)
(H(1/η)

η

)l∗i−1

.

The rest of this section is devoted to the proofs of Lemma 7 and Lemma 8. Specifically, Lemma
7 is an immediate Corollary of Lemma B.11, the proof of which will be provided below. The proof of
Lemma 8 can be found at the end of this section.

The following three lemmas will be applied repeatedly throughout this section. The proofs are
straightforward but provided in Appendix D for the sake of completeness.

Lemma B.1. Given two real functions a : R+ 7→ R+, b : R+ 7→ R+ such that a(ε) ↓ 0, b(ε) ↓ 0 as ε ↓ 0,
and a family of geometric RVs {U(ε) : ε > 0} with success rate a(ε) (namely, P(U(ε) > k) = (1−a(ε))k

for k ∈ N), for any c > 1, there exists ε0 > 0 such that for any ε ∈ (0, ε0),

exp
(
− c · a(ε)

b(ε)

)
≤ P

(
U(ε) >

1

b(ε)

)
≤ exp

(
− a(ε)

c · b(ε)

)
.

Lemma B.2. Given two real functions a : R+ 7→ R+, b : R+ 7→ R+ such that a(ε) ↓ 0, b(ε) ↓ 0 and

a(ε)/b(ε)→ 0

as ε ↓ 0, and a family of geometric RVs {U(ε) : ε > 0} with success rate a(ε) (namely, P(U(ε) > k) =
(1− a(ε))k for k ∈ N), for any c > 1 there exists some ε0 > 0 such that for any ε ∈ (0, ε0),

a(ε)/(c · b(ε)) ≤ P(U(ε) ≤ 1/b(ε)) ≤ c · a(ε)/b(ε)
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Lemma B.3. Suppose that a function g : Ig 7→ R (where Ig is an open interval of R) is g ∈ C2(Ig)
and |g′′(·)| ≤ C on its domain Ig for some constant C < ∞. For a finite integer n, a sequence of
real numbers {z1, · · · , zn}, and real numbers x, x̃ ∈ Ig, η > 0, consider two sequences {xk}k=0,...,n and
{x̃k}k=0,...,n constructed as follows:

x0 = x

xk = xk−1 − ηg′(xk−1) + ηzk ∀k = 1, 2, · · · , n
x̃0 = x̃

x̃k = x̃k−1 − ηg′(x̃k−1) ∀k = 1, 2, · · · , n

If we have xk ∈ Ig, x̃k ∈ Ig, and there exists c̃ ∈ (0,∞) such that η|z1 + · · · + zk| + |x − x̃| ≤ c̃ for
k = 1, 2, · · · , n, then

|xk − x̃k| ≤ c̃ · exp(ηCk) ∀k = 1, 2, · · · , n.

To facilitate the analysis below, we introduce some additional notations. First, we will group the
noises Zn based on a threshold level δ > 0: let us define

Z≤δ,ηn =∆ Zn1{η|Zn| ≤ δ}, (B.7)

Z>δ,ηn =∆ Zn1{η|Zn| > δ}. (B.8)

The former are viewed as small noises while the latter will be referred to as large noises or large
jumps. Furthermore, for any j ≥ 1, define the jth arrival time and size of large jumps as

T ηj (δ) =∆ min{n > T ηj−1(δ) : η|Zn| > δ}, T η0 (δ) = 0 (B.9)

W η
j (δ) =∆ ZTηj (δ). (B.10)

Next, for any ε > 0, let Ωi(ε) = [mi − ε,mi + ε] be an ε−neighborhood of the local minimum mi, and
Si(ε) = [si − ε, si + ε] be an ε−neighborhood of the local maximum si.

For most part of this section, we will zoom in on one of the local minima mi and its attraction
field Ωi = (si−1, si). Without loss of generality, we assume mi = 0, and denote the attraction field
as Ω = (s−, s+). (If mi happens to be the local minimum at the left or right boundary, then the
attraction field is [−L, s+) or (s−, L] where the SGD iterates will be reflected at ±L.) Henceforth
we will drop the dependency on notation i when referring to this specific attraction field until the
very end of this section. Throughout the proof, the following (deterministic) dynamic systems will
be used frequently as benchmark processes to indicate the most likely location of the SGD iterates.
Specifically, given any x ∈ Ω, we use Xn(x) to indicate that the starting point is x, namely X0(x) = x.
Similarly, consider the following ODE xη(t;x) as

xη(0;x) = x; (B.11)

dxη(t;x)

dt
= −ηf ′

(
xη(t;x)

)
. (B.12)

When we use update rate η = 1, we will drop the dependency of η and simply use x(t;x) to denote
the process.

Based on Assumption 3, we know the existence of some constant ε̄ ∈ (0, ε0) (note that ε0 is the
constant in (B.1)) such that

r =∆ min{−s−, s+}, (B.13)

l∗ =∆ dr/be, (B.14)

(l∗ − 1)b+ 100l∗ε̄ < r − 100l∗ε̄ (B.15)

r + 100l∗ε̄ < l∗b− 100l∗ε̄. (B.16)
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Here r can be understood as the effective radius of the said attraction field. Also, we fix such ε̄ small
enough so that (let cL− = −f ′(−L), cL+ = −f ′(−L)), we have

0.9cL− ≤ −f ′(x) ≤ 1.1cL− ∀x ∈ [−L,−L+ 100ε̄], 0.9cL+ ≥ −f ′(x) ≥ 1.1cL+ ∀x ∈ [L− 100ε̄, L].
(B.17)

Similar to the definition of ODE xη, let us consider the following construction of ODE x̃η that
can be understood as xη perturbed by l∗ shocks. Specifically, consider a sequence or real numbers
0 = t1 < t2 < t3 < · · · < tl∗ and real numbers w1, · · · , wl∗ where |wj | ≤ b for each j. Let t =
(t1, · · · , tl∗),w = (w1, · · · , wl∗). Based on these two sequences and rate η > 0, define x̃η(t;x) as

x̃η(0, x; t,w) = ϕL(x+ ϕb(w1)); (B.18)

dx̃η(t, x; t,w)

dt
= −ηf ′

(
x̃η(t, x; t,w)

)
∀t /∈ {t1, t2, · · · , tl∗} (B.19)

x̃η(tj , x; t,w) = ϕL
(
x̃η(tj−, x; t,w) + ϕb(wj)

)
∀j = 2, · · · , l∗ (B.20)

Again, when η = 1 we drop the notational dependency on η and use x̃ to denote the process. Now
from (B.15)(B.16) one can easily see the following fact: there exist constants t̄, δ̄ > 0 such that
x̃(tl∗ , 0; t,w) /∈ Ω (note that the starting point is 0, the local minimum) only if (under the condition
that |wj | ≤ b ∀j)

tj − tj−1 ≤ t̄ ∀j = 2, 3, · · · , l∗ (B.21)

|wj | > δ̄ ∀j = 1, 2, · · · , l∗. (B.22)

The intuition is as follows: if the inter-arrival time between any of the l∗ jumps is too long, then the
path of x̃η(t;x) will drift back to the local minimum mi so that the remaining l∗ − 1 shocks (whose
sizes are bounded by b) cannot overcome the radius r which is strictly larger than (l∗− 1)b; similarly,
if size of any of the shocks is too small, then since all other jumps have sizes bounded by b, the shock
created by the l∗i jumps will be smaller than (l∗ − 1)b + 100ε̄, which is strictly less than r. We fix
these constants t̄, δ̄ throughout the analysis, and stress again that their values are dictated by the
geometry of the function f , thus do not vary with the accuracy parameters ε and δ mentioned earlier.
In particular, choose δ̄ such that δ̄ < ε̄.

In our analysis below, ε > 0 will be a variable representing the level of accuracy in our analysis.
For instance, for small ε, the chance that SGD iterates will visit somewhere that is ε−close to s− or
s+ (namely, the boundary of the attraction filed) should be small. Consider some ε ∈ (0, ε0) where ε0
is the constant in Assumption 1. Due to (B.1)(B.2), one can see the existence of some g0 > 0, c1 <∞
such that

• |f ′(x)| ≥ g0 for any x ∈ Ω such that |x− s−| > ε0, ||x− s+| > ε0;

• Let t̂ODE(x, η) =∆ min{t ≥ 0 : xη(t, x) ∈ [−ε, ε]} be the time that the ODE returns to a
ε−neighborhood of local minimum of Ω when starting from x. As proved in Lemma 3.5 of [22],
for any x ∈ Ω such that |x− s−| > ε, |x− s+| > ε, we have

t̂ODE(x, η) ≤ c1
log(1/ε)

η
(B.23)

and we define the function

t̂(ε) =∆ c1 log(1/ε). (B.24)

In short, given any accuracy level ε, the results above give us an upper bound for how fast the ODE
would return to a neighborhood of the local minimum, if the starting point is not too close to the
boundary of this attraction field Ω.
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For the first few technical results established below, we show that, without large jumps, the
SGD iterates Xη

n(x) are unlikely to show significant deviation from the deterministic gradient descent
process yηn(x) defined as

yη0(x) = x, (B.25)

yηn(x) = yηn−1(x)− ηf ′
(
yηn−1(x)

)
. (B.26)

We are ready to state the first lemma, where we bound the distance between the gradient descent
iterates yηn(y) and the ODE xη(t, x) when the initial conditions x, y are close enough.

Lemma B.4. The following claim holds for all η > 0: for any t > 0, we have

sup
s∈[0,t]

|xη(s, x)− yηbsc(y)| ≤ (2ηM + |x− y|) exp(ηMt)

where M ∈ (0,∞) is the constant in (B.3).

Proof. Define a continuous-time process yη(s; y) =∆ yηbsc(y), and note that

xη(s, x) = xη(bsc, x)− η
∫ s

bsc
f ′(xη(u, x))du

xη(bsc, x) = x− η
∫ bsc

0

f ′(xη(u, x))du

yηbsc(y) = yη(bsc, y) = y − η
∫ bsc

0

f ′(yη(u, y))du.

Therefore, if we define function

b(u) = xη(u, x)− yη(u, y),

from the fact |f ′(·)| ≤ M , one can see that |b(u)| ≤ ηM + |x − y| for any u ∈ [0, 1) and |b(1)| ≤
2ηM + |x− y|. In case that s > 1, from the display above and the fact |f ′′(·)| ≤M , we now have

|yηbsc(x)− xη(s, x)| ≤ |b(bsc)|+ ηM ;

|b(bsc)| ≤ ηM
∫ bsc

1

|b(u)|du.

From Gronwall’s inequality (see Theorem 68, Chapter V of [24], where we let function α(u) be α(u) =
|b(u+ 1)|), we have

|yηbsc(x)− xη(s, x)| ≤ (2ηM + |x− y|) exp(ηMt).

This concludes the proof.

Now we consider an extension of the previous Lemma in the following sense: we add perturba-
tions to the gradient descent process and ODE, and show that, when both perturbed by l∗ similar
perturbations, the ODE and gradient descent process should still stay close enough. Analogous to
the definition of the perturbed ODE x̃η in (B.18)-(B.20), we can construct a process Ỹ η as a per-
turbed gradient descent process as follows. For a sequence of integers 0 = t1 < t2 < · · · < tl∗ (let
t = (tj)j≥1) and a sequence of real numbers w̃1, · · · , w̃l∗ (let w̃ = (w̃j)j≥1) and y ∈ R, define (for all
n = 1, 2, · · · , tl∗) the perturbed gradient descent iterates with gradient clipping at b and reflection at
±L as

ỹηn(y; t, w̃) = ϕL

(
ỹηn−1(y; t, w̃) + ϕb

(
− ηf ′(ỹηn−1(y; t, w̃)) +

l∗∑
j=2

1{n = tj}w̃j
))

(B.27)

with initial condition ỹη0(y; t, w̃) = ϕL
(
y + ϕb(w̃1)

)
.

30



Corollary B.5. Given any ε > 0, the following claim holds for all sufficiently small η > 0: for any
x, y ∈ Ω, and sequence of integers t = (tj)

l∗

j=1 and any two sequence of real numbers w = (wj)
l∗

j=1, w̃ =

(w̃j)
l∗

j≥1 such that

• |x− y| < ε;

• t1 = 0, and tj − tj−1 ≤ 2t̄/η for all j ≥ 1 where t̄ is the constant in (B.21);

• |wj − w̃j | < ε for all j ≥ 1;

then we have

sup
t∈[0,tl∗ ]

|x̃η(t, x; t,w)− ỹηbtc(y; t, w̃)| ≤ ρ̄ε

where the constant ρ̄ = (3 exp(ηMt̄) + 3)l
∗
.

Proof. Throughout this proof, fix some η ∈ (0, ε/2M). We will show that for any η in the range the
claim would hold.

First, on interval [0, t2), from Lemma B.4, one can see that (since 2Mη < ε)

sup
t∈[0,t2)

|x̃η(t, x; t,w)− ỹηbtc(y; t, w̃)| ≤ 3 exp(ηMt̄) · ε.

The at t = t2, by considering the difference between w2 and w̃2, and the possible change due to one
more gradient descent step (which is bounded by ηM < ε), we have

sup
t∈[0,t2]

|x̃η(t, x; t,w)− ỹηbtc(y; t, w̃)| ≤ (3 exp(ηMt̄) + 2) · ε.

Now we proceed inductively. For any j = 2, 3, · · · , l∗ − 1, assume that

sup
t∈[0,tj ]

|x̃η(t, x; t,w)− ỹηbtc(y; t, w̃)| ≤ (3 exp(ηMt̄) + 3)j−1 · ε.

Then by focusing on interval [tj , tj+1] and using Lemma B.4 again, one can show that

sup
t∈[tj ,tj−1]

|x̃η(t, x; t,w)− ỹηbtc(y; t, w̃)| ≤ 2ε+
(
(3 exp(ηMt̄) + 3)j−1 + 1

)
exp(ηMt̄)ε

≤ (3 exp(ηMt̄) + 3)j · ε.

This concludes the proof.

In the next few results, we show that the same can be said for gradient descent iterates ỹn and the
SGD iterates Xn. Specifically, our first goal is to show that before any large jump (see the definition
in B.8), it is unlikely that the gradient descent process yηn would deviate too far from Xη

n. Define the
event

A(n, η, ε, δ) =
{

max
k=1,2,··· ,n∧(Tη1 (δ)−1)

η|Z1 + · · ·+ Zk| ≤ ε
}

(B.28)

and recall that arrival times T ηj (δ) are defined in (B.9).
As a building block, we first study the case when the starting point x is close to the reflection

boundary −L. The takeaway from the next result is that the reflection operator hardly comes into play,
since the SGD iterates would most likely quickly move to somewhere far enough from ±L; besides,
throughout this procedure the SGD iterates would most likely stay pretty close to the corresponding
deterministic gradient descent process.
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Lemma B.6. Given ε ∈ (0, ε̄/9), it holds for any sufficiently small ε, δ, η > 0 that, if x ∈ [−L,−L+ ε̄]
and ρ0(|x− y|+ 9ε) < ε̄, then on event A(n, η, ε, δ) we have

|Xη
k (x)− yηk(y)| ≤ ρ0 · (|x− y|+ 9ε) ∀k = 1, 2, · · · , n ∧ (T η1 (δ)− 1) ∧ T̃ ηescape(x)

where T̃ ηescape(x) =∆ min{n ≥ 0 : Xη
n(x) > −L+ ε̄} and ρ0 =∆ exp

(
2Mε̄
0.9cL−

)
is a constant that does not

vary with our choice of ε, δ, η.

Proof. For any k < T η1 (δ), we know that Zk = Z≤δk (thus η|Zk| < δ). Also, recall that |f ′(x)| ≤ M
for any x ∈ Ωi. Therefore, as long as η and δ are small enough, we will have that

|η(−f ′(Xη
n(x)) + Z≤δk )| ≤ b (B.29)

so the gradient clipping operator in (B.4) has no effect when k < T η1 (δ), and in fact the only possible
time for the gradient clipping trick to work is at T ηj (δ). Therefore, we can safely rewrite the SGD
update as

Xη
k (x) = Xη

k−1(x)− ηf ′(Xη
k−1(x)) + ηZk +Rk ∀k < T η1 (δ)

where each Rk ≥ 0 and it represents the push caused by reflection at −L.
First, choose ε small enough so that 9ε < ε̄. Next, based on (B.17) we have the following lower

bound:

Xη
k (x) ≥ x+ 0.9cL−ηk − ε ∀k < T η1 (δ).

Let t̃0(x, ε) =∆ min{n ≥ 0 : Xη
n(x) ≥ −L+ 2ε}. Due to the inequality above, we know that

t̃0(x, ε) ≤ 3ε

0.9cL−η
. (B.30)

One the other hand, given the current choice of ε, if we choose η and δ small enough, then using the
same argument leading to (B.29), we will have

Xη

t̃0(x,ε)
(x) ≤ −L+ 2.1ε ≤ x+ 1.1cL−ηk + 2.1ε

if t̃0(x, ε) ≥ 1 (namely x < −L+ 2ε).
Let us inspect the two scenarios separately. First, assume t̃0(x, ε) ≥ 1. For the deterministic

gradient descent process yηn(y), we have the following bounds:

y + 0.9cL−ηk ≤ yηk(y) ≤ y + 1.1cL−ηk ∀k ≤ t̃0(x, ε) ∧ (T η1 (δ)− 1).

This gives us

|Xη
k (x)− yηk(y)| ≤ |x− y|+ 0.2cL−ηk + 2.1ε ∀k ≤ t̃0(x, ε) ∧ (T η1 (δ)− 1).

At time k = t̃0(x, ε), due to previous bound on t̃0(x, ε), we know that |Xη

t̃0(x,ε)
(x) − yη

t̃0(x,ε)
(y)| ≤

|x − y| + 7ε. If n ∧ (T η1 (δ) − 1) ≤ t̃0(x, ε) then we have already shown the desired claim. Otherwise,
starting from time t̃0(x, ε), due to the definition of event A(n, η, ε, δ) in (B.28), we know that the SGD
iterates Xη

n(x) will not touch the boundary −L afterwards. Therefore, by directly applying Lemma
B.3, and notice that |f ′′(x)| ≤M for any x ∈ [−L,L] and, we have

|Xη
k (x)− yηk(y)| ≤ (|x− y|+ 9ε) · exp

( 2Mε̄

0.9cL−

)
∀k ≤ n ∧ (T η1 (δ)− 1) ∧ T̃ ηescape(x).
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Indeed, it suffices to use Lemma B.3 for the next d2ε̄/(0.9ηcL−)e steps to show that |Xη
k (x) − yηk(y)|

should be smaller than ε for the next d2ε̄/(0.9ηcL−)e steps, while yηk(y) will reach some where in
(−L+ 2ε̄,−L+ 3ε̄) within d2ε̄/(0.9ηcL−)e steps so we must have

n ∧ (T η1 (δ)− 1) ∧ T̃ ηescape(x) ∧ t̃0(x, ε)− t̃0(x, ε) ≤ 2ε̄/(0.9ηcL−) (B.31)

Lastly, in the case t̃0(x, ε) = 0 (which means x ≥ −L + ε), we can use Lemma B.3 directly as we
did above and establish the same bound. This concludes the proof.

Obviously, a similar result can be shown if x is in the rightmost attraction field (snmin−1
, L] and

the approach is identical. We omit the details here. In the next Lemma, we consider the scenario
where the starting point x is far enough from the boundaries.

Lemma B.7. Given any ε > 0, the following holds for all sufficiently small η > 0: for any x, y ∈ Ω and
positive integer n such that |x−L| > 2ε, |x+L| > 2ε, |x−s−| > 2ε, |x−s+| > 2ε and |x−y| < ε

2 exp(ηMn) ,
on event

A(n, η,
ε

2 exp(ηMn)
, δ) ∩

{
|yηj (y)| ∈ Ω, |Xη

j (x)| ∈ Ω ∀j = 1, 2, · · · , n ∧ (T η1 (δ)− 1)
}

we have
|X̃η

m(y)−Xη
m(x)| ≤ ε ∀m = 1, 2, · · · , n ∧ (T η1 (δ)− 1).

Proof. For sufficiently small η, we will have that the (deterministic) gradient descent iterates |yηn|
is monotonically decreasing in n, which ensures that yηn always stays in the range that are at least
ε−away from ±L or s−, s+. We now show that the claim holds for any such η.

On event
{
|yηj (y)| ∈ Ω, |Xη

j (x)| ∈ Ω ∀j = 1, 2, · · · , n∧ (T η1 (δ)− 1)
}

, we are able to apply Lemma

B.3 inductively for any m ∈ [n] and obtain that

|yηj (y)−Xη
j (x)| ≤ (|x− y|+ ε

2 exp(ηMn)
) exp(ηMj) < ε ∀j = 1, 2, · · · ,m

and conclude the proof. The reason to apply the Lemma inductively for m = 1, 2, · · · , n, instead of
directly at step n, is to ensure that SGD iterates Xη

n would not hit the boundary ±L (so the reflection
operator would not come into play on the time interval we are currently interested in), thus ensuring
that Lemma B.3 is applicable.

Similar to the extension from Lemma B.4 to Corollary B.5, we can extend Lemma B.7 to show
that, if we consider the a gradient descent process that is only perturbed by large noises, then it
should stay pretty close to the SGD iterates Xη

n. To be specific, let

Y η0 (x) = x (B.32)

Y ηn (x) = ϕL

(
Y ηn−1(x)− ϕb

(
− ηf ′

(
Y ηn−1(x)

)
+
∑
j≥1

1{n = T ηj (δ)}ηZn
))
. (B.33)

be a gradient descent process (with gradient clipping at threshold b) that is only shocked by large
noises in (Zn)n≥1. The next corollary can be shown by an approach that is identical to Corollary B.5
(namely, inductively repeating Lemma B.7 at each jump time) so we omit the details here.

Corollary B.8. Given any ε > 0, the following holds for any sufficiently small η > 0: For any
|x| < 2ε, on event A0(ε, η, δ) ∩B0(ε, η, δ), we have

|Y ηn (x)−Xη
n(x)| < ρ̃ε ∀n = 1, 2, · · · , T ηl∗(δ)
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where

A0(ε, η, δ) =∆
{
∀i = 1, · · · , l∗, max

j=Tηi−1(δ)+1,··· ,Tηi (δ)−1
η|ZTηi−1(δ)+1 + · · ·+ Zj | ≤

ε

2 exp(2t̄M)

}
;

B0(ε, η, δ) =∆
{
∀j = 2, · · · , l∗, T ηj (δ)− T ηj−1(δ) ≤ 2t̄/η

}
and ρ̃ ∈ (0,∞) is a constant that does not vary with η, δ, ε.

The next two results shows that the type of events A(n, η, ε, δ) defined in (B.28) is indeed very
likely to occur, especially for small ε. For clarity of the presentation, we introduce the following
definitions that are slightly more general than the small and large jumps defined in (B.7)(B.8) (for
any c > 0)

Z≤cn =∆ Zn1{|Zn| ≤ c},
Z>cn =∆ Zn1{|Zn| > c}.

Lemma B.9. Define functions u(η) = δ/η1−∆, v(η) = εη∆̃ with ε, δ > 0. If real numbers ∆, ∆̃, β, ε, δ
and positive integers j,N are such that the following conditions hold:

∆ ∈
[
0, (1− 1

α
) ∧ 1

2

)
, (B.34)

β ∈
(
1, (2− 2∆) ∧ α(1−∆)

)
, (B.35)

∆̃ ∈ [0,
∆

2
], ∆̃ < α(1−∆)− β, (B.36)

N <
(
α(1−∆)− β

)
j, (B.37)

v(η)− jηu(η) ≥ v(η)/2 for all η > 0 sufficiently small, (B.38)

then

P
(

max
k=1,2,··· ,d1/ηβe

η
∣∣Z≤u(η)

1 + · · ·+ Z
≤u(η)
k

∣∣ > 3v(η)
)

= o(ηN )

as η ↓ 0.

Proof. From the stated range of the parameters, we know that

α(1−∆) > β,(
α(1−∆)− β

)
j > N,

so we are able to find γ ∈ (0, 1) small enough such that

α(1−∆)(1− 2γ) > β, (B.39)(
α(1−∆)(1− 2γ)− β

)
j > N. (B.40)

Fix such γ ∈ (0, 1) for the rest of the proof, and let n(η) , d(1/η)βe, I , #
{
i ∈ [n(η)] : |Z≤u(η)

i | >

u(η)1−γ
}

. Then

P
(∣∣Z≤u(η)

1 + · · ·+ Z
≤u(η)
n(η)

∣∣ > v(η)
)

=

j−1∑
i=0

P
(∣∣Z≤u(η)

1 + · · ·+ Z
≤u(η)
n(η)

∣∣ > v(η), I = i
)

︸ ︷︷ ︸
,(I)

+P
(∣∣Z≤u(η)

1 + · · ·+ Z
≤u(η)
n(η)

∣∣ > v(η), I ≥ j
)

︸ ︷︷ ︸
,(II)
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Note that since |Z≤u(η)
i | < u(η),

(I) ≤
(
n(η)

i

)
· P
(∣∣Z≤u(η)

1 + · · ·+ Z
≤u(η)
n(η)−i

∣∣ > v(η)− iηu(η)

η
, |Z≤u(η)

i | ≤ u(η)1−γ ∀i ∈ [n(η)− i]
)

≤ n(η)i · P
(∣∣Z≤u(η)1−γ

1 + · · ·+ Z
≤u(η)1−γ

n(η)−i
∣∣ > v(η)− iηu(η)

η

)
≤ n(η)i · P

(∣∣Z≤u(η)1−γ

1 + · · ·+ Z
≤u(η)1−γ

n(η)−i
∣∣ > v(η)

2η

)
(B.41)

where the last inequality follows from (B.38). First, since EZ1 = 0, we have∣∣EZ≤u(η)1−γ

1

∣∣ =
∣∣EZ>u(η)1−γ

1

∣∣
=

∫ ∞
u(η)1−γ

P(|Z1| > x)dx ∈ RV(α−1)(1−γ)(1−∆)(η).

Therefore, for all η > 0 that are sufficiently small,

|EZ≤u(η)1−γ

1 + · · ·+ EZ≤u(η)1−γ

n(η)−i |

≤n(η) · η(α−1)(1−∆)(1−2γ) ≤ 2η(α−1)(1−∆)(1−2γ)−β

≤(1/η)(1−∆)(1−2γ) due to (B.39)

≤v(η)

4η
due to ∆̃/2 ≤ ∆ in (B.36) and 1− γ < 1.

If we let Yn = Z
≤u(η)1−γ

n −EZ≤u(η)1−γ

n and plug the bound above back into (B.41), then (for all η > 0
that are sufficiently small)

(I) ≤ n(η)i · P(|Y1 + · · ·+ Yn(η)−i| >
v(η)

4η
)

≤ n(η)i exp

(
−

ε2

16 · 1/η
2−2∆̃

2
(
n(η)− i

)
E|Y1|2 + 2

3δ
1−γ · (1/η)(1−∆)(1−γ) · ε4/η1−∆̃

)
(B.42)

where the last inequality is obtained from Bernstein’s inequality. Note that from Karamata’s theorem,

E|Y1|2 = var(Z
≤u(η)1−γ

1 ) ≤ E|Z≤u(η)1−γ

1 |2

≤
∫ u(η)1−γ

0

2xP(|Z1| > x)dx ∈ RV−(1−∆)(1−γ)(2−α)(η).

Now note that

• In case that α < 2, for all η > 0 that are sufficiently small, we have (using (B.36))

2
(
n(η)− i

)
E|Y1|2 ≤ (1/η)β+(2−α)(1−∆) < (1/η)2(1−∆)

⇒ 1/η2−2∆̃

2
(
n(η)− i

)
E|Y1|2

≥ 1/η∆;

• In case that α ≥ 2, for all η > 0 that are sufficiently small,

2
(
n(η)− i

)
E|Y1|2 < 1/ηβ+ ∆

2

and we know that β + ∆
2 < 2− 2∆̃ due to 2− β > 2∆ and 2∆̃ ≤ ∆ (see (B.34)-(B.36));
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• Since γ > 0 and 2∆̃ ≤ ∆, we know that

(1−∆)(1− γ) + (1− ∆̃) < 2− 2∆̃.

Therefore, it is easy to see that the R.H.S. of (B.42) decays at a geometric rate as η tends to zero,
hence o(ηN ). On the other hand,

(II) ≤ P(I ≥ j) ≤
(
n(η)

j

)
· P
(
|Z≤u(η)
i | > u(η)1−γ ∀i = 1, . . . , j

)
≤ n(η)j · P

(
|Z≤u(η)

1 | > u(η)1−γ
)j
,

which is regularly varying w.r.t. η with index
(
α(1 − γ)(1 − ∆) − β

)
j. Therefore, for all η > 0

sufficiently small,

(II) ≤ η
(
α(1−2γ)(1−∆)−β

)
j < ηN due to (B.40).

Collecting results above, we have established that

P
(
η
∣∣Z≤u(η)

1 + · · ·+ Z
≤u(η)
n(η)

∣∣ > v(η)
)

= o(ηN ).

The conclusion of the lemma now follows from Etemadi’s theorem.

Now consider the following setting. Let us fix some positive integer N and β ∈ (1, 2 ∧ α). Then
we can find some positive integer j such that (α − β)j > N . Meanwhile, given any ε > 0, we will

have ε− jδ ≥ ε/2 for all δ > 0 sufficiently small. Therefore, by applying Lemma B.9 with ∆ = ∆̃ = 0
(hence u(η) = δ/η, v(η) = ε) and β, j,N, ε, δ as described here, we immediately get the following
result.

Lemma B.10. Given any β ∈ (1, α ∧ 2), ε > 0, and N > 0, the following holds for any sufficiently
small δ > 0:

P
(

max
j=1,2,··· ,d(1/η)βe

η|Z≤δ/η1 + · · ·+ Z
≤δ/η
j | > ε

)
= o(ηN )

as η ↓ 0.

Using results and arguments above, we are able to illustrate the typical behavior of the SGD
iterates Xη

n in the following two scenarios. First, we show that, when starting from most parts in
the attraction field Ω, the SGD iterates Xη

n will most likely return to the neighborhood of the local
minimum within a short period of time without exiting Ω. Given that there are only finitely many
attraction fields on f , it is easy to see that the key technical tool Lemma 7 follows immediately from
the next result.

Lemma B.11. For sufficiently small ε > 0, the following claim holds:

lim
η↓0

sup
x∈Ω:|x−s−|∧|x−s+|>ε

Px
(
Xη
n ∈ Ω ∀n ≤ Treturn(η, ε), and Treturn(η, ε) ≤ ρ(ε)/η

)
= 1

where the stopping time involved is defined as

Treturn(η, ε) =∆ min{n ≥ 0 : Xη
n(x) ∈ [−2ε, 2ε]}

the function t̂(ε) is defined in (B.24), and the function ρ(·) is defined as ρ(ε) = 3ε̄
0.9cL−∧cL+

+ 2t̂(ε)
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Proof. Throughout, we only consider ε small enough so that Lemma B.6 could hold. Also, fix some
N > 0,∆α ∈ (0, α− 1) and β ∈ (1, α). Let σ(x, η) =∆ min{n ≥ 0 : Xη

n /∈ Ω}.
Without loss of generality, we assume Ω = [−L, s+) and x < 0 (so reflection at −L) is a possibility.

Any other case can be addressed similarly as shown below.
From Lemma B.2 and the regular varying nature of H(·), we have, for any ε, δ > 0,

P(T η1 (δ) ≤ ρ(ε)/η) ≤ ηα−1−∆α (B.43)

for any sufficiently small η.
Let T̃ ηescape(x) be the stopping time defined in Lemma B.6. From (B.30),(B.31),(B.43) and Lemma

B.10, we know that

sup
x∈[−L,−L+ε̄]

P
(
T̃ ηescape(x) < σ(x, η), T̃ ηescape(x) ≤ 3ε̄

0.9cL−η
and Xη

T̃ηescape
(x) ∈ [−L+ ε̄,−L+ 2ε̄]

)
≥ 1− ηN − ηα−1−∆α (B.44)

for all sufficiently small η.
Next, we focus on x ∈ Ω such that |x− s−| ∧ |x− s+| > ε and x ≥ −L+ ε̄. We start by considering

the time it took for the (deterministic) gradient descent process yηn(x) to return to [−1.5ε, 1.5ε].
From the definition of t̂(ε) in (B.24) and Lemma B.4, we know that for η small enough such that
η exp(2Mt̂(ε)) < 0.5ε, we have

min{n ≥ 0 : yηn(x) ∈ [−1.5ε, 1.5ε]} ≤ 2t̂(ε)/η.

Now consider event A(d(1/η)βe, η, ε
4 exp(2Mt̂(ε))

, δ) (see definition in (B.28)). From Lemma B.10, we

know that for any sufficiently small δ, we have

P
((
A(d(1/η)βe, η, ε

4 exp(2Mt̂(ε))
, δ)
)c)

= o(ηN ). (B.45)

Combining this result with (B.43)(B.45) and Lemma B.7, we get

sup
x∈Ω:|x−s−|∧|x−s+|>ε,x≥−L+ε̄

Px
(
Treturn(η, ε) < σ(x, η), Treturn(η, ε) ≤ 2t̂(ε)/η

)
≥ 1− ηN − ηα−1−∆α

(B.46)

for any sufficiently small η. To conclude the proof, we only to combine strong Markov property (at

T̃ ηescape) with bounds in (B.44)(B.46).

In the next result, we show that, once entering a ε−small neighborhood of the local minimum, the
SGD iterates will most likely stay there until the next large jump.

Lemma B.12. Given N0 > 0, the following claim holds for any ε, δ > 0 that are sufficiently small:

sup
x∈[−2ε,2ε]

P
(
∃n < T η1 (δ) s.t. |Xη

n(x)| > 3ε
)

= o(ηN0)

as η ↓ 0.

Proof. Fix ε small enough such that 3ε < ε0 (see Assumption 1 for the constant ε0). Also, fix some
∆α ∈ (0, 1), β ∈ (1, α), N > α + ∆α − β + N0. Due to Lemma B.10, for any δ sufficiently small, we
will have

P
(

max
j=1,2,··· ,d(1/η)βe

η|Z≤,δ1 + · · ·+ Z≤,δj | >
ε

exp(2M)

)
= o(ηN ). (B.47)
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Fix such δ > 0. We now show that the desired claim is true for the chosen ε, δ.
First of all, from Lemma B.1, we know the existence of some θ > 0 such that

P(T η1 (δ) > 1/ηα+∆α) = o(exp(−1/ηθ)). (B.48)

Next, let us zoom in on the first d(1/η)βe SGD iterates. For any η small enough, we will have yηn(x) ∈
[−2ε, 2ε] for any n ≥ 1 and yηd(1/η)βe(x) ∈ [−ε, ε] given x ∈ [−2ε, 2ε]. From now on we only consider

such η. Due to Lemma B.7, we know that on event
{

maxj=1,2,··· ,d(1/η)e η|Z≤,δ1 +· · ·+Z≤,δj | > ε
exp(2M)

}
,

we have

|Xη
n(x)| ≤ 3ε ∀n ≤ d1/ηβe ∧ (T η1 (δ)− 1)

and on event
{

maxj=1,2,··· ,d(1/η)e η|Z≤,δ1 + · · · + Z≤,δj | > ε
exp(2M)

}
∩ {T η1 (δ) > d(1/η)βe}, we have

Xη
Tη1 (δ)

(x) ∈ [−2ε, 2ε]. Now by repeating the same argument inductively for d1/ηα+∆α−βe times, we

can show that on event

{∀i = 1, 2, · · · , d1/ηα+∆α−βe, max
j=1,2,··· ,d(1/η)βe

η|Z≤,δ
id(1/η)βe+1

+ · · ·+ Z≤,δ
id(1/η)βe+j | >

ε

exp(2M)
},

(B.49)

we have |Xη
n(x)| ≤ 3ε ∀n ≤ 1/ηα+∆α ∧ (T η1 (δ)− 1). To conclude the proof, we only need to combine

this fact with (B.47).

The following result is an immediate product from the geometric tail bound in (B.48) and the
inductive argument in (B.49).

Corollary B.13. Given N > 0, ε̃ > 0, the following claim holds for all sufficiently small δ > 0:

P
(

max
j=1,2,··· ,Tη1 (δ)−1

η|Z1 + · · ·+ Zj | > ε̃
)

= o(ηN ). (B.50)

We introduce a few concepts that will be crucial in the analysis below. Recall the definition of
perturbed ODE x̃η in (B.18)-(B.20) (note that we will drop the notational dependency on learning
rate η when we choose η = 1). Consider the definition of the following two mappings from where
w = (w1, · · · , wl∗) is a sequence of real numbers and t = (t1, t2, · · · , tl∗) with 0 = t1 < t2 < t3 < · · ·
as

h(w, t) = x̃(tl∗ , 0; t,w).

Next, define sets (for any ε ∈ (−ε̄, ε̄))

E(ε) = {(w, t) ⊆ Rl
∗
×
(
R+

)l∗−1

: h(w, t) /∈ [s− − ε, s+ + ε]}. (B.51)

We add a few remarks about the two types of sets defined above.

• Intuitively speaking, E(ε) contains all the perturbations (with times and sizes) that can send
the ODE out of the current attraction field (allowing for some error with size ε);

• From the definition of t̄, δ̄ in (B.21)(B.22) and Corollary B.5, one can easily see that for a fixed
ε ∈ (−ε̄, ε̄),

(w, t) ∈ E(ε)⇒ |wj | > δ̄, tj − tj−1 ≤ t̄ ∀j;

• Lastly, E(ε) are open sets due to f ∈ C2.
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Use Leb+ to denote the Lebesgue measure restricted on [0,∞), and define (Borel) measure να
with density on R\{0}:

να(dx) = 1{x > 0} αp+

xα+1
+ 1{x < 0} αp−

|x|α+1

where α > 1 is the regular variation index for the distribution of Z1 and p−, p+ ∈ (0, 1) are constants

in Assumption 2. Now we can define a Borel measure µ on Rl∗ ×
(
R+

)l∗−1

as product measure

µ = (να)l
∗
× (Leb+)l

∗−1. (B.52)

Due to remarks above, one can see that for ε ∈ (−ε̄, ε̄), we have µ(E(ε)) < ∞. We are now ready to
analyze a specific type of noise Zn.

Definition B.1. For any n ≥ 1 and any ε ∈ (−ε̄, ε̄), δ ∈ (0, b ∧ δ̄), η > 0, we say that the jump Zn
has (ε, δ, η)-overflow if

• η|Zn| > δ;

• In the set {n + 1, · · · , n + 2dl∗t̄/ηe}, there are at least (l∗ − 1) elements (ordered as n < t2 <
t3 < · · · < tl∗) such that η|Zti | > δ for any i = 2, · · · , l∗;

• Let t1 = n and t′i = ti − ti−1 for any i = 2, · · · , l∗, wi = ηZi for any i = 1, · · · , l∗, for real
sequence w = (w1, w2, · · · , wl∗) and a sequence of positive number t = (η(ti − n))l

∗

i=2, we have

(w, t) ∈ E(ε).

Moreover, if Zn has (ε, δ, η)−overflow, then we call h(w, t) as its (ε, δ, η)−overflow endpoint.

Due to the iid nature of (Zj)j≥1, let us consider an iid sequence (Vj)j≥0 where the sequence has the
same law of Z1. Note that for any fixed n ≥ 1, the probability that Zn has (ε, δ, η)-overflow is equal to
the probability that V0 has(ε, δ, η)-overflow. More specifically, we know that P(η|V0| > δ) = H(δ/η),
and now we focus on conditional probability admitting the following form:

p(ε, δ, η) = P
(
V0 has (ε, δ, η)-overflow

∣∣∣ η|V0| > δ
)
. (B.53)

For any open interval A = (a1, a2) such that A ∩ [s− + ε̄, s+ − ε̄] = ∅, we also define

p(ε, δ, η;A) = P
(
V0 has (ε, δ, η)-overflow and the endpoint is in A

∣∣∣ η|V0| > δ
)
. (B.54)

Lemma B.14. For any ε ∈ (−ε̄, ε̄), δ ∈ (0, b ∧ δ̄), and any open interval A = (a1, a2) such that
|a1| ∧ |a2| > r − ε̄ and |a1| 6= L, |a2| 6= L, we have

lim
η↓0

p(ε, δ, η;A)

δα
(
H(1/η)

η

)l∗−1
= µ

(
E(ε) ∩ h−1(A)

)
where µ is the measure defined in (B.52), and p(·, ·, ·;A) is the conditional probability defined in (B.54).

Proof. Let us start by fixing some notations. Let T1 = 0, and define stopping times Tj = min{n >
Tj−1 : η|Vn| > δ} and inter-arrival times T ′j = Tj − Tj−1 for any j ≥ 1, and large jump Wj = VTj for
any j ≥ 0. Note that: first of all, the pair (T ′i ,Wi) is independent of (T ′j ,Wj) whenever i 6= j; besides,
Wj and T ′j are independent for all j ≥ 1.

Define the following sequence (of random elements) w = (w1, · · · , wl∗) and t = (t1, · · · , tl∗) by

wj = ηWj , tj = ηTj .

If V0 has (ε, δ, η)-overflow, then the following two events must occur:
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• T ′j ≤ 2t̄/η for any j = 2, · · · , l∗;

• η|Wj | > δ̄ for any j = 1, 2, · · · , l∗;

• (w, t) ∈ E(ε)

Therefore, for sufficiently small η, we now have

p(ε, δ, η)

=
(
P(T ′1 ≤ 2t̄/η)

)l∗−1

·
∫
1

{
(w, t) ∈ E(ε)

}
· P(ηW1 = dw1|η|W1| > δ) · · ·P(ηWl∗ = dwl∗ | η|Wl∗ | > δ)

· P(ηT ′2 = dt′2|ηT ′2 ≤ 2t̄) · · ·P(ηT ′l∗ = dt′l∗ |ηT ′l∗ ≤ 2t̄)

=
(
P(T ′1 ≤ 2t̄/η)

)l∗−1

·Qη,δ
(
E(ε) ∩ h−1(A)

)
(B.55)

where Qη,δ is the Borel-measurable probability measure on Rl∗ ×
(
R+

)l∗−1

induced by a sequence of

independent random variables (W ↑1 (η, δ), · · · ,W ↑l∗(η, δ), T
↑
2 (η, δ), · · · , T ↑l∗(η, δ)) such that

• For any i = 1, · · · , l∗, the distribution of W ↑i (η, δ) follows from P
(
ηW1 ∈ ·

∣∣∣ η|Wl∗ | > δ
)

;

• For any i = 2, · · · , l∗, the distribution of T ↑i (η, δ) follows from P
(
ηT1 ∈ ·

∣∣∣ ηT1 ≤ 2t̄
)

;

• Qη,δ(·) = P
(

(ηW ↑1 (η, δ), · · · , ηW ↑l∗(η, δ), ηT
↑
2 (η, δ), · · · , η

∑l∗

j=2 T
↑
j (η, δ)) ∈ ·

)
.

Now we study the weak convergence of W ↑1 , T
↑
1 :

• Due to the regularly varying nature of distribution of Z1 (hence for W1), we know that: for any
x > δ,

lim
η↓0

P
(
ηW1 > x

∣∣∣ η|Wl∗ | > δ
)

= p+
δα

xα
, lim

η↓0
P
(
ηW1 < −x

∣∣∣ η|Wl∗ | > δ
)

= p−
δα

xα
;

therefore, W ↑1 (η, δ) weakly converges to a (randomly signed) Pareto RV that admits the density

να,δ(dx) = 1{x > 0}p+
αδα

xα+1
+ 1{x < 0}p−

αδα

|x|α+1

as η ↓ 0;

• For any x ∈ [0, 2t̄], since limη↓0bx/ηcH(δ/η) = 0, it is easy to show that

lim
η↓0

1− (1−H(δ/η))bx/ηc

bx/ηcH(δ/η)
= 1;

therefore, we have (for any x ∈ (0, 2t̄])

P(ηT1 ≤ x | ηT1 ≤ 2t̄) =
1− (1−H(δ/η))bx/ηc

1− (1−H(δ/η))b2t̄/ηc
→ x

2t̄

as η ↓ 0, which implies that T ↑1 converges weakly to a uniform RV on [0, 2t̄].
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Let us denote the weak limit of measure Qη,δ as µδ,2t̄. In the discussion before the Lemma we have
shown that, for any (w, t) ∈ E(ε) (with δ ∈ (0, δ̄)), we have |wi| ≥ δ̄ and |t′i| ≤ 2t̄; since we require
δ < δ̄, by definition of measures µ and µδ,2t̄ we have

µδ,2t̄
(
E(ε) ∩ h−1(A)

)
=

δαl
∗

(2t̄)l∗−1
· µ
(
E(ε) ∩ h−1(A)

)
.

For simplicity of notations, we let E(ε, A) =∆ E(ε)∩h−1(A). By definition of the set E(ε), we have
(recall that A is an open interval (a1, a2) that does not overlap with [s− + ε̄, s+ − ε̄])

E(ε, A) = h−1
(
(−∞, s− − ε) ∪ (s+ + ε,∞)

)
∩ h−1

(
(a1, a2)

)
= h−1

((
(−∞, s− − ε) ∪ (s+ + ε,∞)

)
∩ (a1, a2)

)
= h−1

(
F (ε, a1, a2)

)
where F (ε, a1, a2) =∆

(
(−∞, s− − ε) ∪ (s+ + ε,∞)

)
∩ (a1, a2). Meanwhile, it is easy to see that h is a

continuous mapping, hence

(w, t) ∈ ∂E(ε, A)⇒ h(w, t) ∈ {s− + ε, s+ − ε, a1, a2}.

Fix some s with s 6= ±L, |s| > (l∗ − 1)b + ε̄. For any fixed real numbers t2, · · · , tl∗−1, w1, · · · , wl∗ , if
h(w1, · · · , wl∗ , t2, · · · , tl∗−1, t) = s, then since x̃(tl∗ − 1, 0;w1, · · · , wl∗ , t2, · · · , tl∗−1, t) ∈ [s− b, s+ b],
due to Assumption 1 (in particular, there is no point x on this interval with |f ′(x)| ≤ c0 ), there exists
at most one possible t that makes h(w1, · · · , wl∗ , t2, · · · , tl∗−1, t) = s. Therefore, let W ∗j be iid RVs

from law να,δ defined above, and (T ∗,′j )j≥2 be iid RVs from Unif[0, 2̄t], T ∗0 = 0, T ∗k =
∑k
j=2 T

∗,′
j . By

conditioning on all W ∗j and all T ∗,′2 , · · · , T ∗,′l∗−1, we must have

P
(
h(W ∗1 , · · · ,W ∗j , T ∗2 , · · · , T ∗l∗) = s

∣∣∣ W ∗1 = dw1, · · · ,W ∗l∗ = dwl∗ , T
∗,′
2 = dt2, · · · , T ∗,′l∗−1 = dtl∗−1

)
= 0

(B.56)

which implies

P
(
h(W ∗1 , · · · ,W ∗j , T ∗2 , · · · , T ∗l∗) = s

)
= 0

hence

µ
(
∂E(ε, A)

)
= 0.

By Portmanteau theorem (see Theorem 2.1 of [1]) we have

lim
η↓0

Qη,δ(E(ε, A)) = µδ,2t̄(E(ε, A)).

Collecting the results we have and using (B.55), we can see that

lim sup
η↓0

p(ε, δ, η;A)(
H(1/η)

η

)l∗−1

δα
= lim sup

η↓0

(2t̄)l
∗−1 · p(ε, δ, η;A)

δαl∗ ·
(
P(T ′1 ≤ 2t̄/η)

)l∗−1
·
(δα

2t̄
· P(T ′1 ≤ 2t̄/η)

H(1/η)/η

)l∗−1

≤ lim sup
η↓0

(2t̄)l
∗−1 · p(ε, δ, η;A)

δαl∗ ·
(
P(T ′1 ≤ 2t̄/η)

)l∗−1
· lim sup

η↓0

(δα
2t̄
· P(T ′1 ≤ 2t̄/η)

H(1/η)/η

)l∗−1

≤ µ(E(ε, A)) · lim sup
η↓0

(δα
2t̄
· P(T ′1 ≤ 2t̄/η)

H(1/η)/η

)l∗−1

.
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Fix some κ > 1. From Lemma B.2 and the regularly varying nature of function H, we get

lim sup
η↓0

(δα
2t̄
· P(T ′1 ≤ 2t̄/η)

H(1/η)/η

)l∗−1

≤ κl
∗−1 lim sup

η↓0

(δα
2t̄
· 2t̄H(δ/η)/η

H(1/η)/η

)l∗−1

= κl
∗−1.

Due to the arbitrariness of κ > 1, we have established that

lim sup
η↓0

p(ε, δ, η;A)(
H(1/η)

η

)l∗−1

δα
≤ µ(E(ε)).

The lower bound can be shown by an argument symmetric to the one for upper bound.

The following result is an immediate corollary of Lemma B.14.

Corollary B.15. For any ε ∈ (−ε̄, ε̄), δ ∈ (0, b ∧ δ̄), we have

lim
η↓0

p(ε, δ, η)

δα
(
H(1/η)

η

)l∗−1
= µ

(
E(ε)

)
where µ is the measure defined in (B.52), and p(·, ·, ·) is the conditional probability defined in (B.53).

Define the following stopping times:

σ(η) = min{n ≥ 0 : Xη
n /∈ Ω}; (B.57)

R(ε, δ, η) = min{n ≥ T η1 (δ) : Xη
n ∈ [−2ε, 2ε]}. (B.58)

σ indicate the time that the iterates escape the current attraction field, while R denotes the time the
SGD iterates return to a small neighborhood of the local minimum after first exit from this small
neighborhood. In the next few results, we study the probability of several atypical scenarios when
SGD iterates make attempts to escape Ω or return to local minimum after the attempt fails. First,
we show that, when starting from the local minimum, it is very unlikely to escape with less than l∗

big jumps.

Lemma B.16. Given ε ∈ (0, ε̄), N > 0, the following claim holds for any sufficiently small δ > 0:

sup
x∈[−2ε,2ε]

Px
(
σ(η) < R(ε, η), σ(η) < T ηl∗(δ)

)
= o(ηN )

as η ↓ 0.

Proof. Based on the given ε > 0, fix some ε̃ = ε
4 exp(2Mt̂(ε))

. Recall the definition of t̂(ε) in (B.24).

First, using Lemma B.12, we know that for sufficiently small δ, we have

sup
x∈[−2ε,2ε]

P
(
A×1 (ε, δ, η)

)
= o(ηN ) (B.59)

where

A×1 (ε, δ, η) =
{
∃n < T η1 (δ) s.t. |Xη

n(x)| > 3ε
}
.

Define event

A×2 (ε̃, δ, η) =∆
{
∃j = 2, · · · , l∗ s.t. max

k=1,2,··· ,Tηj (δ)−Tηj−1(δ)−1
η|ZTηj−1(δ)+1 + · · ·+ ZTηj−1(δ)+j | > ε̃

}
.
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From Corollary B.13, we know that for sufficiently small δ > 0,

P
(
A×2 (ε̃, δ, η)

)
= o(ηN ). (B.60)

From now on, we only consider such δ that (B.59)(B.60) hold.

On event
(
A×1 ∪A

×
2

)c
∩ {σ(η) < R(ε, η)} ∩ {σ(η) > T η1 (δ)}, we must have σ(η) > T η1 (δ) and

T η2 (δ) ∧ σ(η)− T η1 (δ) < 2t̂(ε)/η.

Otherwise, due to Lemma B.4 and B.7, we know that at step t̃ = T η1 (δ) + bt̂(ε)/ηc, we have

|Xη

t̃
| < 2ε, and |Xη

n| ≤ ε̄ ∀n ≤ t̃

for any sufficiently small η. By repeating this argument inductively, we obtain the following result:
define

J = min{j = 1, 2, · · · : σ(η) ∈ [T ηj (δ), T ηj+1(δ))},

then on event
(
A×1 ∪A

×
2

)c
∩ {σ(η) < R(ε, η), σ(η) < T ηl∗(δ)}, we must have

T ηj (δ) ∧ σ(η)− T ηj−1(δ) ∧ σ(η) < 2t̂(ε)/η ∀j = 2, 3, · · · , J. (B.61)

Furthermore, using this bound and Lemma B.7, we know that on event
(
A×1 ∪ A

×
2

)c
∩ {σ(η) <

R(ε, η), σ(η) < T ηl∗(δ)},

• |Xη
Tηj (δ)

| ≤ |Xη
Tηj−1(δ)

|+ b+ ε+ ε̄ for all j = 2, 3, J − 1,

• |Xη
σ(η)| ≤ |X

η
TηJ−1(δ)

|+ ε+ ε̄

However, this implies

|Xη
σ(η)| ≤ l

∗(ε̄+ ε) + (l∗ − 1)b < r

and contradicts the definition of σ(η). In summary,

sup
x∈[−2ε,2ε]

Px
(
σ(η) < R(ε, η), σ(η) < T ηl∗(δ)

)
≤ P

(
A×1 (ε, δ, η) ∪A×2 (ε̃, δ, η)

)
= o(ηN ).

The following two results follow immediately from the proof above, especially the inductive argu-
ment leading to bound (B.61), and we state them without repeating the deatils of the proof.

Corollary B.17. Given ε ∈ (0, ε̄), N > 0, the following claim holds for any sufficiently small δ > 0:

sup
x∈[−2ε,2ε]

Px
(
T ηl∗(δ) ≤ σ(η) ∧R(ε, η), and ∃j = 2, 3, · · · , l∗ s.t. T ηj (δ)− T ηj−1(δ) > 2t̂(ε)/η

)
= o(ηN )

as η ↓ 0.

Corollary B.18. Given ε ∈ (0, ε̄), N > 0, the following claim holds for any sufficiently small δ > 0:

sup
x∈[−2ε,2ε]

Px
(
R(ε, η) < T ηl∗(δ) ∧ σ(η), R(ε, η)− T η1 (δ) > 2l∗t̂(ε)/η

)
= o(ηN )

as η ↓ 0.
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In the next result, we show that, if the inter-arrival time between some large jumps are too long,
or some large jumps are still not large enough, then it is very unlikely that the SGD iterates could
escape at the time of l∗−th large jump (or even get close enough to the boundary of the attraction
field).

Lemma B.19. Given ε ∈ (0, ε̄) and any N > 0, the following holds for all δ > 0 that are sufficiently
small:

sup
x∈[−2ε,2ε]

Px(B×2 (ε, δ, η)) = o(ηN ).

where

B×2 (ε, δ, η) = {T ηl∗(δ) ≤ σ(η) ∧R(ε, η)} ∩
{
∃j = 2, 3, · · · , l∗ s.t. T ηj (δ)− T ηj−1(δ) > t̄/η

or ∃j = 1, 2, · · · , l∗ s.t. η|W η
j (δ)| ≤ δ̄

}
∩ {|Xη

Tη
l∗
| ≥ r − ε̄}.

Proof. Let A×1 , A
×
2 be the events defined in the proof of Lemma B.16. Based on the given ε > 0, fix

some ε̃ = ε
4 exp(2Mt̂(ε))

.

Let J = min{j = 2, 3, · · · : T ηj (δ)−T ηj−1(δ) > t̄/η}. On event
(
A×1 (ε, δ, η)∪A×2 (ε̃, δ, η)

)c
∩{J ≤ l∗},

from Lemma B.4 and B.7 and the definition of constant t̄, we know that

• |Xη
Tηj (δ)

| ≤ |Xη
Tηj−1(δ)

|+ b+ ε+ ε̄ for all j = 2, 3, J − 1;

• |Xη
TηJ (δ)

| ≤ 2ε̄

• |Xη
n| < s− ε̄ ∀n ≤ T ηJ (δ)

Now starting from step T ηJ (δ), by using Lemma B.4 and B.7 again one can see that

• |Xη
Tηj (δ)

| ≤ |Xη
Tηj−1(δ)

|+ b+ ε+ ε̄ for all j = J + 1, · · · , l∗.

Combining these results, we have that |Xη
Tη
l∗
| < r − ε̄ on event

(
A×1 (ε, δ, η) ∪A×2 (ε̃, δ, η)

)c
∩ {J ≤ l∗}.

Next, define J ′ = min{j = 1, 2, · · · ; η|W η
j (δ)| ≤ δ̄}. Similarly, on event

(
A×1 (ε, δ, η)∪A×2 (ε̃, δ, η)

)c
∩

{J > l∗} ∩ {J ′ ≤ l∗}, using Lemma B.4 and B.7 again one can see that

• |Xη
Tηj (δ)

| ≤ |Xη
Tηj−1(δ)

|+ b+ ε+ ε̄ for all j = 1, 2, · · · , l∗, j 6= J ′;

• |Xη
TηJ (δ)

| ≤ |Xη
TηJ−1(δ)

|+ δ̄ + ε+ ε̄ for all j = 1, 2, · · · , l∗, j 6= J ′.

Since δ̄ ∈ (0, ε̄), we have |Xη
Tη
l∗
| < r − ε̄ on this event.

In summary, the following bound

sup
x∈[−2ε,2ε]

Px(B×2 ) ≤ P(A×1 (ε, δ, η) ∪A×2 (ε̃, δ, η)) = o(ηN )

holds for any δ that is sufficiently small, which is established in Lemma B.16. This conclude the
proof.

In the next lemma, we show that, starting from the local minimum, it is unlikely that the SGD
iterates will be right at the boundary of the attraction field after l∗ large jumps. Recall that there are
nmin attraction fields on f , and excluding s0 = −∞, snmin

= ∞ the remaining points s1, · · · , snmin−1

are the boundaries of the attraction fields.
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Lemma B.20. There exists a function Ψ(·) : R+ 7→ R+ satisfying limε↓0 Ψ(ε) = 0 such that the
following claim folds. Given ε ∈

(
0, ε̄/(3ρ̄+ 3ρ̃+ 9)

)
, we have

lim sup
η↓0

supx∈[−2ε,2ε] Px(B×3 (ε, δ, η))(
H(1/η)/η

)l∗−1
≤ δαΨ(ε)

for all δ sufficiently small, where ρ̄ and ρ̃ are the constants defined in Corollary B.5 and B.8, and the
event is defined as

B×3 (ε, δ, η) =
{
T ηl∗(δ) ≤ σ(η) ∧R(ε, η)

}
∩
{
∃k ∈ [nmin − 1] such that Xη

Tη
l∗ (δ)

∈ [sk − ε, sk + ε]
}
.

Proof. Let A×1 , A
×
2 be the events defined in the proof of Lemma B.16. Based on the given ε > 0, fix

some ε̃ = ε
4 exp(2Mt̂(ε))

. Fix some N > αl∗.

Choose δ small enough so that claim in Lemma B.19 holds for the ε prescribed. Using the same
arguments in Lemma B.19, we have the following inclusion of events:

B×3 (ε, δ, η) ∩
(
A×1 (ε, δ, η) ∪A×2 (ε̃, δ, η)

)c
⊆
{
∀j = 2, 3, · · · , l∗, T ηj (δ)− T ηj−1(δ) ≤ t̄/η

}
∩
{
∀j = 1, 2, 3, · · · , l∗, η|W η

1 (δ)| > δ̄
}
.

Therefore, on event B×3 (ε, δ, η)∩
(
A×1 (ε, δ, η)∪A×2 (ε̃, δ, η)

)c
, we can apply Corollary B.5 and B.8 and

conclude that ZTη1 (δ) has (−ε̄, δ, η)−overflow, and its (−ε̄, δ, η)−overflow endpoint lies

(sk − 3(ρ̄+ ρ̃+ 3)ε, sk + 3(ρ̄+ ρ̃+ 3)ε)

for some k ∈ [nmin − 1]. Using Lemma B.14 and Corollary B.15, we have that (for any sufficiently
small η)

P
(
B×3 (ε, δ, η) ∩

(
A×1 (ε, δ, η) ∪A×2 (ε̃, δ, η)

)c)
≤δα

(H(1/η)

η

)l∗−1

·
nmin−1∑
k=1

µ
(
E(−ε̄) ∩ h−1

(
(sk − ε̂, sk + ε̂)

))
where ε̂ = 3(ρ̄+ ρ̃+ 3)ε. Besides, as established in the proof of Lemma B.16, we have

P
(
A×1 (ε, δ, η) ∪A×2 (ε̃, δ, η)

)
= o(ηN )

for all sufficiently small δ. In conclusion, we only need to choose

Ψ(ε) =

nmin−1∑
k=1

µ
(
E(−ε̄) ∩ h−1

(
(sk − 3(ρ̄+ ρ̃+ 3)ε, sk + 3(ρ̄+ ρ̃+ 3)ε)

))
.

To conclude the proof, just note that by combining the continuity of measure with the conditional
probability argument leading to (B.56), we can show that limε↓0 Ψ(ε) = 0.

Lastly, we establish the lower bound for the probability of the most likely way for SGD iterates
to exit the current attraction field: making l∗ large jumps in a relatively short period of time. Recall
that ε̄ is the fixed constant in (B.13)-(B.16).
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Lemma B.21. Given ε ∈ (0, ε̄/3), it holds for any sufficiently small δ > 0 such that

lim inf
η↓0

inf |x|≤2ε Px(A◦(ε, δ, η))(
H(1/η)/η

)l∗−1
≥ c∗δα

where the event is defined as

A◦(ε, δ, η) =∆
{
σ(η) < R(ε, η), σ(η) = T ηl∗(δ), X

η
Tη
l∗
/∈ [s− − ε, s+ + ε]

}
∩
{
T ηj (δ)− T ηj−1(δ) ≤ ε̄

2M
d1/ηe ∀j = 2, 3, · · · , l∗

}
and the constant

c∗ =
1

2
(

1

2b
)l
∗α(

ε̄

4M
)l
∗−1

is strictly positive and does not vary with ε, δ.

Proof. Let A×1 , A
×
2 be the events defined in the proof of Lemma B.16. Fix some N such that N > αl∗.

Based on the given ε > 0, fix some ε̃ = ε
4 exp(2Mt̂(ε))

. We only consider δ < M . Furthermore, choose δ

small enough so that (B.59) and (B.60) hold for the chosen N and ε. Also, we only consider η small
enough so that ηM < b ∧ ε̄.

Due to (B.13)-(B.16), we can, without loss of generality, assume that r = s+, and in this case we
will have

l∗b− 100l∗ε̄ > s+ + 100l∗ε̄.

Under this assumption, we will now focus on providing a lower bound for the following event that
describes the exit from the right side of Ω (in other words, by crossing s+)

A◦→(ε, δ, η) =∆
{
σ(η) < R(ε, η), σ(η) = T ηl∗(δ), X

η
Tη
l∗
> s+ + ε

}
∩
{
T ηj (δ)− T ηj−1(δ) ≤ ε̄

2M
d1/ηe ∀j = 2, 3, · · · , l∗

}
.

First, define event

A◦3(δ, η) =
{
W η
j (δ) ≥ 2b ∀j = 1, · · · , l∗, T ηj (δ)− T ηj−1(δ) ≤ ε̄

2M
d1/ηe ∀j = 2, · · · , l∗

}
,

and observe some facts on event A◦3(δ, η) ∩
(
A×1 (ε, δ, η) ∪A×2 (ε̃, δ, η)

)c
.

• |Xη
k | ≤ 3ε∀n < T η1 (δ); (due to A×1 not occurring)

• Xη
Tη1 (δ)

∈ [b− 3ε, b+ 3ε]; (due to W η
1 ≥ 2b and the effect of gradient clipping at step T η1 , as well

as the fact that Xη
Tη1 −1

∈ [−3ε, 3ε] from the previous bullet point)

• Due to |f ′(·)| ≤M and δ < M , one can see that (for any n ≥ 1)

sup
x∈[−L,L]

|ηf ′(x)|+ |ηZ≤δ,ηn | ≤ 2ηM ;

this provides an upper bound for the change in SGD iterates at each step, and gives us

Xη
n ∈ [b− 3ε− ε̄, b+ 3ε+ ε̄] ∀T η1 (δ) ≤ n < T η2 (δ)

where we also used T η2 (δ)− T η1 (δ) ≤ ε̄
2M d1/ηe
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• Therefore, at the arrival time of the second large jump, we must have Xη
Tη2 (δ)

≥ 2b− 3ε− ε̄;

• By repeating the argument above inductively, we can show that (for all j = 1, 2, · · · , l∗)

Xη
n ∈ [(j − 1)b− 3ε− (j − 1)ε̄, (j − 1)b+ 3ε+ (j − 1)ε̄] ∀T ηj−1 ≤ n < T ηj

Xη
Tηj
∈ [jb− 3ε− (j − 1)ε̄, jb+ 3ε+ (j − 1)ε̄];

In particular, we know that Xη
n ∈ Ω for any n < T ηl∗ (so the exit does not occur before T ηl∗), and

at the arrival of the l∗−th large jump, we have (using 3ε < ε̄)

Xη
Tη
l∗ (δ)

≥ l∗b− l∗ε̄ > s+ + ε.

In summary, we have shown that

A◦3(δ, η) ∩
(
A×1 (ε, δ, η) ∪A×2 (ε̃, δ, η)

)c
⊆ A◦→(ε, δ, η).

To conclude the proof, just notice that (for sufficiently small η)

P
(
A◦3(δ, η) ∩

(
A×1 (ε, δ, η) ∪A×2 (ε̃, δ, η)

)c)
≥ P(A◦3(δ, η))− P(A×1 (ε, δ, η))− P(A×2 (ε̃, δ, η))

≥ P(A◦3(δ, η))− ηN due to (B.59) and (B.60)

≥
(H(2b/η)

H(δ/η)

)l∗( ε̄

4M
H(δ/η)/η

)l∗−1

− ηN due to Lemma B.2

≥ 2c∗δ
α(H(1/η)/η)l

∗−1 − ηN for all η sufficiently small, due to H ∈ RV−α
≥ c∗δα(H(1/η)/η)l

∗−1.

In order to present the main result of this section, we need to take into account the loss landscape
outside of the current attraction field Ω. Recall that there are nmin attraction fields on f . For all
the attraction fields different from Ω, we call them (Ω̃k)nmin−1

k=1 where, for each k ∈ [nmin − 1], the

attraction field Ω̃k = (s−k , s
+
k ) with the corresponding local minimum located at m̃k. Also, recall that

σ(η) is the first time Xη
n exits from Ω. Building upon these concepts, we can define a stopping time

τ(η, ε) =∆ min{n ≥ 0 : Xη
n ∈

nmin−1⋃
k=1

[m̃k − 2ε, m̃k + 2ε]} (B.62)

as the first time the SGD iterates visit a minimizer in an attraction field that is different from Ω.
Besides, let index Jσ(η) be such that

Jσ(η) = j ⇐⇒ Xη
σ(η) ∈ Ω̃j ∀j ∈ [nmin − 1]. (B.63)

In other words, it is the label of the attraction field that Xη
n escapes to. Lastly, define

λ(η) =∆ H(1/η)
(
H(1/η)/η

)l∗−1

, (B.64)

νΩ =∆ µ
(
E(0)

)
, (B.65)

νΩ
k =∆ µ

(
E(0) ∩ h−1(Ω̃k)

)
∀k ∈ [nmin − 1]. (B.66)

For definitions of the measure µ, set E, and mapping h, see (B.51) and (B.52).
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Now we are ready to state Proposition B.22, the most important technical tool in this section.
In (B.67) and (B.68), we provide upper and lower bounds for the joint distribution of first exit time
σ and the label Jσ indexing the attraction field we escape to; it is worth noticing that the claims
hold uniformly for all u > C. In (B.69) and (B.70), we provide upper and lower bounds for the joint
distribution of when we first visit a different local minimum (which is equal to τ) and which one we
visit (indicated by Xη

τ ). The similarity between (B.67) (B.68) and (B.69)(B.70) suggests a strong
correlation between the behavior of the SGD iterates at time σ(η) and that of time τ(η, ε), and this
is corroborated by (B.71): we show that it is almost always the case that τ is very close to σ, and on
the short time interval [σ(η), τ(η, ε)] the SGD iterates stay within the same attraction field.

Proposition B.22. Given C > 0 and some k′ ∈ [nmin − 1], the following claims hold for all ε > 0
that is sufficiently small:

lim sup
η↓0

sup
u∈(C,∞)

sup
x∈[−2ε,2ε]

Px
(
νΩλ(η)σ(η) > u, Jσ(η) = k′

)
≤ 2C + exp(−(1− C)3u)

νΩ
k′ + C

νΩ
,

(B.67)

lim inf
η↓0

inf
u∈(C,∞)

inf
x∈[−2ε,2ε]

Px
(
νΩλ(η)σ(η) > u, Jσ(η) = k′

)
≥ −2C + exp(−(1 + C)3u)

νΩ
k′ − C
νΩ

,

(B.68)

lim sup
η↓0

sup
u∈(C,∞)

sup
x∈[−2ε,2ε]

Px
(
νΩλ(η)τ(η, ε) > u, Xη

τ(η,ε) ∈ B(m̃k′ , 2ε)
)
≤ 4C + exp(−(1− C)3u)

νΩ
k′ + C

νΩ
,

(B.69)

lim inf
η↓0

inf
u∈(C,∞)

inf
x∈[−2ε,2ε]

Px
(
νΩλ(η)τ(η, ε) > u, Xη

τ(η,ε) ∈ B(m̃k′ , 2ε)
)
≥ −4C + exp(−(1 + C)3u)

νΩ
k′ − C
νΩ

,

(B.70)

lim inf
η↓0

inf
x∈[−2ε,2ε]

Px
(
λ(η)

(
τ(η, ε)− σ(η)

)
< C, Xη

n ∈ Ω̃Jσ(η) ∀n ∈ [σ(η), τ(η, ε)]
)
≥ 1− C.

(B.71)

Before presenting the proof to Proposition B.22, we make some preparations. First, we introduce
stopping times (for all k ≥ 1)

τk(ε, δ, η) = min{n > τ̃k−1(ε, δ, η) : η|Zn| > δ}
τ̃k(ε, δ, η) = min{n ≥ τk(ε, δ, η) : |Xη

n| ≤ 2ε}

with the convention that τ0(ε, δ, η) = τ̃0(ε, δ, η) = 0. The intuitive interpretation is as follows. For the
fixed ε we treat [−2ε, 2ε] as a small neighborhood of the local minimum of the attraction field Ω. All
the τ̃k partitioned the entire timeline into different attempts of escaping Ω. The interval [τ̃k−1, τ̃k] can
be viewed as the k−th attempt. If for σ(η), the first exit time defined in (B.57), we have σ(η) > τ̃k,
then we consider the k−th attempt of escape as a failure because the SGD iterates returned to this
small neighborhood of the local minimum again without exiting the attraction field. On the other
hand, the stopping times τk−1 indicate the arrival time of the first large jump during the k−th attempt.
The proviso that τ̃k ≥ τk−1 can be interpreted, intuitively, as that an attempt is considered failed only
if, after some significant efforts to exit (for instance, a large jump) has been observed, the SGD iterates
still returned to the small neighborhood [−2ε, 2ε]. Regarding the notations, we add a remark that
when there is no ambiguity we will drop the dependency on ε, δ, η and simply write τk, τ̃k.

To facilitate the characterization of events during each attempt, we introduce the following defini-
tions. First, for all k ≥ 1, let

jk =∆ #{n = τk−1(ε, δ, η), τk−1(ε, δ, η) + 1, · · · , τ̃k(ε, δ, η) ∧ σ(η) : η|Zn| > δ}

be the number of large jumps during the k−th attempt. Two implications of this definition:
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• First, for any k with σ(η) < τ̃k, we have jk = 0. Note that this proposition concerns the
dynamics of SGD up until σ(η), the first time the SGD iterates escaped from Ω, so there is no
need to consider an attempt that is after σ(η), and we will not do so in the analysis below;

• Besides, the random variable jk is measurable w.r.t. Fτ̃k∧σ(η), the stopped σ−algebra generated
by the stopping time τ̃k ∧ σ(η).

Furthermore, for each k = 1, 2, · · · , let

Tk,1(ε, δ, η) = τk−1(ε, δ, η) ∧ σ(η),

Tk,j(ε, δ, η) = min{n > Tk,j−1(ε, δ, η) : η|Zn| > δ} ∧ σ(η) ∧ τ̃k ∀j ≥ 2,

Wk,j(ε, δ, η) = ZTk,j(ε,δ,η) ∀j ≥ 1

with the convention Tk,0(ε, δ, η) = τ̃k−1(ε, δ, η). Note that for any k ≥ 1, j ≥ 1, Tk,j is a stopping time.
Besides, from the definition of jk, one can see that

τ̃k−1 + 1 ≤ Tk,j ≤ τ̃k ∧ σ(η) ∀j ∈ [jk], (B.72)

and the sequences
(
Tk,j

)jk
j=1

and
(
Wk,j

)jk
j=1

are the arrival times and sizes of large jumps during the

k−th attempt, respectively. Again, when there is no ambiguity we will drop the dependency on ε, δ, η
and simply write Tk,j and Wk,j .

In order to prove Proposition B.22, we analyze the most likely scenario that the exit from Ω would
happen. Specifically, we will introduce a series of events with superscript × or ◦, where × indicates
that the event is atypical or unlikely to happen and ◦ means that it is a typical event and is likely to
be observed before the first exit from the attraction field Ω. Besides, the subscript k indicates that
the event in discussion concerns the dynamics of SGD during the k−th attempt. Our goal is to show
that for some event A×(ε, δ, η) its probability becomes sufficiently small as learning rate η tends to 0,
so the escape from Ω almost always occurs in the manner described by (A×(ε, δ, η))c. In particular,
the definition of this atypical scenario A× involves the union of some atypical events A×k ,B

×
k that

occur in the k−th attempt. In other words, the intuition of A× is that something abnormal happened
during one of the attempts before the final exit.

Here is one more comment for the general naming convention of these events. Events with label A
often describe the “efforts” made in an attempt to get out of Ω (such as large noises), while those with
label B concern how the SGD iterates return to [−2ε, 2ε] (and how this attempt fails). For instance,
A×k discusses the unlikely scenario before Tk,l∗ , the arrival of the l∗−th large jump in this attempt,
while B×k in general discusses the abnormal cases after Tk,l∗ and before the return to [−2ε, 2ε]. On
the other hand, A◦k describes a successful escape during k−th attempt, while B◦k means that during
this attempt the iterates return to without spending too much time.

Now we proceed and provide a formal definition and analysis of the aforementioned series of
events. As building blocks, we inspect the process (Xη

n)n≥1 at a even finer granularity, and bound
the probability of some events (A×k,i)i≥0, (B×k,i)i≥1 detailing several cases that are unlikely to occur
during the escape from or return to local minimum in the k−th attempt. First, for each k ≥ 1, define
the event

A×k,0(ε, δ, η) =∆
{
∃i = 0, 1, · · · , l∗ ∧ jk s.t. max

j=Tk,i+1,··· ,(Tk,i+1−1)∧τ̃k∧σ(η)
η|ZTk,i+1 + · · ·+ Zj | > ε̃

}
.

(B.73)

Intuitively speaking, the event characterizes the atypical scenario where, during the k−th attempt,
there is some large fluctuations (compared to ε̃) between any of the first l∗ large jumps (or the first
jk large jumps in case that jk < l∗). Similarly, consider event (for all k ≥ 1)

A×k,1(ε, δ, η) =∆
{
σ(η) < τ̃k, jk < l∗

}
(B.74)
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that describes the atypical case where the exit occurs during the k−th attempt with less than l∗ large
jumps. Next, for all k ≥ 1 we have another atypical event (note that from (B.72) we can see that, for
any j ≥ 1, jk ≥ j implies Tk,j ≤ σ(η) ∧ τ̃k)

A×k,2 =∆
{

jk ≥ l∗, ∃j = 2, 3, · · · , l∗ s.t. Tk,j − Tk,j−1 > 2t̂(ε)/η
}
. (B.75)

representing the case where we have at least l∗ large noises during the k−th attempt, but for some
of the large noise (from the 2nd to the l∗-th), the inter-arrival time is unusually long. Moving on, we
consider the following events (defined for all k ≥ 1)

A×k,3 =∆
{

jk < l∗, τ̃k < σ(η), τ̃k − Tk,1 > 2l∗t̂(ε)/η
}

(B.76)

that describes the atypical case where the k−th attempt failed but the return to the small neighbor-
hood [−2ε, 2ε] took unusually long time.

The following event also concerns the scenario where there are at least l∗ large noises during the
k−th attempt:

A×k,4 =∆
{

jk ≥ l∗, |X
η
Tk,l∗
| ≥ r − ε̄, ∃j = 1, 2, · · · , l∗ s.t. η|Wk,j | ≤ δ̄

}
; (B.77)

specifically, it describes the atypical case where, during this attempt, right after the l∗− large noise
the SGD iterate is far enough from the local minimum yet some of the large noises are not that large.
Lastly, by defining events

A×k,5 =∆
{

jk ≥ l∗, Tk,l∗ ≤ σ(η) ∧ τ̃k, Xη
Tk,l∗

∈
⋃

j∈[nmin−1]

[sj − ε, sj + ε]
}
, (B.78)

we analyze an atypical case where the SGD iterates arrive at somewhere too close to the boundaries of
Ω at the arrival time of the l∗ large noise during this attempt. As an amalgamation of these atypical
scenarios, we let

A×k (ε, δ, η) =∆
5⋃
i=0

A×k,i(ε, δ, η). (B.79)

Also, we analyze the probability of some events (B×k )k≥1 that concern the SGD dynamics after the
l∗−th large noise during the k−th attempt. Let us define

B×k,1(ε, δ, η) =∆
{

jk ≥ l∗, X
η
Tk,l∗

∈ [s− + ε, s+ − ε], Tk,j − Tk,j−1 ≤ 2
t̂(ε)

η
∀j = 2, 3, · · · , l∗

}
B×k,2(ε, δ, η) =∆ {τ̃k − Tk,l∗ > ρ(ε)/η} ∪ {σ(η) < τ̃k}
B×k (ε, δ, η) =∆ B×k,1 ∩B×k,2 (B.80)

where ρ(·) is the function in Lemma B.11. From the definition of B×k , in particular the inclusion of
B×k,2, one can see that the intuitive interpretation of event B×k is that the SGD iterates did not return
to local minimum efficiently (or simply escaped from the attraction field) after the l∗−th large noise
during the k−th attempt. In comparison, the following events will characterize what would typically
happen during each attempt:

A◦k(ε, δ, η) =∆ {jk ≥ l∗, σ(η) = Tk,l∗ , X
η
Tk,l∗

/∈ [s− − ε, s+ + ε], Tk,j − Tk,j−1 ≤
2t̂(ε)

η
∀j = 2, 3, · · · , l∗},

(B.81)

B◦k(ε, δ, η) =∆ {σ(η) > τ̃k, τ̃k − Tk,1 ≤
2l∗t̂(ε) + ρ(ε)

η
}. (B.82)
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Intuitively speaking, A◦k tells us that the exit happened right at Tk,l∗ , the arrival time of the l∗−th
large noise during the k−th attempt, and B◦k tells us that the first exit from Ω did not occur during the
k−th attempt, and the SGD iterates returned to local minimum rather efficiently. All the preparations
above allow use to define

A×(ε, δ, η) =∆
⋃
k≥1

( k−1⋂
i=1

(
A×i ∪B×i ∪A◦i

)c) ∩ (A×k ∪B×k
)
. (B.83)

We need the next lemma in the proof of Proposition B.22. As mentioned earlier, the takeaway is
that A× is indeed atypical in the sense that we will almost always observe (A×)c.

Lemma B.23. Given any C > 0, the following claim holds for all ε > 0, δ > 0 sufficiently small:

lim sup
η↓0

sup
|x|≤2ε

Px(A×(ε, δ, η)) < C.

Proof. We fix some parameters for the proof. First, with out loss of generality we only consider
C ∈ (0, 1), and we fix some N > αl∗. Next we discuss the valid range of ε for the claim to hold. We
only consider ε > 0 such that

ε <
ε̄

6(ρ̄+ ρ̃+ 3)
∧ ε0

3

where ρ̄ and ρ̃ are the constants in Corollary B.5 and Corollary B.8 respectively, and ε0 is the constant
in (B.1). Moreover, recall function Ψ in Lemma B.20 and the constant c∗ > 0 in Lemma B.21. Due
to limε↓0 Ψ(ε) = 0, it holds for all ε small enough such that

3Ψ(ε)

c∗
< C (B.84)

In our proof we only consider ε small enough so the inequality above holds, and the claim in Lemma
B.11 holds. Now we specify the valid range of parameter δ that will be used below:

• For all sufficiently small δ > 0, the claim in Lemma B.12 will hold for the prescribed ε and with
N0 = N ;

• For all sufficiently small δ > 0, the claims in Lemma B.16, Corollary B.17, Corollary B.18 and
Lemma B.19 will hold with the prescribed ε and N ;

• For all sufficiently small δ > 0, the inequalities in Lemma B.20 and B.21 will hold for the ε we
fixed at the beginning;

• Lastly, let

ε̃ = min
{ ε

2 exp(2t̄M)
,

ε

4 exp(2Mt̂(ε))

}
ε̂ = 3(ρ̄+ ρ̃+ 3)ε.

where the function t̂(·) is defined in (B.24); due to Corollary B.13 we know that for all sufficiently
small δ > 0 the claim (B.50) holds with the chosen ε̃ and N .

We show that the claim holds for any ε, δ small enough to satisfy the conditions above.
First, recall that

A×k,0(ε, δ, η) =∆
{
∃i = 0, 1, · · · , l∗ ∧ jk s.t. max

j=Tk,i+1,··· ,(Tk,i+1−1)∧τ̃k∧σ(η)
η|ZTk,i+1 + · · ·+ Zj | > ε̃

}
.
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Due to our choice of δ stated earlier and Corollary B.13, there exists some η0 > 0 such that for all
η ∈ (0, η0),

P
(
A×k,0(ε, δ, η)

)
≤ ηN ∀k ≥ 1. (B.85)

Similarly, recall that A×k,1(ε, δ, η) =∆
{
σ(η) < τ̃k, jk < l∗

}
. Let us temporarily focus on the first

attempt (namely the case k = 1). From Lemma B.16 and our choice of ε and δ, we know the existence
of some η1 > 0 such that

sup
|x|≤2ε

Px
(
A×1,1(ε, δ, η)

)
≤ ηN ∀η ∈ (0, η1). (B.86)

Next, for A×k,2 =∆
{

jk ≥ l∗, ∃j = 2, 3, · · · , l∗ s.t. Tk,j − Tk,j−1 > 2t̂(ε)/η
}
, from Corollary B.17 and

our choice of δ at the beginning, we have the existence of some η2 > 0 such that

sup
|x|≤2ε

Px
(
A×1,2(ε, δ, η)

)
≤ ηN ∀η ∈ (0, η2). (B.87)

Moving on, for A×k,3 =∆
{

jk < l∗, τ̃k < σ(η), τ̃k − Tk,1 > 2l∗t̂(ε)/η
}

, due to Corollary B.18 and our

choice of ε, δ, we have the existence of some η3 > 0 such that

sup
|x|≤2ε

Px
(
A×1,3(ε, δ, η)

)
≤ ηN ∀η ∈ (0, η3). (B.88)

As for A×k,4 =∆
{

jk ≥ l∗, |Xη
Tk,l∗
| ≥ r − ε̄, ∃j = 1, 2, · · · , l∗ s.t. η|Wk,j | ≤ δ̄

}
, from Lemma B.19, one

can see the existence of η4 > 0 such that

sup
|x|≤2ε

Px
(
A×1,4(ε, δ, η)

)
≤ ηN ∀η ∈ (0, η4). (B.89)

Lastly, for A×k,5 =∆
{

jk ≥ l∗, Tk,l∗ ≤ σ(η)∧ τ̃k, Xη
Tk,l∗

∈
⋃
j∈[nmin−1][sj − ε, sj + ε]

}
, from Lemma B.20

we see the existence of η5 > 0 such that

sup
|x|≤2ε

Px
(
A×1,5(ε, δ, η)

)
≤ 2δαΨ(ε)

(
H(1/η)/η

)l∗−1

∀η ∈ (0, η5). (B.90)

Recall that A×k (ε, δ, η) =
⋃5
i=0 A×k,i(ε, δ, η). Also, for definitions of B×k ,A

◦
k,B

◦
k, see (B.80),(B.81),(B.82)

respectively. Our next goal is to establish bounds regarding the probabilities of these events. First, if
we consider the event

⋂k
j=1(A×j ∪B×j )c ∩B◦j , then the inclusion of the (B◦j )

k
j=1 implies that during

the first k attempts the SGD iterates have never left the attraction field, so

k⋂
j=1

(A×j ∪B×j )c ∩B◦j =
( k⋂
j=1

(A×j ∪B×j )c ∩B◦j
)
∩ {σ(η) > τ̃k}.

Next, note that

Px
(
B×k |

k−1⋂
j=1

(A×j ∪B×j )c ∩B◦j
)

=Px
(
B×k,1 |

k−1⋂
j=1

(A×j ∪B×j )c ∩B◦j
)
Px
(
B×k,2

∣∣∣ ( k−1⋂
j=1

(A×j ∪B×j )c ∩B◦j
)
∩B×k,1

)
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≤Px
(
jk ≥ l∗, Tk,j − Tk,j−1 ≤

2t̂(ε)

η
∀j = 2, 3, · · · , l∗ |

k−1⋂
j=1

(A×j ∪B×j )c ∩B◦j
)

· Px
(
B×k,2

∣∣∣ ( k−1⋂
j=1

(A×j ∪B×j )c ∩B◦j
)
∩B×k,1

)
.

From the definition of the events A×j ,B
×
j ,B

◦
j , one can see that

⋂k−1
j=1 (A×j ∪B×j )c ∩B◦j ∈ Fτ̃k−1∧σ(η),

and on this event
⋂k−1
j=1 (A×j ∪B×j )c∩B◦j we have σ(η) > τ̃k−1. So by applying strong Markov property

at stopping time τ̃k−1 ∧ σ(η), we have

Px
(
B×k |

k−1⋂
j=1

(A×j ∪B×j )c ∩B◦j
)

≤P
(
T ηj (δ)− T ηj−1(δ) ≤ 2t̂(ε)/η ∀j ∈ [l∗ − 1]

)
· Px

(
B×k,2

∣∣∣ ( k−1⋂
j=1

(A×j ∪B×j )c ∩B◦j
)
∩B×k,1

)

≤2
(
H(δ/η)t̂(ε)/η

)l∗−1

· Px
(
B×k,2

∣∣∣ ( k−1⋂
j=1

(A×j ∪B×j )c ∩B◦j
)
∩B×k,1

)
for all η sufficiently small due to Lemma B.2,

≤4
( t̂(ε)
δα

)l∗−1(H(1/η)

η

)l∗−1

· Px
(
B×k,2

∣∣∣ ( k−1⋂
j=1

(A×j ∪B×j )c ∩B◦j
)
∩B×k,1

)
for all sufficiently small η, due to H ∈ RV−α(η). Meanwhile, note that

•
(⋂k−1

j=1 (A×j ∪B×j )c ∩B◦j
)
∩B×k,1 ∈ FTk,l∗ ;

• on this event
(⋂k−1

j=1 (A×j ∪B×j )c∩B◦j
)
∩B×k,1 we have σ(η)∧τ̃k > Tk,l∗ and Xη

Tk,l∗
∈ [s−+ε, s+−ε].

Therefore, using Lemma B.11 and strong Markov property again (at stopping time Tk,l∗), we know
the following inequality holds for all η sufficiently small:

sup
k≥1

sup
|x|≤2ε

Px
(
B×k,2

∣∣∣ ( k−1⋂
j=1

(A×j ∪B×j )c ∩B◦j
)
∩B×k,1

)

= sup
k≥1

sup
|x|≤2ε

Px
({
σ(η) > τ̃k, τ̃k − Tk,l∗ ≤ ρ(ε)/η

}c ∣∣∣ ( k−1⋂
j=1

(A×j ∪B×j )c ∩B◦j
)
∩B×k,1

)
≤Ψ(ε)

δα

4
(
t̂(ε)/δα

)l∗−1
.

Therefore, we know the existence of some η6 > 0 such that

sup
|x|≤2ε

Px
(
B×k |

k−1⋂
j=1

(A×j ∪B×j )c ∩B◦j
)
≤ Ψ(ε)δα

(H(1/η)

η

)l∗−1

∀η ∈ (0, η6), ∀k ≥ 1. (B.91)

Similarly, we can bound conditional probabilities of the form Px
(
A×k |

⋂k−1
j=1 (A×j ∪ B×j )c ∩ B◦j

)
.

To be specific, recall that A×k = ∪5
i=0A

×
k,i. By combining (B.85)-(B.90) with Markov property, we

know the existence of some η7 > 0 such that

sup
|x|≤2ε

Px
(
A×k |

k−1⋂
j=1

(A×j ∪B×j )c ∩B◦j
)
≤ 5ηN + 2Ψ(ε)δα

(H(1/η)

η

)l∗−1

∀η ∈ (0, η7), ∀k ≥ 1. (B.92)
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On the other hand, a lower bound can be established for conditional probability involving A◦k,
the event defined in (B.81) describing the exit from Ω during an attempt with exactly l∗ large noises.
Using Lemma B.21 and Markov property of (Xη

n)n≥1, one can see the existence of some η8 > 0 such
that

inf
|x|≤2ε

Px
(
A◦k |

k−1⋂
j=1

(A×j ∪B×j )c ∩B◦j
)
≥ c∗δα

(H(1/η)

η

)l∗−1

∀η ∈ (0, η8). (B.93)

In order to apply the bounds (B.91)-(B.93), we make use of the following inclusion relationship:

( k−1⋂
j=1

(A×j ∪B×j )c ∩B◦j
)
∩ (A×k ∪B×k )c ⊆ A◦k ∪B◦k. (B.94)

To see why this is true, let us consider a decomposition of the event on the L.H.S. of (B.94). As

mentioned above, on event
⋂k−1
j=1 (A×j ∪B×j )c ∩B◦j we know that σ(η) > τ̃k−1, so the k−th attempt

occurred and there are only three possibilities on this event:

• jk < l∗;

• jk ≥ l∗, X
η
Tk,l∗

/∈ Ω;

• jk ≥ l∗, X
η
Tk,l∗

∈ Ω.

Let us partition the said event accordingly and analyze them one by one.

• On
(⋂k−1

j=1 (A×j ∪B×j )c∩B◦j
)
∩(A×k ∪B×k )c∩{jk < l∗}, due to the exclusion of A×k (especially A×k,1

and A×k,3), we can see that if jk < l∗, then we must have σ(η) > τ̃k and τ̃k − Tk,1 ≤ 2l∗t̂(ε)/η.
Therefore,

( k−1⋂
j=1

(A×j ∪B×j )c ∩B◦j
)
∩ (A×k ∪B×k )c ∩ {jk < l∗} ⊆ B◦k.

• On
(⋂k−1

j=1 (A×j ∪B×j )c ∩B◦j
)
∩ (A×k ∪B×k )c ∩ {jk ≥ l∗, X

η
Tk,l∗

/∈ Ω}, then the exclusion of A×k,2
implies that Tk,j − Tk,j−1 ≤ 2t̂(ε)/η for all j = 2, · · · , l∗, and the exclusion of A×k,5 tells us that

if Xη
Tk,l∗

/∈ Ω, then we have Xη
Tk,l∗

/∈ [s− − ε, s+ + ε]. In summary,

( k−1⋂
j=1

(A×j ∪B×j )c ∩B◦j
)
∩ (A×k ∪B×k )c ∩ {jk ≥ l∗, X

η
Tk,l∗

/∈ Ω} ⊆ A◦k.

• On
(⋂k−1

j=1 (A×j ∪B×j )c ∩B◦j
)
∩ (A×k ∪B×k )c ∩ {jk ≥ l∗, X

η
Tk,l∗

∈ Ω}, the exclusion of A×k,2 again

implies that Tk,j−Tk,j−1 ≤ 2t̂(ε)/η for all j = 2, · · · , l∗, hence Tk,l∗−Tk,1 ≤ 2l∗t̂(ε)/η. Similarly,
the exclusion of A×k,5 tells us that if Xη

Tk,l∗
∈ Ω, then we have Xη

Tk,l∗
∈ [s−+ε, s+−ε]. Now since

B×k did not occur (see the definition in (B.80)), we must have σ(η) > τ̃k and τ̃k−Tk,l∗ ≤ ρ(ε)/η,

hence τ̃k − Tk,1 ≤ 2l∗ t̂(ε)+ρ(ε)
η . Therefore,

( k−1⋂
j=1

(A×j ∪B×j )c ∩B◦j
)
∩ (A×k ∪B×k )c ∩ {jk ≥ l∗, X

η
Tk,l∗

∈ Ω} ⊆ B◦k.
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Collecting results above, we have (B.94). Now we discuss some of its implications. First, from (B.94)
we can immediately get that

( k−1⋂
j=1

(A×j ∪B×j )c ∩B◦j
)
∩ (A×k ∪B×k )c =

( k−1⋂
j=1

(A×j ∪B×j )c ∩B◦j
)
∩ (A×k ∪B×k )c ∩ (A◦k ∪B◦k).

(B.95)

Next, recall the definitions of A◦k in (B.81) and B◦k in (B.82), and one can see that A◦k and B◦k are
mutually exclusive, since the former implies that the first exit occurs during the k−th attempt while
the latter implies that this attempt fails. This fact and (B.95) allow us to conclude that

k⋂
i=1

(
A×i ∪B×i ∪A◦i

)c
=

k⋂
i=1

(
A×i ∪B×i

)c ∩B◦i =
( k−1⋂
i=1

(
A×i ∪B×i

)c ∩B◦i

)
∩ (A×k ∪B×k ∪A◦k)c.

(B.96)

Now we use the results obtained so far to bound the probability of

A×(ε, δ, η) =∆
⋃
k≥1

( k−1⋂
i=1

(
A×i ∪B×i ∪A◦i

)c) ∩ (A×k ∪B×k
)
.

Using (B.96), we can see that (for any x ∈ [−2ε, 2ε])

Px(A×(ε, δ, η))

=
∑
k≥1

Px
(( k−1⋂

i=1

(
A×i ∪B×i ∪A◦i

)c) ∩ (A×k ∪B×k
))

=
∑
k≥1

Px
(( k−1⋂

i=1

(
A×i ∪B×i

)c ∩B◦i

)
∩
(
A×k ∪B×k

))

=
∑
k≥1

Px
(
A×k ∪B×k |

k−1⋂
i=1

(
A×i ∪B×i

)c ∩B◦i

)
·
k−1∏
j=1

Px
( j⋂
i=1

(
A×i ∪B×i

)c ∩B◦i

∣∣∣ j−1⋂
i=1

(
A×i ∪B×i

)c ∩B◦i

)

=
∑
k≥1

Px
(
A×k ∪B×k |

k−1⋂
i=1

(
A×i ∪B×i

)c ∩B◦i

)

·
k−1∏
j=1

Px
(( j−1⋂

i=1

(
A×i ∪B×i

)c ∩B◦i
)
∩ (A×j ∪B×j ∪A◦j )

c
∣∣∣ j−1⋂
i=1

(
A×i ∪B×i

)c ∩B◦i

)

=
∑
k≥1

Px
(
A×k ∪B×k |

k−1⋂
i=1

(
A×i ∪B×i

)c ∩B◦i

)
·
k−1∏
j=1

Px
((

A×j ∪B×j ∪A◦j
)c ∣∣∣ j−1⋂

i=1

(
A×i ∪B×i

)c ∩B◦i

)

≤
∑
k≥1

Px
(
A×k ∪B×k |

k−1⋂
i=1

(
A×i ∪B×i

)c ∩B◦i

)
·
k−1∏
j=1

(
1− Px

(
A◦j

∣∣∣ j−1⋂
i=1

(
A×i ∪B×i

)c ∩B◦i

))
.

This allows us to apply (B.91)-(B.93) and conclude that (here we only consider η < min{ηi : i ∈ [8]}
),

sup
|x|≤2ε

Px(A×(ε, δ, η))

≤
∑
k≥1

(
5ηN + 2Ψ(ε)δα

(H(1/η)

η

)l∗−1)
·
(

1− c∗δα
(H(1/η)

η

)l∗−1)k−1
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=
5ηN + 2Ψ(ε)δα

(
H(1/η)

η

)l∗−1

c∗δα
(
H(1/η)

η

)l∗−1

≤2Ψ(ε) + 5ηα

c∗
for sufficiently small η, due to H ∈ RV−α(η) and our choice of N > αl∗

≤3Ψ(ε)

c∗
< C for all η small enough such that 5ηα < Ψ(ε).

The last inequality follows from our choice of ε in (B.84). This concludes the proof.

Having established Lemma B.23, we return to Proposition B.22 and give a proof. Recall that,
aside from the attraction field Ω = (s−, s+), there are nmin − 1 other attraction fields Ω̃k = (s−k , s

+
k )

(for each k ∈ [nmin−1]). Besides, the function λ(·) and constants νΩ, νΩ
k are defined in (B.64)-(B.66).

Proof of Proposition B.22. We fix some parameters for the proof. First, with out loss of generality
we only need to consider C ∈ (0, 1). Next we discuss the valid range of ε for the claim to hold. We
only consider ε > 0 such that

ε <
ε̄

6(ρ̄+ ρ̃+ 3)
∧ ε0

3

where ρ̄ and ρ̃ are the constants in Corollary B.5 and Corollary B.8 respectively, and ε0 is the constant
in (B.1). Due to continuity of measure µ, it holds for all ε small enough such that (let ε̂ = 3(ρ̄+ ρ̃+3)ε)

µ(E(0))

µ
(
E
(
ε̂
)) < 1/(1− C), (B.97)

µ(E(0))

µ
(
E
(
− ε̂
)) > 1/(1 + C), (B.98)

µ
(
h−1

(
(s− − 2ε̂, s− + 2ε̂) ∪ (s+ − 2ε̂, s+ + 2ε̂)

))
µ(E(−ε̂))

≤ C (B.99)

µ
(
E(ε̂) ∩

(
s−k′ − ε̂, s

+
k′ + ε̂)

)
µ(E(ε̂))

≤ νΩ
k′ + C

νΩ
(B.100)

µ
(
E(−ε̂) ∩

(
s−k′ + 2ε̂, s+

k′ − 2ε̂)
)

µ(E(−ε̂))
≥ νΩ

k′ − C
νΩ

(B.101)

In our proof we only consider ε small enough so the inequality above holds, and the claims in Lemma
B.11 hold. Moreover, we only consider ε and δ small enough so that Lemma B.23 hold and we have

lim
η↓0

sup
|x|≤2ε

Px(A×(ε, δ, η)) < C. (B.102)

We show that the desired claims hold for all ε, δ sufficiently small that satisfy conditions above.
First, in order to show (B.71), we define event

Ã
×

(ε, δ, η)

=∆
(
A×(ε, δ, η)

)c ∩ {λ(η)
(
τ(η, ε)− σ(η)

)
≥ C or ∃n = σ(η) + 1, · · · , τ(η, ε) such that Xη

n /∈ Ω̃Jσ(η)

}
Since λ ∈ RV−1−l∗(α−1) and α > 1, for the ε we fixed at the beginning of this proof, ρ(ε) is a
fixed constant as well (the function ρ is defined in Lemma B.11) and we have limη↓0 λ(η)ρ(ε)/η = 0.
Next, the occurrence of

(
A×(ε, δ, η)

)c
(in particular, the exclusion of all the A×k,5 defined in (B.78)),
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we know that Xη
σ(η) /∈ [s−Jσ − ε, s

−
Jσ

+ ε] ∪ [s+
Jσ
− ε, s+

Jσ
+ ε] (recall that for any k ∈ [nmin − 1], we

have Ω̃j = (s−j , s
+
j ); for definition of Jσ see (B.63)). Meanwhile, for all η sufficiently small, we have

ε/λ(η) > ρ(ε)/η. Therefore, using Lemma B.11 we can see that (for all η sufficiently small)

sup
|x|≤2ε

Px
(
Ã
×

(ε, δ, η) |
(
A×(ε, δ, η)

)c) ≤ C. (B.103)

Lastly, observe that

P
({
λ(η)

(
τ(η, ε)− σ(η)

)
≥ C or ∃n = σ(η) + 1, · · · , τ(η, ε) such that Xη

n /∈ Ω̃Jσ(η)

})
≤Px

(
(A×)c ∩

{
λ(η)

(
τ(η, ε)− σ(η)

)
≥ C or ∃n = σ(η) + 1, · · · , τ(η, ε) such that Xη

n /∈ Ω̃Jσ(η)

})
+Px(A×)

so by combining (B.102) with (B.103), we can obtain (B.71).
Moving on, we discuss the upper bounds (B.67) and (B.69). Recall that the fixed constant k′ ∈

[nmin − 1] is prescribed in the description of this proposition. Let us observe some facts on event
(A×(ε, η, δ))c ∩ {Jσ(η) = k′}: If we let J(ε, δ, η) =∆ sup{k ≥ 0 : τ̃k < σ(η)} be the number of attempts
it took to escape, and

J↑(ε, δ, η) =∆ min{k ≥ 1 : Tk,1 has
(

3(ρ̄+ ρ̃+ 3)ε, δ, η
)
−overflow},

then for all η sufficiently small, we must have J ≤ J↑ on event (A×(ε, η, δ))c ∩ {Jσ(η) = k′}. To see
this via a proof of contradiction, let us assume that, for some arbitrary positive integer j, there exists
some sample path on (A×)c ∩{Jσ(η) = k′} such that J↑ = j < J . Then from the definition of (A×)c,
in particular the exclusion of event A×j,0 (see the definition in (B.73)), for all sufficiently small η, we
are able to apply Corollary B.8 and B.5 and conclude that Xη

Tj,l∗
/∈ Ω: indeed, using Corollary B.8

and B.5 we can show that the distance between Xη
Tj,l∗

and the perturbed ODE

x̃η
(
Tj,l∗ − Tj,1, 0;

(
0, Tj,2 − Tj,1, · · · , Tj,l∗ − Tj,1

)
,
(
ηWj,1, · · · , ηWj,l∗

))
is strictly less than 3(ρ̄ + ρ̃ + 3)ε; on the other hand, the definition of

(
3(ρ̄ + ρ̃ + 3)ε, δ, η

)
−overflow

implies that

x̃η
(
Tj,l∗ − Tj,1, 0;

(
0, Tj,2 − Tj,1, · · · , Tj,l∗ − Tj,1

)
,
(
ηWj,1, · · · , ηWj,l∗

))
/∈ [s− − 3(ρ̄+ ρ̃+ 3)ε, s+ + 3(ρ̄+ ρ̃+ 3)ε].

Therefore, we must have Xη
Tj,l∗

/∈ Ω, which contradicts our assumption j = J↑ < J . In summary, we

have shown that, on (A×)c ∩ {Jσ = k′}, we have J↑(ε, δ, η) ≥ J(ε, δ, η). Similarly, if we consider

J↓(ε, δ, η) =∆ min{k ≥ 1 : Tk,1 has
(
− 3(ρ̄+ ρ̃+ 3)ε, δ, η

)
−overflow},

then by the same argument above we can show that J↓(ε, δ, η) ≤ J(ε, δ, η). Now consider the following
decomposition of events.

• On {J↓ < J↑}, we know that for the first k such that Tk,1 has
(
− 3(ρ̄+ ρ̃+ 3)ε, δ, η

)
−overflow,

it does not have
(
3(ρ̄+ ρ̃+ 3)ε, δ, η

)
−overflow. Now we analyze the probability that Z0 does not

have (ε̂, δ, η)−overflow conditioning on that it does have (−ε̂, δ, η)−overflow (recall that we let
ε̂ = 3(ρ̄+ ρ̃+ 3)). Using Lemma B.14 and the bound (B.99), we know that for all η sufficiently
small,

sup
|x|≤2ε

Px
(

(A×)c ∩ {J↓ < J↑}
)
≤
µ
(
h−1

(
(s− − 2ε̂, s− + 2ε̂) ∪ (s+ − 2ε̂, s+ + 2ε̂)

))
µ(E(−ε̂))

≤ C.

(B.104)
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• On (A×)c∩{Jσ = k′}∩{J↑ = J↓}, due to J↑ = J↓ = J we know that TJ(ε,δ,η),1 is the first among
all Tk,1 to have (ε̂, δ, η)−overflow. Moreover, due to {Jσ = k′} and using Corollary B.8 and B.5
again as we did above, we know that the overflow endpoint of TJ(ε,δ,η),1 is in (s−k′ − ε̂, s

+
k′ + ε̂)

(recall that Ω̃k′ = (s−k′ , s
+
k′)). In summary, for any n ≥ 0

(A×)c ∩ {Jσ = k′} ∩ {J↑ = J↓ > n}

⊆ (A×)c ∩ {J↑ > n} ∩
{
TJ↑,1 has overflow endpoint in (s−k′ − ε̂, s

+
k′ + ε̂)

}
so using Lemma B.14, we obtain that (for all η sufficiently small)

sup
|x|≤2ε

Px
(

(A×)c ∩ {Jσ = k′} ∩ {J↑ = J↓ > n}
)

≤ sup
|x|≤2ε

Px
(

(A×)c ∩ {J↑ > n}
)
·
p
(
ε̂, δ, η; (s−k′ − ε̂, s

+
k′ + ε̂)

)
p(ε̂, δ, η)

≤ sup
|x|≤2ε

Px
(

(A×)c ∩ {J↑ > n}
)
· ν

Ω
k′ + C

νΩ
. (B.105)

uniformly for any n = 0, 1, 2, · · · due to (B.100).

• On the other hand, on (A×)c, if TJ↓,1 has overflow endpoint in (s−k′ + 2ε̂, s+
k′ − 2ε̂), then from

Definition B.1 we know that TJ↓,1 also has (ε̂, δ, η)−overflow, hence J↓ = J↑ = J . Moreover,
using Corollary B.8 and B.5 again, we know that Xη

T
J↓,l∗

∈ (s−k′ , s
+
k′) so Jσ = k′. In summary,

for any n ≥ 0,

(A×)c ∩ {Jσ = k′} ∩ {J↑ = J↓ > n}

⊇ (A×)c ∩ {J↓ > n} ∩
{
TJ↓,1 has overflow endpoint in (s−k′ + 2ε̂, s+

k′ − 2ε̂)
}

so using Lemma B.14, we obtain that (for all η sufficiently small)

inf
|x|≤2ε

Px
(

(A×)c ∩ {Jσ = k′} ∩ {J↑ = J↓ > n}
)

≥ inf
|x|≤2ε

Px
(

(A×)c ∩ {J↓ > n}
)
·
p
(
− ε̂, δ, η; (s−k′ + 2ε̂, s+

k′ − 2ε̂)
)

p(−ε̂, δ, η)

≥ inf
|x|≤2ε

Px
(

(A×)c ∩ {J↓ > n}
)
· ν

Ω
k′ − C
νΩ

. (B.106)

uniformly for any n = 0, 1, 2, · · · due to (B.101).

Besides, the following claim holds on event (A×)c.

• From (B.96), the definition of B◦k as well as the definition of event A◦k (see (B.81)), one can see
that for any j = 1, 2, · · · , J , we have

τ̃j ∧ σ(η)− Tj,1 ≤
2l∗t̂(ε) + ρ(ε)

η
.

• Now if we turn to the interval (τ̃j−1, Tj,1] (the time between the start of the j−th attempt and
the arrival of the first large noise during this attempt) for each j = 1, 2, · · · , J , and the following
sequence constructed by concatenating these intervals

S(ε, δ, η)
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=∆
(
1, 2, · · · , T1,1, τ̃1 + 1, τ̃1 + 2, · · · , T2,1, · · · , τ̃k + 1, τ̃k + 2, · · · , Tk+1,1, τ̃k+1 + 1, τ̃k+2 + 1, · · ·

)
,

then the discussion above have shown that, for

min{n ∈ S(ε, δ, η) : Zn has
(

3(ρ̄+ ρ̃+ 3)ε, δ, η
)
−overflow} ≥ TJ,1.

Meanwhile, from the definition of overflow we know that the probability that Z1 has
(

3(ρ̄+ ρ̃+

3)ε, δ, η
)
−overflow is equal to

H(δ/η)p
(

3(ρ̄+ ρ̃+ 3)ε, δ, η
)
.

• Therefore, if, within the duration of each attempt, we split the attempt into two parts at the
arrival time of the first large jump (Tk,1)k≥1 at each attempt, and define (here the subscript
before or after indicates that we are counting the steps before or after the first large jump in an
attempt)

Sbefore(ε, δ, η) =∆ {n ∈ S(ε, δ, η) : n ≤ σ(η)}, Ibefore(ε, δ, η) =∆ #Sbefore(ε, δ, η),

Safter(ε, δ, η) =∆ {n /∈ S(ε, δ, η) : n ≤ σ(η)}, Iafter(ε, δ, η) =∆ #Safter(ε, δ, η),

then we have σ(η) = Ibefore + Iafter. Moreover, the discussion above implies that

Iafter ≤ J
(
2l∗t̂(ε) + ρ(ε)

)
/η

Ibefore ≤ min{n ∈ S(ε, δ, η) : Zn has
(

3(ρ̄+ ρ̃+ 3)ε, δ, η
)
−overflow}

and on event (A×)c.

Define geometric random variables with the following success rates

U1(ε, δ, η) ∼ Geom
(
p
(
3(ρ̄+ ρ̃+ 3)ε, δ, η

))
U2(ε, δ, η) ∼ Geom

(
H(δ/η)p

(
3(ρ̄+ ρ̃+ 3)ε, δ, η

))
.

Using results above to bound Ibefore and Iafter separately on event (A×)c, we can show that (for all η
sufficiently small and any u > 0)

sup
x∈[−2ε,2ε]

Px
(
vΩλ(η)σ(η) > u, Jσ(η) = k′

)
≤ sup
|x|≤2ε

Px(A×(ε, δ, η)) + sup
x∈[−2ε,2ε]

Px
(
{vΩλ(η)σ(η) > u, Jσ(η) = k′} ∩

(
A×(ε, δ, η)

)c)
≤C + sup

x∈[−2ε,2ε]

Px
(
{vΩλ(η)σ(η) > u, Jσ(η) = k′} ∩

(
A×(ε, δ, η)

)c)
due to (B.102)

≤C + sup
x∈[−2ε,2ε]

Px
(
{vΩλ(η)Ibefore(ε, δ, η) > (1− C)u, Jσ(η) = k′} ∩

(
A×(ε, δ, η)

)c)
+ sup
x∈[−2ε,2ε]

Px
(
{vΩλ(η)Iafter(ε, δ, η) > Cu} ∩

(
A×(ε, δ, η)

)c)
≤C + sup

x∈[−2ε,2ε]

Px
(
{vΩλ(η)Ibefore(ε, δ, η) > (1− C)u, Jσ(η) = k′} ∩

(
A×(ε, δ, η)

)c)
+P
(
vΩλ(η)

ρ(ε) + 2l∗t̂(ε)

η
· U1(ε, δ, η) > Cu

)
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≤C + sup
x∈[−2ε,2ε]

Px
(
{vΩλ(η)Ibefore(ε, δ, η) > (1− C)u, Jσ(η) = k′} ∩

(
A×(ε, δ, η)

)c ∩ {J↓ = J↑}
)

+ sup
x∈[−2ε,2ε]

Px
(
(A×)c ∩ {J↓ < J↑}

)
+ P

(
vΩλ(η)

ρ(ε) + 2l∗t̂(ε)

η
· U1(ε, δ, η) > Cu

)
≤2C + P

(
vΩλ(η)U2(ε, δ, η) > (1− C)u

)νΩ
k′ + C

νΩ
+ P

(
vΩλ(η)

ρ(ε) + 2l∗t̂(ε)

η
· U1(ε, δ, η) > Cu

)
(B.107)

where the last inequality follows from (B.104) and (B.105). Now let us analyze the probability terms

on the last row of the display above. For the first term, let a(η) = H(δ/η)p
(

3(ρ̄+ ρ̃+ 3)ε, δ, η
)

. Due

to Lemma B.14, we have (recall that νΩ = µ(E(0)))

lim
η↓0

a(η)

λ(η)µ
(
E
(
3(ρ̄+ ρ̃+ 3)ε

)) = 1.

Combining this with (B.97), one can see that for all η sufficiently small,

P
(
vΩλ(η)U2(ε, δ, η) > (1− C)u

)
≤ P

(
a(η)Geom

(
a(η)

)
> (1− C)2u

)
∀u > 0.

Next, let b(η, u) = P
(
a(η)Geom

(
a(η)

)
> (1−C)2u

)
= P

(
Geom

(
a(η)

)
> (1−C)2u

a(η)

)
. For g(y) = log(1−

y), we know the existence of some y0 > 0 such that for all y ∈ (0, y0), we have log(1−y) ≤ −(1−C)y.
So one can see that for all η sufficiently small,

log b(u, η) ≤ (1− C)2u

a(η)
log(1− a(η)) ≤ −(1− C)3u

⇒ b(u, η) ≤ exp
(
− (1− C)3u

)
(B.108)

uniformly for all u > 0.
For the second probability term, if we only consider u ≥ C, then

P
(
vΩλ(η)

ρ(ε) + 2l∗t̂(ε)

η
· U1(ε, δ, η) > Cu

)
≤ P

(
vΩλ(η)

ρ(ε) + 2l∗t̂(ε)

η
· U1(ε, δ, η) > C2

)
.

Using H ∈ RV−α(η) with α > 1, we get

p
(

3(ρ̄+ ρ̃+ 3)ε, δ, η
)
U1(ε, δ, η)

d−→ Exp(1) as η ↓ 0

due to the nature of the Geometric random variable U1. Besides, due to H ∈ RV−α(η) with α > 1
and Lemma B.14, it is easy to show that

lim
η↓0

λ(η)ρ(ε)+2l∗ t̂(ε)
η

p
(

3(ρ̄+ ρ̃+ 3)ε, δ, η
) = 0.

Combining these results with Slutsky’s theorem, we now obtain

µ(E(0))λ(η)
ρ(ε) + 2l∗t̂(ε)

η
· U1(ε, δ, η)

d−→ 0 as η ↓ 0.

Therefore,

lim sup
η↓0

sup
u≥C

P
(
µ(E(0))λ(η)

ρ(ε) + 2l∗t̂(ε)

η
· U1(δ, η) > Cu

)
= 0. (B.109)
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Plugging (B.108) and (B.109) back into (B.107), we can establish the upper bound in (B.67). To show
(B.69), note that for event

E(ε, η) = {νΩλ(η)τ(η, ε) > u, Xη
τ(η,ε) ∈ B(m̃k′ , 2ε)},

we have (for definitions of τ , see (B.62))

E(ε, η) ⊇{vΩλ(η)σ(η) > u, Jσ(η) = k′} ∩ {Xη
n ∈ Ω̃Jσ(η) ∀n ∈ [σ(η), τ(η, ε)]},

E(ε, η)∩{vΩλ(η)σ(η) > u, Jσ(η) = j} ∩ {Xη
n ∈ Ω̃Jσ(η) ∀n ∈ [σ(η), τ(η, ε)]} = ∅ ∀j 6= k′.

Therefore, for all η sufficiently small,

sup
|x|≤2ε

Px(E(ε, η))

≤ sup
|x|≤2ε

Px(A×) + sup
|x|≤2ε

Px((A×)c ∩ {Xη
n /∈ Ω̃Jσ(η) for some n ∈ [σ(η), τ(η, ε)]}

)
+ sup
|x|≤2ε

Px
(

(A×)c ∩ {vΩλ(η)σ(η) > u, Jσ(η) = k′} ∩ {Xη
n ∈ Ω̃Jσ(η) ∀n ∈ [σ(η), τ(η, ε)]}

)
≤4C + exp

(
− (1− C)3u

)νΩ
k′ + C

νΩ

uniformly for all u ≥ C, due to (B.102), (B.71) and (B.107).
The lower bound can be shown by an almost identical approach. In particular, analogous to

(B.107), we can show that (for any u > 0)

inf
x∈[−2ε,2ε]

Px
(
vΩλ(η)σ(η) > u, Jσ(η) = k′

)
≥ inf
x∈[−2ε,2ε]

Px
(
{vΩλ(η)σ(η) > u, Jσ(η) = k′} ∩

(
A×(ε, δ, η)

)c)
≥ inf
x∈[−2ε,2ε]

Px
(
{vΩλ(η)Ibefore(ε, δ, η) > u, Jσ(η) = k′} ∩

(
A×(ε, δ, η)

)c)
≥P
(
vΩλ(η)U ′2(ε, δ, η) > (1− C)u

)νΩ
k′ + C

νΩ
− 2C due to P(E\F ) ≥ P(E)− P(F ) and (B.102)(B.104)(B.106)

where
U ′2(ε, δ, η) ∼ Geom

(
H(δ/η)p

(
− 3(ρ̄+ ρ̃+ 3)ε, δ, η

))
.

Using the similar argument leading to (B.108), we are able to show (B.68), (B.70) and conclude the
proof.

Recall that σi(η) = min{n ≥ 0 : Xn /∈ Ωi} and that value of constants qi, qi,j are specified via
(5)-(10). Define

τmin
i (η, ε) =∆ min{n ≥ σi(η) : Xη

n ∈
⋃
j

[mj − 2ε,mj + 2ε]}, (B.110)

Ji(η) = j ⇐⇒ Xη
σi(η) ∈ Ωj ∀j ∈ [nmin]. (B.111)

The following result is simply a restatement of Proposition B.22 under the new system of notations.
Despite the reiteration, we still state it here because this is the version that will be used to prove
Lemma 8, which is the key tool for establishing Theorem 1, as well as many other results in Appendix
C.

61



Proposition B.24. Given C > 0 and i, j ∈ [nmin] such that i 6= j, the following claims hold for all
ε > 0 that are sufficiently small:

lim sup
η↓0

sup
u∈(C,∞)

sup
x∈(mi−2ε,mi+2ε)

Px
(
qiλi(η)σi(η) > u, Xη

σi(η) ∈ Ωj

)
≤ C + exp

(
− (1− C)u

)qi,j + C

qi
,

lim inf
η↓0

inf
u∈(C,∞)

inf
x∈(mi−2ε,mi+2ε)

Px
(
qiλi(η)σi(η) > u, Xη

σi(η) ∈ Ωj

)
≥ −C + exp

(
− (1 + C)u

)qi,j − C
qi

,

lim sup
η↓0

sup
u∈(C,∞)

sup
x∈(mi−2ε,mi+2ε)

Px
(
qiλi(η)τmin

i (η, ε) > u, Xη
τmin
i (η,ε)

∈ Ωj

)
≤ C + exp

(
− (1− C)u

)qi,j + C

qi
,

lim inf
η↓0

inf
u∈(C,∞)

inf
x∈(mi−2ε,mi+2ε)

Px
(
qiλi(η)τmin

i (η, ε) > u, Xη
τmin
i (η,ε)

∈ Ωj

)
≥ −C + exp

(
− (1 + C)u

)qi,j − C
qi

,

lim inf
η↓0

inf
x∈(mi−2ε,mi+2ε)

Px
(
qiλi(η)

(
τmin
i (η, ε)− σi(η)

)
< C, Xη

n ∈ ΩJi(η) ∀n ∈ [σi(η), τmin
i (η, ε)]

)
≥ 1− C.

Concluding this section, we apply Proposition B.24 and prove Lemma 8.

Proof of Lemma 8. Fix some C ∈ (0, 1), u > 0, and some k, l ∈ [nmin] with k 6= l. Let qi, qi,j be the
constants defined in (10).

Fix some C0 ∈
(
0, C

nmin
∧ qk
nmin

C
)
. Using Proposition B.24, we know that for all ε sufficiently small,

we have

lim sup
η↓0

sup
x∈(mk−2ε,mk+2ε)

Px
(
qkλk(η)σk(η) > u, Xη

σk(η) ∈ Ωj

)
≤ C0 + exp

(
− (1− C)u

)qk,j + C0

qk
∀j ∈ [nmin].

Summing up the inequality above over all j ∈ [nmin], we can obtain (17). The lower bound (18) can
be established using an identical approach.

In order to show (20), note that we can find C1 ∈ (0, u) sufficiently small so that

−C1 + exp
(
− (1 + C1) · 2C1

)qk,l − C1

qk
≥ qk,l − C

qk
.

Fix such C1. From Proposition B.24, we also know that for all ε small enough, we have

lim inf
η↓0

inf
x∈(mk−2ε,mk+2ε)

Px
(
qkλk(η)σk(η) > u,Xη

σk(η) ∈ Ωl

)
≥ −C1 + exp

(
− (1 + C1) · 2C1

)qk,l − C1

qk
.

Then using Px
(
Xη
σk(η) ∈ Ωl

)
≥ P

(
qkλk(η)σk(η) > u,Xη

σk(η) ∈ Ωl

)
we conclude the proof for (20).

Moving on, we show (19) in the following way. Note that we can find C2 ∈ (0, u) small enough so
that

2C2 +
qk,l + C2

qk
<
qk,l + C

qk
. (B.112)

Fix such C2. Since (18) has been established already, we can find some u2 > 0 such that for all ε
small enough,

lim sup
η↓0

sup
x∈(mk−2ε,mk+2ε)

Px
(
qkλk(η)σk(η) ≤ u2

)
< C2 (B.113)

Fix such u2. Meanwhile, fix some C3 ∈ (0, C2 ∧ u2). From Proposition B.24 we know that for all ε
sufficiently small,

lim sup
η↓0

sup
x∈(mk−2ε,mk+2ε)

Px
(
qkλk(η)σk(η) > u2, X

η
σk(η) ∈ Ωl

)
≤ C3 + exp

(
− (1− C3)u2

)qk,l + C3

qk
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≤ C2 +
qk,l + C2

qk
. (B.114)

Lastly, observe the following decomposition of events (for any x ∈ Ωk)

Px
(
Xη
σk(η) ∈ Ωl

)
≤ Px

(
qkλk(η)σk(η) ≤ u2

)
+ Px

(
qkλk(η)σk(η) > u2, X

η
σk(η) ∈ Ωl

)
.

Combining this bound with (B.112)-(B.114), we complete the proof.

C Proofs for Technical Lemmas in Section 2.6

C.1 Proof of Lemma 9

First, we introduce another dichotomy for small and large noises. For any γ̃ > 0 and any learning
rate η > 0, we say that a noise Zn is small if

η|Zn| > ηγ̃

and we say Zn is large otherwise. For this new classification of small and large noises, we introduce
the following notations and definitions:

Z≤,γ̃,ηn = Zn1{η|Zn| ≤ ηγ̃}, (C.1)

Z>,γ̃,ηn = Zn1{η|Zn| > ηγ̃}, (C.2)

T̃ η1 (γ̃) =∆ min{n ≥ 1 : η|Zn| > ηγ̃}. (C.3)

Similar to Lemma B.10, the following result is a direct application of Lemma B.9, and shows that it is
rather unlikely to observe large perturbation that are caused only by small noises. Specifically, since
α > 1 we can always find

γ̃ ∈ (0, (1− 1

α
∧ 1

2
)

β ∈
(
1, (2− 2γ̃) ∧ α(1− γ̃)

)
.

Now in Lemma B.9, if we let ∆ = γ̃, ∆̃ = ∆/2 and ε = δ = 1 (in other words, u(η) = 1/η1−γ̃ , v(η) =
ηγ̃/2), then for any positive integer j the condition (B.38) is satisfied, allowing us to draw the following
conclusion immediately as a corollary from Lemma B.9.

Lemma C.1. Given N > 0 and

γ̃ ∈ (0, (1− 1

α
) ∧ 1

2
), β ∈

(
1, (2− 2γ̃) ∧ (α− αγ̃)

)
,

we have (as η ↓ 0)

P
(

max
j=1,2,··· ,d(1/η)βe

η|Z≤,γ̃,η1 + · · ·+ Z≤,γ̃,ηj | > ηγ̃/2
)

= o(ηN ).

The flavor of the next lemma is similar to that of Lemma B.11. Specifically, we show that,
with high probability, the SGD iterates would quickly return to the local minimum as long as they
start from somewhere that are not too close the boundary of an attraction field (namely, the points
s1, s2, · · · , snmin

). To this end, we consider a refinement of function t̂(·) defined in (B.24). For
any i = 1, 2, · · · , nmin, any x ∈ Ωi and any η > 0, γ ∈ (0, 1), we can define the return time to
ηγ−neighborhood for the ODE xη as

t̂(i)γ (x, η) =∆ min{t ≥ 0 : |xη(t, x)−mi| ≤ ηγ}.
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Given the bound in (B.23) (which is stated for a specific attraction field) and the fact that there
only exists finitely many attraction fields, we know the existence of some c2 < ∞ such that for any
i = 1, 2, · · · , nmin, any η > 0, any γ ∈ (0, 1) and any x ∈ Ωi such that |x − si| ∨ |x − si−1| > ηγ , we
have

t̂(i)γ (x, η) ≤ c2γ log(1/η)/η

and define function t↑ as

t↑(η, γ) =∆ c2γ log(1/η).

Lastly, define the following stopping time for any i = 1, 2, · · · , nmin, any x ∈ Ωi and any ∆ > 0

T
(i)
return(η,∆) =∆ min{n ≥ 0 : Xη

n(x) ∈ B(mi, 2∆)}

where we adopt the notation B(u, v) =∆ [u− v, u+ v] for the v−neighborhood around point u.

Lemma C.2. Given

γ̃ ∈ (0, (1− 1

α
) ∧ (

1

2
)), γ ∈ (0,

γ̃

16Mc2
∧ γ̃

4
),

and any i = 1, 2, · · · , nmin, any ∆ > 0, we have

lim inf
η↓0

inf
x∈Ωi:|x−si−1|∨|x−si|≥2ηγ

Px
(
T

(i)
return(η,∆) ≤ 2c2γ log(1/η)/η, Xη

n ∈ Ωi ∀n ≤ T (i)
return(η,∆)

)
= 1.

Proof. Throughout this proof, we only consider η small enough such that

2c2γ log(1/η)/η < d(1/η)βe, ηM ≤ η2γ̃ , 2ηγ < ∆/2, 2ηγ̃/4 < ηγ . (C.4)

The condition above holds for all η > 0 sufficiently small because β > 1, 2γ̃ < 1, and γ < γ̃/4. Also,
fix some β ∈

(
1, (2− 2γ̃) ∧ (α− αγ̃)

)
Define the following events

A×1 (η) =∆
{

max
j=1,2,··· ,d(1/η)βe

η|Z≤,γ̃,η1 + · · ·+ Z≤,γ̃,ηj | > ηγ̃/2
}

A×2 (η) =∆ {T̃ η1 (γ̃) ≤ d(1/η)βe} (see (C.3) for definition of the stopping time involved)

and fix some N > 0. From Lemma C.1, we see that (for all sufficiently small η)

P(A×1 (η)) ≤ ηN .

Besides, using Lemma B.2 together with the fact that β < α(1 − γ̃), we know the existence of some
constant θ > 0 such that

P(A×2 (η)) ≤ ηθ

for all sufficiently small η.

Now we focus on the behavior of the SGD iterates on event
(
A×1 (η)∩A×2 (η)

)c
. Let us arbitrarily

choose some x ∈ Ωi such that |x− si| ∨ |x− si−1| > 2ηγ . First, from Lemma B.4 and (C.4), we know
that

|xηt (x)− yηbtc(x)| ≤ 2ηM exp
(
2Mc2γ log(1/η)

)
≤ 2η2γ̃−2Mc2γ ≤ 2ηγ̃ ≤ ηγ ∀t ≤ 2c2γ log(1/η)/η

(C.5)

64



Next, from the definition of the function t↑(·) and (C.5), we know that for

TGD,return(x; η,∆) =∆ min{n ≥ 0 : yηn(x) ∈ B(mi,
∆

2
+ ηγ)}, (C.6)

we have

TGD,return(x; η,∆) ≤ 2c2γ log(1/η)/η (C.7)

yηn > si−1 + ηγ , yηn < si − ηγ ∀n ≤ 2c2γ log(1/η)/η. (C.8)

Furthermore, on event
(
A×1 (η) ∩A×2 (η)

)c
, due to Lemma B.3 and (C.4), we have that

|Xη
n(x)− yηn(x)| ≤ ηγ̃/2 exp

(
2Mc2 log(1/η)

)
= η

γ̃
2−2Mc2γ ≤ ηγ̃/4 < ηγ ∀n ≤ 2c2γ log(1/η)/η.

Combining this with (C.7), (C.8), we can conclude that (recall that due to (C.4) we have 2ηγ < ∆/2)

T
(i)
return(η,∆) ≤ 2c2γ log(1/η)/η

Xη
n ∈ Ωi ∀n ≤ 2c2γ log(1/η)/η

on event
(
A×1 (η) ∩A×2 (η)

)c
. Therefore,

lim inf
η↓0

inf
x∈Ωi:|x−si−1|∨|x−si|≥2ηγ

Px
(
T

(i)
return(η,∆) ≤ 2c2γ log(1/η)/η, Xη

n ∈ Ωi ∀n ≤ T (i)
return(η,∆)

)
≥ lim inf

η↓0
P
((
A×1 (η) ∩A×2 (η)

)c)
≥ lim inf

η↓0
1− ηN − ηθ = 1.

This concludes the proof.

The takeaway of the next lemma is that, almost always, the SGD iterates will quickly escape from
the neighborhood of any si, the boundaries of each attraction fields.

Lemma C.3. Given any γ ∈ (0, 1), t > 0, we have

lim inf
η↓0

inf
x∈[−L,L]

Px
(

min
{
n ≥ 0 : Xη

n /∈
⋃
i

B(si, 2η
γ)
}
≤ t

H(1/η)

)
= 1.

Proof. We only consider η small enough so that

min
i=2,3,··· ,nmin−1

|si − si−1| > 3η
1+γ

2 ,

ηM < ηγ .

Also, the claim is trivial if x /∈ ∪jB(sj , 2η
γ), so without loss of generality we only consider the case

where there is some j ∈ [nmin] and x ∈ [−L,L], x ∈ B(sj , 2η
γ). Let us define stopping times

T γ =∆ min{n ≥ 1 : η|Zn| > 5ηγ}; (C.9)

T γescape =∆ min{n ≥ 0 : Xη
n /∈ ∪jB(sj , 2η

γ)}, (C.10)

and the following two events

A×1 (η) =∆ {T γ > t

H(1/η)
},

A×2 (η) =∆ {η|ZTγ | > η
1+γ

2 }.
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First, using Lemma B.1 and the regularly varying nature of H(·) = P(|Z1| > ·), we know the existence
of some θ > 0 such that

P(A×1 (η)) ≤ exp(−1/ηθ)

for all η > 0 sufficiently small. Next, by definition of T γ , one can see that (for any η ∈ (0, 1))

P(A×2 (η)) =
H(1/η

1−γ
2 )

H(5/η1−γ)
.

Again, due to H ∈ RV−α and 1− γ > 0, we know the existence of some θ1 > 0 such that

P(A×2 (η)) < ηθ1

for all η > 0 sufficiently small. To conclude the proof, we only need to note the following fact on event(
A×1 (η) ∪ A×2 (η)

)c
. There are only two possibilities on this event: T γescape ≤ T γ − 1, or T γescape ≥ T γ .

Now we analyze the two cases respectively.

• On
(
A×1 (η) ∪A×2 (η)

)c ∩ {T γescape ≤ T γ − 1}, we must have T γescape < T γ ≤ t/H(1/η).

• On
(
A×1 (η) ∪ A×2 (η)

)c ∩ {T γescape ≥ T γ}, we know that at n = T γ − 1, there exists an integer
j ∈ {1, 2, · · · , nmin − 1} such that Xη

n ∈ B(sj , 2η
γ). Now since ηM < ηγ and η|ZTγ | > 5ηγ , we

must have

|Xη
Tγ −X

η
Tγ−1| > 4ηγ ⇒ Xη

Tγ /∈ B(sj , 2η
γ).

On the other hand, the exclusion of event A×2 (η) tells us that |Xη
Tγ −X

η
Tγ−1| < 2η

1+γ
2 . Due to

(C.9), we then have Xη
n /∈ ∪iB(si, 2η

γ).

In summary,
(
A×1 (η) ∪A×2 (η)

)c ⊆ {T γreturn ≤ t/H(1/η)} and this conclude the proof.

In the next lemma, we analyze the number of transitions needed to visit a certain local minimizer
in the loss landscape. In general, we focus on a communication class G and, for now, assume it is
absorbing. Next, we introduce the following concepts to record the transitions between different local
minimum. To be specific, for any η > 0 and any ∆ > 0 small enough so that B(mj ,∆) ∩ Ωcj = ∅ for
all j, define

T0(η,∆) = min{n ≥ 0 : Xη
n ∈ ∪jB(mj , 2∆)}; (C.11)

I0(η,∆) = j iff Xη
T0(η,∆) ∈ B(mj , 2∆); (C.12)

Tk(η,∆) = min{n > Tk−1(η,∆) : Xη
n ∈ ∪j 6=Ik−1(η,∆)B(mj , 2∆)} ∀k ≥ 1 (C.13)

Ik(η,∆) = j iff Xη
Tk(η,∆) ∈ B(mj , 2∆) ∀k ≥ 1. (C.14)

As mentioned earlier, the next goal is to analyze the transitions between attraction fields it takes to
visit mj when starting from mi when mi,mj ∈ G. Define

Ki(η,∆) =∆ min{k ≥ 0 : Ik(η,∆) = i}.

Lemma C.4. Assume that G is an absorbing communication class on the graph G. Then there exists
some constant p > 0 such that for any i with mi ∈ G, any ε > 0, and any ∆ > 0,

sup
j: mj∈G; x∈B(mj ,2∆)

Px(Ki(η,∆) > u · nmin) ≤ P(Geom(p) ≥ u) + ε ∀u = 1, 2, · · · ,

sup
j: mj∈G; x∈B(mj ,2∆)

Px
(
∃k ∈ [Ki(η,∆)] s.t. mIk(η,∆) /∈ G

)
≤ ε

hold for all η > 0 sufficiently small.
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Proof. The claim is trivial if, for the initial condition, we have x ∈ B(mi, 2∆). Next, let us observe
the following facts.

• Define (recall the definitions of measure µi and sets Ei, Ei,j in (4)(8)(9))

J(j) =∆ arg min
j̃:µi(Ej,j̃)>0

|i− j̃| ∀j 6= i

p∗ =∆ min
j: j 6=i, mj∈G

µj(Ej,J(j))

µj(Ej)
.

• From the definition of J(j) and the fact that there are only finitely many attraction fields we
can see that p∗ > 0. Moreover, G being a communication class implies that

|J(j)− i| < |j − i| ∀j 6= i, mj ∈ G.

Indeed, if i < j, then since G is a communication class and there are some mi ∈ G with i < j,
we will at least have µj(Ej,j−1) > 0, so |J(j) − i| ≤ |i − j| − 1; the case that i > j can be
approached analogously.

• Now from the definition of J(j) and Proposition B.24, together with the previous bullet point,
we know that for all η sufficiently small,

inf
x∈[−L,L]

Px(|Ik+1 − i| ≤ |Ik − i| − 1, mIk+1
∈ G | Ki(η,∆) > k, mIk ∈ G) ≥ p∗/2

uniformly for all k ≥ 0.

• Meanwhile, since p∗ > 0, we are able to fix some δ > 0 small enough such that

nminδ

(p∗/2)nmin
< ε.

• On the other hand, for any j̃ with mj̃ /∈ G, by definition of the typical transition graph we must

have µj(Ej,̃j) = 0 for any j with mj ∈ G. Then due to Proposition B.24 again, one can see that
for all η > 0 that is sufficiently small,

sup
x∈[−L,L]

Px(mIk+1
/∈ G | Ki(η,∆) > k, mIk ∈ G) < δ

uniformly for all k ≥ 0.

• Repeat this argument for nmin times, and we can see that for all η sufficiently small

inf
x∈[−L,L]

Px(Ki(η,∆) ≤ k + nmin | Ki(η,∆) > k, mIk ∈ G) ≥
(p∗

2

)nmin

sup
x∈[−L,L]

Px(∃l ∈ [nmin] s.t. mIk+l
/∈ G | Ki(η,∆) > k, mIk ∈ G) ≤ nminδ

uniformly for all k ≥ 1.

• Lastly, to apply the bounds established above, we will make use of the following expression of
several probabilities. For any j with mj ∈ G and x ∈ B(mj , 2∆) and any u = 1, 2, · · · ,

Px(∃l ∈ [unmin] s.t. mIl /∈ G, Ki(η,∆) > u · nmin)

=

u−1∑
v=0

Px
(
∃k ∈ [nmin] s.t. mIk+vnmin

/∈ G
∣∣∣ Ki(η,∆) > v · nmin, mIl ∈ G ∀l ≤ vnmin

)
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·
v−1∏
w=0

Px
(
Ki(η,∆) > (w + 1)nmin, mIk+wnmin

∈ G ∀k ∈ [nmin]
∣∣∣ Ki(η,∆) > w · nmin, mIl ∈ G ∀l ≤ wnmin

)

Px(mIl ∈ G ∀l ∈ [unmin], Ki(η,∆) > u · nmin)

=

u−1∏
v=0

P
(
Ki(η,∆) > (v + 1)nmin, mIk+vnmin

∈ G ∀k ∈ [nmin]
∣∣∣ Ki(η,∆) > vnmin, mIk ∈ G ∀k ∈ [vnmin]

)
In summary, now we can see that (for sufficiently small η)

sup
j: mj∈G; x∈B(mj ,2∆)

Px
(
∃k ∈ [Ki(η,∆)] s.t. mIk(η,∆) /∈ G

)
≤
∞∑
u=0

sup
j: mj∈G; x∈B(mj ,2∆)

Px
(
∃v ∈ [nmin] such that mIv+unmin

/∈ G, Ki(η,∆) > unmin,mIk ∈ G ∀k ∈ [unmin]
)

≤
∞∑
u=0

sup
j: mj∈G; x∈B(mj ,2∆)

Px
(
∃v ∈ [nmin] such that mIv+unmin

/∈ G
∣∣∣ Ki(η,∆) > unmin,mIk ∈ G ∀k ∈ [unmin]

)
·
u−1∏
v=0

sup
j: mj∈G; x∈B(mj ,2∆)

Px
(
Ki(η,∆) > (v + 1)nmin,mIk+vnmin

∈ G ∀k ∈ [nmin]
∣∣∣Ki(η,∆) > vnmin,mIk ∈ G ∀k ∈ [vnmin]

)
≤
∑
u≥0

nminδ
(

1− (
p∗

2
)nmin

)u−1

=
nminδ

(p∗/2)nmin
≤ ε

and

sup
j:mj∈G, x∈B(mj ,2∆)

Px(Ki(η,∆) > u · nmin)

≤ sup
j:mj∈G, x∈B(mj ,2∆)

Px(∃l ∈ [unmin] s.t. mIl /∈ G, Ki(η,∆) > u · nmin)

+ sup
j:mj∈G, x∈B(mj ,2∆)

Px(mIl ∈ G ∀l ∈ [unmin], Ki(η,∆) > u · nmin)

≤
u∑
v=1

nminδ
(

1− (
p∗

2
)nmin

)v−1

+
(

1− (
p∗

2
)nmin

)u
≤ nminδ

(p∗/2)nmin
+
(

1− (
p∗

2
)nmin

)u
≤ε+

(
1− (

p∗

2
)nmin

)u
uniformly for all u = 1, 2, · · · . To conclude the proof, it suffices to set p = (p

∗

2 )nmin .

The proof above can be easily adapted to the case when the communication class G is transient.
Define

KG
i (η,∆) =∆ min{k ≥ 0 : Ik(η,∆) = i or mIk(η,∆) /∈ G}.

Lemma C.5. Assume that G is a transient communication class on the graph G. Then there exists
some constant p > 0 such that for any i with mi ∈ G and any ∆ ∈ (0, ε̄/3),

sup
j: mj∈G; x∈B(mj ,2∆)

Px(KG
i (η,∆) > u · nmin) ≤ P(Geom(p) ≥ u) ∀u = 1, 2, · · · (C.15)

hold for all η > 0 sufficiently small.
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Proof. The structure of this proof is analogous to that of Lemma C.4. Again, the claim is trivial if,
for the initial condition, we have x ∈ B(mi, 2∆). Next, let us observe the following facts.

• Define (recall the definitions of measure µi and sets Ei, Ei,j in (4)(8)(9))

J(j) =∆ arg min
j̃:µi(Ej,j̃)>0

|i− j̃| ∀j 6= i

p∗ =∆ min
j: j 6=i, mj∈G

µj(Ej,J(j))

µj(Ej)
.

• From the definition of J(j) and the fact that there are only finitely many attraction fields we
can see that p∗ > 0. Moreover, G being a communication class implies that

|J(j)− i| < |j − i| ∀j 6= i, mj ∈ G.

Indeed, if i < j, then since G is a communication class and there are some mi ∈ G with i < j,
we will at least have µj(Ej,j−1) > 0, so |J(j) − i| ≤ |i − j| − 1; the case that i > j can be
approached analogously.

• Now from the definition of J(j) and Proposition B.24, together with the previous bullet point,
we know that for all η sufficiently small,

inf
x∈[−L,L]

Px(|Ik+1 − i| ≤ |Ik − i| − 1, mIk+1
∈ G | KG

i (η,∆) > k ≥ p∗/2

uniformly for all k ≥ 0.

• Repeat this argument for nmin times, and we can see that for all η sufficiently small

inf
x∈[−L,L]

Px(KG
i (η,∆) ≤ k + nmin | KG

i (η,∆) > k) ≥
(p∗

2

)nmin

uniformly for all k ≥ 1.

• Lastly, for any j 6= i with mj ∈ G and x ∈ B(mj , 2∆) and any u = 1, 2, · · · ,

Px(KG
i (η,∆) > u · nmin)

=

u−1∏
v=0

Px
(
KG
i (η,∆) > (v + 1)nmin

∣∣∣ KG
i (η,∆) > v · nmin

)
=

u−1∏
v=0

(
1− Px

(
KG
i (η,∆) ≤ (v + 1)nmin

∣∣∣ KG
i (η,∆) > v · nmin

))

In summary, now we can see that (for suffciently small η)

sup
j:mj∈G, x∈B(mj ,2∆)

Px(KG
i (η,∆) ≥ u · nmin) ≤

(
1− (

p∗

2
)nmin

)u
uniformly for all u = 1, 2, · · · . To conclude the proof, it suffices to set p = (p

∗

2 )nmin .

We are now ready to prove Lemma 9, which, as demonstrated earlier, is the key tool in proof of
Theorem 2.
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Proof of Lemma 9. The claim is trivial if llarge = 1, so we focus on the case where llarge ≥ 2. Fix
some

γ̃ ∈ (0, (1− 1

α
) ∧ (

1

2
)), β ∈

(
1, (2− 2γ̃) ∧ (α− αγ̃)

)
, γ ∈ (0,

γ̃

16Mc2
∧ γ̃

4
).

Let q∗ = maxj µj(Ej(0)). We show that for any t ∈ (0, δ
4q∗ ) the claim is true.

Now we only consider ∆ ∈ (0, ε̄/3) and η small enough so that ηM ≤ ηγ and ηγ < ∆. Consider
the following stopping times

T γescape =∆ min{n ≥ 0 : Xη
n /∈ ∪jB(sj , 2η

γ)};
T γreturn =∆ min{n ≥ 0 : Xη

n ∈ ∪jB(mj , 2η
γ)}.

First, from Lemma C.3, we know that

sup
x∈[−L,L]

Px(T γescape > 1/H(1/η)) < δ/2

for all η sufficiently small. Besides, by combining Lemma C.2 with Markov property (applied at
T γescape), we have

sup
x∈[−L,L]

Px
(
T γreturn − T γescape > 2c2γ log(1/η)/η

∣∣∣ T γescape ≤
1

H(1/η)

)
< δ/2

for all η sufficiently small. Therefore, for all η sufficiently small,

sup
x∈[−L,L]

P
(
T γreturn >

1

H(1/η)
+ 2c2γ

log(1/η)

η

)
< δ. (C.16)

Let J be the unique index such that Xη
Tγreturn

∈ ΩJ . Our next goal is to show that, almost always,

the SGD iterates will visit the local minimum at some large attraction fields. Therefore, without loss
of generality, we can assume that mJ /∈M large, and define

T γlarge =∆ min{n ≥ T γreturn : Xη
n ∈

⋃
i:mi∈M large

B(mi, 2∆)}

and introduce the following definitions:

τ0 =∆ T γreturn, J0 =∆ J

τk =∆ min{n > τk−1 : Xη
n ∈

⋃
j 6=Jk−1

B(mj , 2∆)}

Jk = j ⇔ Xη
τk
∈ Ωj ∀k ≥ 1

K =∆ min{k ≥ 0 : mJk ∈M large}.

In other words, the sequence of stopping times (τk)k≥1 is the time that, starting from T γreturn, the SGD
iterates visited a local minimum that is different from the one visited at τk−1, and (Jk)k≥0 records
the label of the visited local minima. The random variable K is the number of transitions required to
visit a minimizer in a large attraction field. From Lemma C.4, we know the existence of some p∗ > 0
such that (for all η sufficiently small)

sup
x∈[−L,L]

Px(K ≥ u · nmin) ≤ P
(

Geom(p∗) ≥ u
)

+
δ

2
∀u = 1, 2, 3, · · · .
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where Geom(a) is a Geometric random variable with success rate a ∈ (0, 1). Therefore, one can find
integer N(δ) such that (for all sufficiently small η)

sup
x∈[−L,L]

P(K ≥ N(δ)) ≤ δ. (C.17)

Next, given results in Proposition B.24 and the fact that there are only finitely many attraction fields,
one can find a real number u(δ) such that (for all sufficiently small η)

sup
x∈[−L,L]

Px(τk − τk−1 ≤
u(δ)

λJk−1
(η)

) ≤ δ/N(δ) (C.18)

uniformly for all k = 1, 2, · · · , N(δ). From (C.16), (C.17),(C.18), we now have

sup
x∈[−L,L]

Px
(
Xη
n /∈

⋃
j:mj∈M large

B(mj , 2∆) ∀n ≤ N(δ)u(δ)
H(1/η)/η

λlarge(η)
+

1

H(1/η)
+ 2c2γ

log(1/η)

η

)
≤ 3δ

(C.19)

for any sufficiently small η. To conclude the proof we just observe the following facts. First, due to
H ∈ RV−α and llarge ≥ 2, we have

lim
η↓0

H(1/η)/η = 0, lim
η↓0

λlarge(η)

H(1/η)
= 0, lim

η↓0

log(1/η)

η
λlarge(η) = 0.

Therefore, for sufficiently small η, we will have (note that ε, δ are fixed constants in this proof, so
N(δ), u(δ) are also fixed)

N(δ)u(δ)H(1/η)/η
λlarge(η)

+ 1
H(1/η) + 2c2γ

log(1/η)
η

bt/λlarge(η)c
≤ ε. (C.20)

Second, recall that we fixed some t ∈ (0, δ
4q∗ ) where q∗ = maxj µj(Ej). Also, choose some C > 0 small

enough so that

C < δ/2, 2(1 + C)2 < 4.

From Proposition B.22 and the fact that there are only finitely many attraction fields, there exists
some η̄0 > 0 such that for any η ∈ (0, η̄0) and any ∆ > 0 sufficiently small,

sup
i:mi∈M large

sup
x∈[mi−2∆,mi+2∆]

Px
(
σi(η) ≤ t

λlarge(η)

)
≤ sup
i:mi∈M large

sup
x∈[mi−2∆,mi+2∆]

Px
(
µi(Ei)λ

large(η)σi(η) ≤ q∗t
)

≤C + 2(1 + C)2q∗t ≤ 2δ.

Combine this bound with Markov property (applied at τK), and we obtain that

sup
x∈[−L,L]

Px
(
∃n ∈

[
bt/λlarge(η)c

]
s.t. Xη

n+τK /∈
⋃

i:mi∈M large

Ωi

)
≤ 2δ

for all η sufficiently small. Together with (C.19)(C.20), we have shown that

sup
x∈[−L,L]

Px
(
V small(η, ε, t) > ε

)
≤ 5δ

holds for all η sufficiently small.
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C.2 Proof of Lemma 10, 11

We shall return to the discussion about the dynamics of SGD iterates on a communication class G.
Recall that

Glarge = {mlarge
1 , · · · ,mlarge

iG
}, Gsmall = {msmall

1 , · · · ,msmall
i′G
}.

If Xη
n is initialized at some sharp minimum on G, then we are interested in the behavior of Xη

n at the
first visit to some large attraction fields on G. Define

TG(η,∆) =∆ min{n ≥ 0 : Xη
n ∈

⋃
i: mi∈Glarge

B(mi, 2∆) or Xη
n /∈ ∪i: mi∈GΩi}. (C.21)

Not only is this definition of TG analogous to the one for TDTMC
G in (34), but, as illustrated in the

next lemma, TG also behaves similarly as TG on a communication class G in the following sense: the
probabilities pi,j defined in (35) govern the dynamics regarding which large attraction field on G is
the first one to be visited. Besides, TG is usually rather small, meaning that the SGD iterates would
efficiently arrive at a large attraction field on G or simply escape from G.

Lemma C.6. Given any θ ∈ (0, (α−1)/2), ε ∈ (0, 1), i, j ∈ [nmin] such that mi ∈ Gsmall, mj /∈ Glarge,
the following claims hold for all ∆ > 0 that is sufficiently small:

lim sup
η↓0

sup
x∈B(mi,2∆)

Px
(
TG(η,∆) ≤ ηθ

λG(η)
, Xη

TG
∈ B(mj , 2∆)

)
≤ pi,j + 5ε,

lim inf
η↓0

inf
x∈B(mi,2∆)

Px
(
TG(η,∆) ≤ ηθ

λG(η)
, Xη

TG
∈ B(mj , 2∆)

)
≥ pi,j − 5ε,

lim sup
η↓0

sup
x∈B(mi,2∆)

Px
(
TG(η,∆) >

ηθ

λG(η)

)
≤ 2ε.

Proof. For Gsmall 6= ∅ to hold (and the discussion to be meaningful), we must have l∗G ≥ 2. Throughout
the proof, we assume this is the case. Besides, we require that ∆ ∈ (0, ε̄/3) so we have

B(mi, 3∆) ∩ Ωci = ∅ ∀i ∈ [nmin]

and the 3∆-neighborhood of each local minimum will not intersect with each other. In this proof we
will only consider ∆ in this range.

From Lemma C.4 (if G is absorbing) or Lemma C.5 (if G is transient), we know the existence of
some integer N(ε) such that for (see the definition of Ik in (C.11)-(C.14))

NG(η,∆) =∆ min{k ≥ 0 : mIk(η,∆) ∈ Glarge or mIk(η,∆) /∈ G},

we have

sup
x∈B(mi,2∆)

Px
(
NG(η,∆) > N(ε)

)
< ε

for all η sufficiently small. Fix such N(ε). Next, from Proposition B.24, we can find u(ε) ∈ (0,∞)
and ∆̄ ∈ (0, ε̄/3) such that for all ∆ ∈ (0, ∆̄), we have

sup
x∈B(mi,2∆)

Px
(
Tk(η,∆)− Tk−1(η,∆) > u(ε)/Λ

(
Ik−1(η,∆), η

))
≤ ε/N(ε) ∀k ∈ [N(ε)]

for all η sufficiently small. Fix such u(ε) and ∆̄. Now note that on the event

A =∆
{
NG ≤ N(ε)

}
∩
{
Tk(η,∆)− Tk−1(η,∆) ≤ u(ε)/Λ

(
Ik−1(η,∆), η

)
∀k ∈ [N(ε)]

}
,
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due to the choice of θ ∈ (0, (α− 1)/2) and H ∈ RV−α, we have (when η ∈ (0, 1))

Tk(η,∆)− Tk−1(η,∆) ≤ η2θ

λG(η)
∀k < NG(η,∆)

⇒TG(η,∆) = TNG(η,∆)(η,∆) ≤ N(ε)u(ε)
η2θ

λG(η)
.

For any η sufficiently small, we will have N(ε)u(ε) η2θ

λG(η) <
ηθ

λG(η) . In summary, we have established

that for all ∆ ∈ (0, ∆̄),

lim sup
η↓0

sup
x∈B(mi,2∆)

Px
(
TG >

ηθ

λG(η)

)
≤ lim sup

η↓0
sup

x∈B(mi,2∆)

Px(Ac) < 2ε. (C.22)

Next, let

S(ε) =∆
{(
m′1, · · · ,m′N(ε)

)
∈ {m1, · · · ,mnmin

}N(ε) : ∃k ∈ [N(ε)] s.t. m′k = mj

}
.

We can see that S(ε) contains all the possible transition path for Y DTMC where the state mj is
visited within the first N(ε) steps. Obviously, |S(ε)| < ∞. Let ε1 = ε/|S(ε)|. If we are able to
show the existence of some ∆̄1 > 0 such that for all ∆ ∈ (0, ∆̄1), the following claim holds for any

(m′k)
N(ε)
k=1 ∈ S(ε):

lim sup
η↓0

sup
x∈B(mi,2∆)

∣∣∣Px(mIk = m′k ∀k ∈ [N(ε)]
)
− P

(
Y DTMC
k (mi) = m′k ∀k ∈ [N(ε)]

)∣∣∣ < ε1, (C.23)

then we must have (for all ∆ ∈ (0, ∆̄ ∧ ∆̄1))

lim sup
η↓0

sup
x∈B(mi,2∆)

∣∣∣Px(Xη
TG
∈ B(mj , 2∆)

)
− pi,j

∣∣∣
= lim sup

η↓0
sup

x∈B(mi,2∆)

∣∣∣Px(Xη
TG
∈ B(mj , 2∆), TG ≤ N(ε)

)
+ Px

(
Xη
TG
∈ B(mj , 2∆), TG > N(ε)

)
− P

(
Y DTMC
TDTMCG

(mi) = mj , T
DTMC
G ≤ N(ε)

)
− P

(
Y DTMC
TDTMCG

(mi) = mj , T
DTMC
G > N(ε)

)∣∣∣
≤ lim sup

η↓0
sup

x∈B(mi,2∆)

∣∣∣Px(Xη
TG
∈ B(mj , 2∆), TG ≤ N(ε)

)
− P

(
Y DTMC
TDTMCG

(mi) = mj , T
DTMC
G ≤ N(ε)

)∣∣∣
+ lim sup

η↓0
sup

x∈B(mi,2∆)

Px(TG > N(ε)) + P(TDTMC
G (mi) > N(ε))

≤|S(ε)|ε1 + lim sup
η↓0

sup
x∈B(mi,2∆)

Px(TG > N(ε)) + P(TDTMC
G (mi) > N(ε))

≤3ε.

To show that (C.23) is true, we fix some (m′k)
N(ε)
k=1 ∈ S(ε) and let (k′(k))

N(ε)
k=1 be the sequence with

mk′(k) = m′k for each k ∈ [N(ε)]. From the definition of Y DTMC we have (let k′(0) = i)

P
(
Y DTMC
k (mi) = m′k ∀k ∈ [N(ε)]

)
=

N(ε)−1∏
k=0

µk′(k)(Ek′(k),k′(k+1))

µk′(k)(Ek′(k))
.

On the other hand, using Proposition B.24, we know that for any arbitrarily chosen ε′ ∈ (0, 1), we
have

lim sup
η↓0

sup
x∈B(mi,2∆)

Px
(
mIk(η,∆) = m′k ∀k ∈ [N(ε)]

)
≤
N(ε)−1∏
k=0

µk′(k)(Ek′(k),k′(k+1))

µk′(k)(Ek′(k))
· (1 + ε′),
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lim inf
η↓0

inf
x∈B(mi,2∆)

Px
(
mIk(η,∆) = m′k ∀k ∈ [N(ε)]

)
≥
N(ε)−1∏
k=0

µk′(k)(Ek′(k),k′(k+1))

µk′(k)(Ek′(k))
· (1− ε′),

for all ∆ > 0 sufficiently small. The arbitrariness of ε′ > 0, together with |S(ε)| <∞, allows us to see

the existence of some ∆̄1 > 0 such that with ∆ ∈ (0, ∆̄1), (C.23) holds for any (m′k)
N(ε)
k=1 ∈ S(ε). To

conclude the proof, observe that

lim sup
η↓0

sup
x∈B(mi,2∆)

∣∣∣Px(Xη
TG
∈ B(mj , 2∆)

)
− Px

(
TG(η,∆) ≤ ηθ

λG(η)
, Xη

TG
∈ B(mj , 2∆)

)∣∣∣
≤ lim sup

η↓0
sup

x∈B(mi,2∆)

Px
(
TG >

ηθ

λG(η)

)
< ε

due to (C.22).

Recall that continuous-time process X∗,η is the scaled version of Xη defined in (31), and the
mapping T∗(n, η) =∆ nλG(η) returns the timestamp t for X∗,ηt corresponding to the unscaled step n on
the time horizon of Xη

n. As an inverse mapping of T∗, we define the mapping N∗(t, η) = bt/λG(η)c
that maps the scaled timestamp t back to the step number n for the unscaled process Xη.

In the next lemma, we show that, provided that X∗,η stays on a communication class G before some
time t, the scaled process X∗,ηt is almost always in the largest attraction fields of a communication
class G.

Lemma C.7. Let G be a communication class on the graph G. Given any ε1 > 0, t > 0 and any
x ∈ Ωi with mi ∈ G, the following claim holds for all ∆ > 0 small enough:

lim sup
η↓0

Px
({
X∗,ηt /∈

⋃
j:mj∈Glarge

B(mj , 3∆)
}
∩
{
X∗,ηs ∈

⋃
k: mk∈G

Ωk ∀s ∈ [0, t]
})
≤ 2ε1.

Proof. Let ∆ ∈ (0, ε̄/3) for the constant ε̄ in (B.15)(B.16), so we are certain that each B(mi, 2∆) lies
entirely in Ωi and would not intersect with each other since

B(mi, 3∆) ∩ Ωci = ∅ ∀i ∈ [nmin].

Besides, with ε = ∆/3, we know the existence of some δ > 0 such that claims in Lemma B.12
would hold of the chosen ε, δ. Fix such δ for the entirety of this proof. Lastly, fix some

γ̃ ∈ (0, (1− 1

α
) ∧ (

1

2
)), β ∈

(
1, (2− 2γ̃) ∧ (α− αγ̃)

)
, γ ∈ (0,

γ̃

16Mc2
∧ γ̃

4
).

The blueprint of this proof is as follows. We will define a sequence of stopping times (Nj)
6
j=1 such

that the corresponding scaled timestamps T∗j = T∗(Nj , η) gradually approach t. By analyzing the
behavior of X∗,η on a time interval [t−∆t, t] that is very close to t (in particular, on the aforementioned
stopping times T∗j ), we are able to establish the properties of a series of events A1 ⊇ A2 ⊇ A3.

Moreover, we will show that A3 ⊆ {X∗,η,∆t ∈
⋃
i: mi∈Glarge B(mi, 3∆)}, so the properties about events

A,A2, A3 can be used to bound the probability of the target event.
Arbitrarily choose some ∆t ∈ (0, t). To proceed, let N0 =∆ N∗(t − ∆t, η) be the stopping time

corresponding to timestamp t − ∆t for the scaled process. Using Lemma C.3, we know that for
stopping time N1 =∆ min{n ≥ N0 : Xη

n /∈ ∪jB(sj , 2η
γ)}, we have

lim inf
η↓0

inf
x∈[−L,L]

Px(N1 −N0 <
∆t/4

H(1/η)
) = 1.
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Next, let N2 =∆ min{n ≥ N1 : Xη
n ∈ ∪jB(mj , 2∆)}. From Lemma C.2 and H ∈ RV−α (so that

log(1/η)/η = o(H(1/η)), we have

lim inf
η↓0

inf
x∈[−L,L]

Px(N2 −N1 <
∆t/4

H(1/η)
) = 1.

Collecting results above, we have

lim inf
η↓0

inf
x∈[−L,L]

Px(N2 −N0 <
∆t/2

H(1/η)
) = 1. (C.24)

Now note the following fact on the event {N2 −N0 <
∆t/2
H(1/η)}. The definition of the mapping T∗

implies that, for any pair of positive integers n1 ≤ n2, we have T∗(n2, η)−T∗(n1, η) = (n2−n1)λG(η) ≤
(n2 − n1) ·H(1/η). Therefore, on {N2 −N0 ≤ ∆t/2

H(1/η)} we have

T∗(N2, η)−T∗(N0, η) < ∆t/2⇒ T∗(N2, η) < t− ∆t

2
.

Besides, let T∗2 = T∗(N2, η). Now we can see that for event

A0 =∆
{
X∗,ηs ∈

⋃
k: mk∈G

Ωk ∀s ∈ [0, t]
}
∩
{
N2 −N0 <

∆t/2

H(1/η)

}
,

we have

A0 ⊆ A1 =∆
{

T∗2 < t− ∆t

2

}
∩
{
X∗,ηs ∈

⋃
k: mk∈G

Ωk ∀s ∈ [0,T∗2]
}
.

Meanwhile, from (C.24) we obtain that

lim sup
η↓0

sup
x∈[−L,L]

Px
(
Ac1 ∩ {X∗,ηs ∈

⋃
k: mk∈G

Ωk ∀s ∈ [0, t]}
)

= 0. (C.25)

Moving on, we consider the following stopping times

N3 =∆ min{n ≥ N2 : Xη
n ∈

⋃
j: mj∈Glarge

B(mj , 2∆) or Xη
n /∈

⋃
j: mj∈G

Ωj},

T∗3 =∆ T∗(N3, η).

Using Lemma C.6, we have

lim sup
η↓0

Px
(
N3 −N2 >

∆t/4

λG(η)

∣∣∣ A1

)
≤ ε1. (C.26)

Meanwhile, on event A1∩
{
N3−N2 ≤ ∆t/4

λG(η)

}
∩
{
X∗,ηs ∈

⋃
k: mk∈G Ωk ∀s ∈ [0, t]

}
, we have T∗3−T∗2 ≤

∆t/4, hence T∗3 ∈ [t−∆t, t−∆t/4]. In summary,

A1 ∩
{
N3 −N2 ≤

∆t/4

λG(η)

}
∩
{
X∗,ηs ∈

⋃
k: mk∈G

Ωk ∀s ∈ [0, t]
}

⊆
{

T∗3 ∈ [t−∆t, t−∆t/4]
}
∩
{
X∗,ηs ∈

⋃
k: mk∈G

Ωk ∀s ∈ [0,T∗3]
}
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Moreover, on event
{
X∗,ηs ∈

⋃
k: mk∈G Ωk ∀s ∈ [0, t]

}
, if we let J3 be label of the local minimum

visited at T∗3 such that J3 = j ⇐⇒ X∗,ηT∗3
∈ B(mj , 2∆), then we must have mJ3

∈ Glarge. Meanwhile,

consider the following stopping times

Tσ =∆ min{s > T∗3 : X∗,ηs /∈ ΩJ3
}.

From Proposition B.24, we know that

lim sup
η↓0

Px
(
Tσ −T∗3 ≤ ∆t

∣∣∣ {T∗3 ∈ [t−∆t, t−∆t/4]
}
∩
{
X∗,ηs ∈

⋃
k: mk∈G

Ωk ∀s ∈ [0,T∗3]
})

≤ε1 + 1− exp
(
− (1 + ε1)q∗∆t

)
(C.27)

where q∗ = maxj µj(Ej). Now we define the event

A2 =∆ A1 ∩
{
N3 −N2 ≤

∆t/4

λG(η)

}
∩
{

Tσ −T∗3 > ∆t

}
∩
{
X∗,ηs ∈

⋃
k: mk∈G

Ωk ∀s ∈ [0,T∗3]
}
.

Using (C.25)-(C.27), we get

lim sup
η↓0

sup
x∈[−L,L]

Px
(
Ac2 ∩ {X∗,ηs ∈

⋃
k: mk∈G

Ωk ∀s ∈ [0, t]}
)
≤ 2ε1 + 1− exp

(
− (1 + ε1)q∗∆t

)
. (C.28)

Furthermore, on event A2, due to T∗3 ∈ [t−∆t, t−∆t/4] as established above, we must have

X∗,ηs ∈ ΩJ3
∀s ∈ [T∗3, t].

Now let us focus on a timestamp T∗4 = t − ∆t/8
H(1/η)λG(η) and N4 = N∗(T∗4, η) . Obviously, T∗4 > T∗3

on event A2. Next, define

N5 =∆ min{n ≥ N4 : Xη
n ∈

⋃
j

B(mj , 2∆)}

T∗5 =∆ T∗(N5, η).

Using Lemma C.2 and C.3 again as we did above when obtaining (C.24), we can show that

lim sup
η↓0

Px
(
N5 −N4 >

∆t/16

H(1/η)

)
= 0. (C.29)

On the other hand, on event A2 ∩
{
N5 −N4 ≤ ∆t/16

H(1/η)

}
we must have

• T∗5 −T∗4 ≤
∆t/16
H(1/η)λG(η), so T∗5 ∈ [t− ∆t/8

H(1/η)λG(η), t− ∆t/16
H(1/η)λG(η)];

• X∗,ηT∗5
∈ ΩJ3 , due to Tσ −T∗3 > ∆t.

This implies that for event

Ã =∆
{

T∗5 ∈ [t− ∆t/8

H(1/η)
λG(η), t− ∆t/16

H(1/η)
λG(η)], X∗,ηT∗5

∈ ΩJ3

}
∩ {X∗,ηs ∈

⋃
k: mk∈G

Ωj ∀s ∈ [0,T∗5]},

we have A2 ∩
{
N5 −N4 ≤ ∆t/16

H(1/η)

}
⊆ Ã. Lastly, observe that

• From Lemma B.2, we know that for N6(δ) =∆ min{n > N5 : η|Zn| > δ} we have

lim sup
η↓0

P
(
N6(δ)−N5 ≤ ∆t/H(1/η)

)
≤ ∆t/δ

α;
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• As stated at the beginning of the proof, our choice of δ allows us to apply Lemma B.12 and
show that

lim sup
η↓0

sup
x∈[−L,L]

Px
(
∃n = N5, · · · , N6 − 1 s.t. Xη

n /∈ B(mJ3
, 3∆) | Ã

)
= 0;

• Combining the two bullet points above, we get

lim sup
η↓0

Px
(
∃s ∈ [T∗5, t] such that X∗,ηs /∈ B(mJ3 , 3∆)

∣∣∣ Ã) ≤ ∆t/δ
α. (C.30)

On the other hand,

Ã ∩ {X∗,ηs ∈ B(mJ3
, 3∆) ∀s ∈ [T∗5, t]} ⊆ {X

∗,η
t ∈

⋃
k: mk∈Glarge

B(mk, 3∆)}.

In summary, for event

A3 =∆ A2 ∩
{
N5 −N4 ≤

∆t/16

H(1/η)

}
∩
{
X∗,ηs ∈ B(mJ3

, 3∆) ∀s ∈ [T∗5, t]
}
,

we have A3 ⊆ {X∗,ηt ∈
⋃
k: mk∈Glarge B(mk, 3∆)}. Besides, due to (C.28)(C.29)(C.30), we get

lim sup
η↓0

sup
x∈[−L,L]

Px
(
Ac3 ∩ {X∗,ηs ∈

⋃
k: mk∈G

Ωk ∀s ∈ [0, t]}
)

≤2ε1 + 1− exp
(
− (1 + ε1)q∗∆t

)
+

∆t

δα
.

Remember that δ, ε1, q
∗ are fixed constants while ∆t can be made arbitrarily small, so by driving ∆t

to 0 we can conclude the proof.

Recall the definition of jump processes in Definition 2. Central to the proof of Lemma 10, the next
result provides a set of sufficient conditions for the convergence of a sequence of such jump processes
in the sense of finite dimensional distributions.

Lemma C.8. For a sequence of processes (Y n)n≥1 that, for each n ≥ 1, Y n is a
(

(Unj )j≥0, (V
n
j )j≥0

)
jump process, and a

(
(Uj)j≥0, (Vj)j≥0

)
jump process Y , if

• U0 ≡ 0;

• (Un0 , V
n
0 , U

n
1 , V

n
1 , U

n
2 , V

n
2 , · · · ) converges in distribution to (0, V0, U1, V1, U2, V2, · · · ) as n→∞;

• For any x > 0 and any n ≥ 1,

P(U1 + · · ·+ Un = x) = 0;

• For any x > 0,

lim
n→∞

P(U1 + U2 + · · ·Un > x) = 1,

then the finite dimensional distribution of Y n converges to that of Y in the following sense: for
any k ∈ N and any 0 < t1 < t2 < · · · < tk < ∞, the random element (Y nt1 , · · · , Y

n
tk

) converges in
distribution to (Yt1 , · · · , Ytk) as n→∞.
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Proof. Fix some k ∈ N and 0 < t1 < t2 < · · · < tk < ∞. For notational simplicity, let t = tk. Let
(D,d) be the metric space where D = D[0,t], the space of all càdlàg functions in R on the time interval
[0, t], and d is the Skorokhod metric defined as

d(ζ1, ζ2) =∆ inf
λ∈Λ
‖ζ1 − ζ2 ◦ λ‖ ∨ ‖λ− I‖

where Λ is the set of all nondecreasing homeomorphism from [0, t] onto itself, and I(s) = s is the
identity mapping. Also, we arbitrarily choose some ε ∈ (0, 1) and some open set A ⊆ Rk.

From the assumption, we can find integer J(ε) such that P
(∑J(ε)

j=1 Uj ≤ t
)
< ε, as well as an

integer N(ε) such that, for all n ≥ N(ε), we have P
(∑J(ε)

j=1 U
n
j ≤ t

)
+ P

(
Un0 ≥ t1

)
< ε. We fix such

J(ε), N(ε) (we may abuse the notation slightly and simply write J,N when there is no ambiguity).
Using Skorokhod’s representation theorem, we can construct a probability space (Ω,F ,Q) that

supports random variables (Ũn0 , Ṽ
n
0 , · · · , ŨnJ , Ṽ nJ )n≥1 and (Ũ0, Ṽ0, · · · , ŨJ , ṼJ) and satisfies the follow-

ing conditions:

• L(Un0 , V
n
0 , · · · , UnJ , V nJ ) = L(Ũn0 , Ṽ

n
0 , · · · , ŨnJ , Ṽ nJ ) for all n ≥ 1;

• L(U0, V0, · · · , UJ , VJ) = L(Ũ0, Ṽ0, · · · , ŨJ , ṼJ);

• Unj
a.s.−−→ Uj and V nj

a.s.−−→ Vj as n→∞ for all j ∈ [J ].

Therefore, on (Ω,F ,Q) we can define the following random elements (taking values in the space of
càdlàg functions):

Y n,↓Js =

{
Ṽ n0 if s < Ũn0∑J
j=0 Ṽ

n
j 1[Ũn0 +Ũn1 +···+Ũnj , Ũn0 +Ũn1 +···+Ũnj+1)(s) otherwise

,

Y ↓Js =

J∑
j=0

Ṽj1[Ũ1+···+Ũj , Ũ1+···+Ũj+1)(s) ∀s ≥ 0.

Note that (1) for the first jump time of Y ↓J we have Ũ0 ≡ 0, hence Y ↓J0 = Ṽ0; (2) when defining Y n,↓J

we set its value on [0, Ũn0 ) to be Ṽ n0 instead of 0.

Since Unj
a.s.−−→ Uj and V nj

a.s.−−→ Vj as n→∞ for all j ∈ [J ], we must have

lim
n

d(Y n,↓Js , Y ↓Js ) = 0

almost surely, which further implies that Y n,↓Js ⇒ Y ↓Js as n→∞ on (D,d). Now from our assumption
that, for the jump times U1 + · · · + Uj , we have P(U1 + · · · + Uj = x) = 0 ∀x > 0, j ≥ 1, as well as
(13.3) in [1], we then obtain

(Y n,↓Jt1 , · · · , Y n,↓Jtk
)⇒ (Y ↓Jt1 , · · · , Y ↓Jtk ) (C.31)

as n→∞. Recall that A is the open set we arbitrarily chose at the beginning of the proof, and ε > 0
is also chosen arbitrarily. Now we observe the following facts.

• Using (C.31), we can see that

lim inf
n

Q
(
(Y n,↓Jt1 , · · · , Y n,↓Jtk

) ∈ A
)
≥ Q

(
Y ↓Jt1 , · · · , Y ↓Jtk ) ∈ A

)
.

• The choice of N(ε) and J(ε) above implies that

∣∣Q((Y ↓J(ε)
t1 , · · · , Y ↓J(ε)

tk
) ∈ A

)
− P

(
(Yt1 , · · · , Ytk) ∈ A

)∣∣ ≤ P
( J(ε)∑
j=1

Uj ≤ t
)
< ε
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∣∣Q((Y n,↓J(ε)
t1 , · · · , Y n,↓J(ε)

tk
) ∈ A

)
− P

(
(Y nt1 , · · · , Y

n
tk

) ∈ A
)∣∣ ≤ P

( J(ε)∑
j=1

Unj ≤ t
)

+ P
(
Un0 ≥ t1

)
< ε ∀n ≥ N(ε).

Collecting the two results above, we have established that

lim inf
n

P
(
(Y nt1 , · · · , Y

n
tk

) ∈ A
)
≥ P

(
(Yt1 , · · · , Ytk) ∈ A

)
− 2ε.

From Portmanteau theorem, together with arbitrariness of ε > 0 and open set A, we can now conclude
that (Y nt1 , · · · , Y

n
tk

) converges in distribution to (Yt1 , · · · , Ytk).

The following lemma concerns the scaled version of the marker process X̂∗,η,∆ defined in (31)-(32).
Obviously, it is a jump process that complies with Definition 2. When there is no ambiguity about

the sequences (ηn)n≥1 and (∆n)n≥1, let X̂
(n)
t =∆ X̂∗,ηn,∆n

t . From (24)-(29) and (33), we know that

for any n ≥ 1, X̂(n) is a
((
τ∗k (ηn,∆n)− τ∗k−1(ηn,∆n)

)
k≥0

,
(
mIk(ηn,∆n)

)
k≥0

)
-jump process (with the

convention that τ∗−1 = 0). Also, for clarity of the exposition, we let (for all n ≥ 1, k ≥ 0)

S̃
(n)
k = σ∗k(ηn,∆n)− τ∗k−1(ηn,∆n),

S
(n)
k = τ∗k (ηn,∆n)− τ∗k−1(ηn,∆n),

W̃
(n)
k = mĨGk (ηn,∆n),

W
(n)
k = mIGk (ηn,∆n).

Lastly, remember that Y is the continuous-time Markov chain defined in (36)-(39) and πG(·) is the
random mapping defined in (40) that is used to initialize Y . Besides, Y is a

(
(Sk)k≥0, (Wk)k≥0

)
jump

process under Definition 2, with S0 = 0 and W0 = πG(mi) (here x ∈ Ωi and Xη
0 = x, so i is the

index of the attraction field where the SGD iterate is initialized). The following result states that,
given a sequence of learning rates (ηn)n≥1 that tend to 0, we are able to find a sequence of (∆n)n≥1

to parametrize X̂(n) = X̂∗,ηn,∆n , X(n) = X∗,ηn,∆n so that they have several useful properties, one of
which is that the jump times and locations of X̂(n) converges in distribuiton to those of Y (πG(mi)).

Lemma C.9. Assume the communication class G is absorbing. Given any mi ∈ G, x ∈ Ωi, finitely
many real numbers (tl)

k′

l=1 such that 0 < t1 < t2 < · · · < tk′ , and a sequence of strictly positive real
numbers (ηn)n≥1 with limn→0 ηn = 0, there exists a sequence of strictly positive real numbers (∆n)n≥1

with limn ∆n = 0 such that

• Under Px (so Xη
0 = x), as n tends to ∞,

(S
(n)
0 ,W

(n)
0 , S

(n)
1 ,W

(n)
1 , S

(n)
2 ,W

(n)
2 , · · · )⇒ (S0,W0, S1,W1, S2,W2, · · · ) (C.32)

• (Recall the definition of Tk, Ik in (C.11)-(C.14)) Given any ε > 0, the following claim holds for
all n sufficiently large:

sup
k≥0

Px
(
∃j ∈ [Tk(ηn,∆n), Tk(ηn,∆n)] s.t. Xη

j /∈
⋃

l: ml∈G

Ωl | mIk(ηn,∆n) ∈ G
)
< ε; (C.33)

• Given any ε > 0, the following claim holds for all n sufficiently large,

sup
k≥0

Pk
(
mIk(ηn,∆n)+v /∈ Glarge ∀v ∈ [unmin]

∣∣∣ mIk(ηn,∆n) ∈ G
)
≤ P(Geom(p∗) ≥ u) + ε ∀u = 1, 2, · · · ;

(C.34)
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• For any l ∈ [k′],

lim
n→∞

Px
(
X∗,ηntl

/∈
⋃

j: mj∈Glarge

B(mj ,∆n), X∗,ηns ∈
⋃

j: mj∈G
Ωj ∀s ∈ [0, tk′ ]

)
= 0 (C.35)

where p∗ > 0 is a constant that does not vary with our choices of ηn or ∆n.

Proof. Let

νj =∆ qj = µj(Ej)

νj,k =∆ µj(Ej,k)

so from the definition of qj,k we have qj,k = 1{j 6= k}νj,k +
∑
l: ml∈Gsmall νj,lpl,k.

In order to specify our choice of (∆n)n≥1, we consider a construction of sequences (∆̄(j))j≥0, (η̄(j))j≥0

as follows. Fix some θ ∈ (0, α − 1)/2). Let ∆̄(0) = η̄(0) = 1. One can see the existence of some
(∆̄(j))j≥1, (η̄(j))j≥1 such that

• ∆̄(j) ∈
(
0, ∆̄(j − 1)/2

]
, η̄(j) ∈

(
0, η̄(j − 1)/2

]
for all j ≥ 1;

• (Due to Lemma C.2) for any j ≥ 1, η ∈ (0, η̄(j)], (remember that x and i are the fixed constants
prescribed in the description of the lemma)

Px
(
σ∗0
(
η, ∆̄(j)

)
< ηθ, ĨG0

(
η, ∆̄(j)

)
= i
)
> 1− 1

2j
.

For definitions of σGk , τ
G
k , I

G
k , Ĩ

G
k , see (24)-(29).

• (Due to Lemma C.6) for any j ≥ 1, η ∈ (0, η̄(j)],∣∣∣∣Px(τ∗k (η, ∆̄(j)
)
− σ∗k

(
η, ∆̄(j)

)
< ηθ, IGk

(
η, ∆̄(j)

)
= i2

∣∣∣ ĨGk (η, ∆̄(j)
)

= i1

)
− pi1,i2

∣∣∣∣ < 1/2j

uniformly for all k ≥ 0 and all mi1 ∈ Gsmall,mi2 ∈ Glarge. Also, by definition of σ∗ and τ∗, we
must have

Px
(
τ∗k
(
η, ∆̄(j)

)
− σ∗k

(
η, ∆̄(j)

)
= 0, IGk

(
η, ∆̄(j)

)
= i1

∣∣∣ ĨGk (η, ∆̄(j)
)

= i1

)
= 1

for all k ≥ 0 and mi1 ∈ Glarge.

• (Due to Proposition B.24) for any j ≥ 1, η ∈ (0, η̄(j)],

− 1

2j
+ exp

(
− (1 +

1

2j
)qi1u

)νi1,i2 − 1
2j

qi1

≤Px
(
σ∗k+1

(
η, ∆̄(j)

)
− τ∗k

(
η, ∆̄(j)

)
> u, ĨGk+1 = i2

∣∣∣ IGk (η, ∆̄(j)
)

= i1

)
≤ 1

2j
+ exp

(
− (1− 1

2j
)qi1u

)νi1,i2 + 1
2j

qi1

uniformly for all k ≥ 1, all u > 1/2j , and all mi1 ∈ Glarge,mi2 ∈ G.

• (Due to G being absorbing and, again, Proposition B.24) for any j ≥ 1, for any j ≥ 1, η ∈
(0, η̄(j)], (Recall the definition of Tk, Ik in (C.11)-(C.14))

Px
(
Ik+1

(
η, ∆̄(j)

)
= i2 | Ik

(
η, ∆̄(j)

)
= i1

)
<

1

2j
(C.36)

uniformly for all k ≥ 0, mi1 ∈ G,mi2 /∈ G.
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• (Due to Lemma C.4) There exists some p∗ > 0 such that for any j ≥ 1, for any j ≥ 1,
η ∈ (0, η̄(j)],

Px
(
m
v+Ik

(
η,∆̄(j)

) /∈ Glarge ∀v ∈ [unmin]
∣∣∣ Ik(η, ∆̄(j)

)
= i1

)
≤ P(Geom(p∗) ≥ u) + 1/2j

(C.37)

uniformly for all k ≥ 0, u ≥ 1 and mi1 ∈ G.

• (Due to Lemma C.7) for any j ≥ 1, for any j ≥ 1, η ∈ (0, η̄(j)],

Px
(
X∗,ηntk

/∈
⋃

j: mj∈Glarge

B(mj , ∆̄(j)), X∗,ηns ∈
⋃

j: mj∈G
Ωj ∀s ∈ [0, tk′ ]

)
< 1/2j (C.38)

uniformly for all k ∈ [k′].

Fix such (∆̄(j))j≥0, (η̄(j))j≥0. Define a function J(·) : N 7→ N as

J(n) = 0 ∨max{j ≥ 0 : η̄(j) ≥ ηn}

with the convention that max ∅ = −∞. Lastly, let

∆n = ∆̄(J(n)) ∀n ≥ 1.

Note that, due to limn ηn = 0, we have limn J(n) =∞, hence limn ∆n = 0. Besides, the definition of
J(·) tells us that in case that J(n) ≥ 1 (which will hold for all n sufficiently large), the claims above
holds with η = ηn and j = J(n). In particular, by combining limn J(n) =∞ with (C.36)(C.37)(C.38)
respectively, we have (C.33)(C.34)(C.35).

Now it remains to prove (C.32). To this end, it suffices to show that, for any positive integer

K, we have (S
(n)
0 ,W

(n)
0 , · · · , S(n)

K ,W
(n)
K ) converges in distribution (S0,W0, · · · , SK ,WK) as n tends

to infinity. In particular, note that S0 = 0,W0 = πG(mi), so W0 = mj with probability pi,j if
mi ∈ Gsmall, and W0 ≡ mi if mi ∈ Glarge.

For clarity of the exposition, we restate some important claims above under the new notational

system with S̃
(n)
k , W̃

(n)
k , S

(n)
k ,W

(n)
k we introduced right above this lemma. Given any ε > 0, the

following claims hold for all n sufficiently large:

• First of all,

Px
(
S̃

(n)
0 < ηθn, W̃

(n)
0 = mi

)
> 1− ε. (C.39)

• For all k ≥ 0 and all mi1 ∈ Gsmall,mi2 ∈ Glarge,∣∣∣∣Px(S(n)
k − S̃(n)

k < ηθn, W
(n)
k = mi2

∣∣∣ W̃ (n)
k = mi1

)
− pi1,i2

∣∣∣∣ < ε. (C.40)

• For all k ≥ 0 and all mi1 ∈ Glarge,

Px
(
S

(n)
k − S̃(n)

k = 0, W
(n)
k = mi1

∣∣∣ W̃ (n)
k = mi1

)
= 1. (C.41)

• For all k ≥ 0, all mi1 ∈ Glarge,mi2 ∈ G and all u > ε,

− ε+ exp
(
− (1 + ε)qi1u

)νi1,i2 − ε
qi1

≤Px
(
S̃

(n)
k+1 − S

(n)
k > u, W̃

(n)
k+1 = mi2

∣∣∣ W (n)
k = mi1

)
≤Px

(
S̃

(n)
k+1 − S

(n)
k > u− ηθn, W̃

(n)
k+1 = mi2

∣∣∣ W (n)
k = mi1

)
≤ε+ exp

(
− (1− ε)qi1u

)νi1,i2 + ε

qi1
(C.42)
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• Here is one implication of (C.40). Since |G| ≤ nmin, we have

Px
(
S

(n)
k − S̃(n)

k ≥ ηθn
∣∣∣ W̃ (n)

k = mi1

)
< nmin · ε (C.43)

for all k ≥ 0 and mi1 ∈ Gsmall.

• Note that for any mi1 ,mi2 ∈ Glarge and any k ≥ 0

Px
(
S

(n)
k+1 − S

(n)
k > u, W

(n)
k+1 = mi2

∣∣∣ W (n)
k = mi1

)
=1{i2 6= i1}Px

(
S̃

(n)
k+1 − S

(n)
k > u, W̃

(n)
k+1 = mi2

∣∣∣ W (n)
k = mi1

)
+

∑
i3: mi3∈Gsmall

∫
s>0

Px
(
S

(n)
k+1 − S̃

(n)
k+1 ≥ (u− s) ∨ 0, W̃

(n)
k+1 = mi2

∣∣∣ W̃ (n)
k = mi3

)
· Px

(
S̃

(n)
k+1 − S

(n)
k = ds, W̃

(n)
k+1 = mi3

∣∣∣ W (n)
k = mi1

)
.

Fix some i3 with mi3 ∈ Gsmall. On the one hand, due to (C.43),∫
s∈(0,u−ηθn]

Px
(
S

(n)
k+1 − S̃

(n)
k+1 ≥ u− s, W̃

(n)
k+1 = mi2

∣∣∣ W̃ (n)
k = mi3

)
· Px

(
S̃

(n)
k+1 − S

(n)
k = ds, W̃

(n)
k+1 = mi3

∣∣∣ W (n)
k = mi1

)
≤nminε.

On the other hand, by considering the integral on (u− ηθn,∞), we get∫
s∈(u−ηθn,∞)

Px
(
S

(n)
k+1 − S̃

(n)
k+1 ≥ (u− s) ∨ 0, W̃

(n)
k+1 = mi2

∣∣∣ W̃ (n)
k = mi3

)
· Px

(
S̃

(n)
k+1 − S

(n)
k = ds, W̃

(n)
k+1 = mi3

∣∣∣ W (n)
k = mi1

)
≥
∫
s∈(u,∞)

Px
(
W̃

(n)
k+1 = mi2

∣∣∣ W̃ (n)
k = mi3

)
· Px

(
S̃

(n)
k+1 − S

(n)
k = ds, W̃

(n)
k+1 = mi3

∣∣∣ W (n)
k = mi1

)
≥(pi3,i2 − ε)

(
− ε+ exp

(
− (1 + ε)qi1u

)νi1,i3 − ε
qi1

)
due to (C.40) and (C.42). Meanwhile,∫

s∈(u−ηθn,∞)

Px
(
S

(n)
k+1 − S̃

(n)
k+1 ≥ (u− s) ∨ 0, W̃

(n)
k+1 = mi2

∣∣∣ W̃ (n)
k = mi3

)
· Px

(
S̃

(n)
k+1 − S

(n)
k = ds, W̃

(n)
k+1 = mi3

∣∣∣ W (n)
k = mi1

)
≤(nminε+ pi3,i2 + ε)

(
ε+ exp

(
− (1− ε)qi1u

)νi1,i3 + ε

qi1

)
due to (C.40), (C.42) and (C.43).

• Therefore, for any mi1 ,mi2 ∈ Glarge and any k ≥ 0,

Px
(
S

(n)
k+1 − S

(n)
k > u, W

(n)
k+1 = mi2

∣∣∣ W (n)
k = mi1

)
≤g(ε) + exp

(
− (1− ε)qi1u

)1{i2 6= i1}νi1,i2 +
∑
i3: mi3∈Gsmall νi1,i3pi3,i2

qi1
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≤g(ε) + exp
(
− (1− ε)qi1u

)qi1,i2
qi1

(C.44)

and

Px
(
S

(n)
k+1 − S

(n)
k > u, W

(n)
k+1 = mi2

∣∣∣ W (n)
k = mi1

)
≥− g(ε) + exp

(
− (1 + ε)qi1u

)1{i2 6= i1}νi1,i2 +
∑
i3: mi3∈Gsmall νi1,i3pi3,i2

qi1

≥− g(ε) + exp
(
− (1 + ε)qi1u

)qi1,i2
qi1

(C.45)

where q∗ = maxi qi and

g(ε) =∆ ε+
ε

q∗
+ nmin(1 + ε)ε+ ε

1 + ε

q∗
nmin + nmin(ε+

ε

q∗
) + nmin(nminε+ ε+ 1)(1 +

1

q∗
)ε.

Note that limε↓0 g(ε) = 0.

Now we apply the bounds in (C.39)(C.44)(C.45) to establish the weak convergence claim regard-

ing (S
(n)
0 ,W

(n)
0 , · · · , S(n)

K ,W
(n)
K ). Fix some positive integer K, some strictly positive real numbers

(sk)Kk=0, a sequence (wk)Kk=0 ∈
(
Glarge

)K+1
with wk = mik for each k, and some ε > 0 such that

ε < mink=0,1,··· ,K{sk}. On the one hand, the definition of the CTMC Y implies that

P
(
S0 < t0,W0 = w0; Sk > sk and Wk = wk ∀k ∈ [K]

)
=P(πG(mi) = w0)

K∏
k=1

(
Sk > sk and Wk = wk

∣∣∣ Wk−1 = wk−1

)
=
(
1{mi ∈ Glarge, i0 = i}+ 1{mi ∈ Gsmall}pi0,i1

)
·
K∏
k=1

exp(−qik−1
sk)

qik−1,ik

qik−1

.

On the other hand, using (C.39)(C.44)(C.45), we know that for all n sufficiently large,

Px
(
S

(n)
0 < s0,W

(n)
0 = w0; S

(n)
k > sk and W

(n)
k = wk ∀k ∈ [K]

)
≥(1− ε)

(
1{mi ∈ Glarge, i0 = i}+ 1{mi ∈ Gsmall}(pi0,i1 − ε)

)
·
K∏
k=1

(
− g(ε) + exp(−(1 + ε)qik−1

sk)
qik−1,ik

qik−1

)
and

Px
(
S

(n)
0 < s0,W

(n)
0 = w0; S

(n)
k > sk and W

(n)
k = wk ∀k ∈ [K]

)
≤
(
1{mi ∈ Glarge, i0 = i}+ 1{mi ∈ Gsmall}(pi0,i1 + ε)

)
·
K∏
k=1

(
g(ε) + exp(−(1− ε)qik−1

sk)
qik−1,ik

qik−1

)
.

Since ε > 0 can be arbitrarily small, we now obtain

lim
n→∞

Px
(
S

(n)
0 < t0,W

(n)
0 = w0; S

(n)
k > sk and W

(n)
k = mk ∀k ∈ [K]

)
=P
(
S0 < s0,W0 = w0; Sk > sk and Wk = wk ∀k ∈ [K]

)
,

and the arbitrariness of the integer K, the strictly positive real numbers (sk)Kk=0, and the sequence

(wk)Kk=0 ∈
(
Glarge

)K+1
allows us to conclude the proof.
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To extend the result above to the case where the communication class G is transient, we revisit
the definition of the Y † in (44). Let Ḡ = Glarge ∪ {†} and let m0 = † (remember that all the local
minimizers of f on [−L,L] are m1, · · · ,mmin). Meanwhile, using qi and qi,j in (38)(39), we can define

q†i,j =


qi,j if i ≥ 1, j ≥ 1

1{j = 0} if i = 0∑
j∈[nmin],mj /∈G qi,j if i ≥ 1, j = 0.

and q†0 = 1, q†i = qi ∀i ≥ 1. Next, fix some i with mi ∈ G and x ∈ Ωi. Define a sequence of random

variables (S†k)k≥0, (W
†
k )k≥0 such that S†k = 0 and W0 = πG(mi),W

†
0 = †1{W0 /∈ Glarge}+W01{W0 ∈

Glarge} (see the definition of random mapping πG in (40)) and (for all k ≥ 0 and i, j with mj ,ml ∈ Ḡ)

P
(
W †k+1 = ml, S

†
k+1 > t

∣∣∣ W †k = mj , (W †l )k−1
l=0 , (S†l )

k
l=0

)
(C.46)

=P
(
W †k+1 = ml, S

†
k+1 > t

∣∣∣ W †k = mj

)
= exp(−q†j t)

q†j,l

q†j
∀t > 0 (C.47)

Then it is easy to see that Y †(πG(mi)) defined in (44) is a
(
(S†k)k≥0, (W

†
k )k≥0

)
jump process. In

particular, from at any state that is not † (namely, any mj with mj ∈ Glarge), the probability that Y †

moves to † in the next transition is equal to the chance that, starting from the same state, Y moves
to a state that is not in G. Once entering m0 = †, the process Y † will only make dummy jumps
(with interarrival times being iid Exp(1)): indeed, we have q†0 = q†0,0 = 1 and q†0,j = 0 for any j ≥ 1,

implying that, given W †k = m0 = †, we must have W †k+1 = m0 = †. These dummy jumps ensure that

Y † is stuck at the cemetery state † after visiting it.
Similarly, we can characterize the jump times and locations of the jump process X̂†,∗,η,∆ (for

the definition, see (43)). When there is no ambiguity about the sequences (ηn)n≥1, (∆n)n≥1, let

X̂†,(n) = X̂†,∗,ηn,∆n and X†,(n) = X∗,ηn,∆n . Also, recall that τG defined in (13) is the step n when
Xη
n exits the communication class G. Now let (Ek)k≥0 be a sequence of iid Exp(1) random variables

that is also independent of the noises (Zk)k≥1 (so they are independent from the SGD iterates Xη
n).

For all n ≥ 1, k ≥ 0, define (see (24)-(29) and (33) for definitions of the quantities involved)

S̃
†,(n)
k =

{
σ∗k(ηn,∆n) ∧T∗(τG(ηn), ηn)− τ∗k−1(ηn,∆n) if τ∗k−1(ηn,∆n) < T∗(τG(ηn), ηn)

0 otherwise

S
†,(n)
k =

{
τ∗k (ηn,∆n) ∧T∗(τG(ηn), ηn)− τ∗k−1(ηn,∆n) if τ∗k−1(ηn,∆n) < T∗(τG(ηn), ηn)

Ek otherwise

W̃
†,(n)
k =

{
mĨGk (ηn,∆n) if σ∗k(ηn,∆n) < T∗(τG(ηn), ηn)

† otherwise

W
†,(n)
k =

{
mIGk (ηn,∆n) if τ∗k (ηn,∆n) < T∗(τG(ηn), ηn)

† otherwise

with the convention that τ∗−1 = 0. Note that T∗(τG(ηn), ηn) is the scaled timestamp for X(n) = X∗,η

corresponding to τG(ηn), hence T∗(τG(ηn), ηn) = min{t ≥ 0 : X(n) /∈
⋃
j: mj∈G Ωj}. One can see that

X̂†,(n) is a
(
(S
†,(n)
k )k≥0, (W

†,(n)
k )k≥0

)
jump process. The next lemma is similar to Lemma C.9 and

discusses the convergence of the jump times and locations of X̂†,(n) on a communication class G in
the transient case.

Lemma C.10. Assume that the communication class G is transient. Given any mi ∈ G, x ∈ Ωi,
finitely many real numbers (tl)

k′

l=1 such that 0 < t1 < t2 < · · · < tk′ , and a sequence of strictly positive
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real numbers (ηn)n≥1 with limn→0 ηn = 0, there exists a sequence of strictly positive real numbers
(∆n)n≥1 with limn ∆n = 0 such that

• Under Px (so Xη
0 = x), as n tends to ∞,

(S
†,(n)
0 ,W

†,(n)
0 , S

†,(n)
1 ,W

†,(n)
1 , S

†,(n)
2 ,W

†,(n)
2 , · · · )⇒ (S†0,W

†
0 , S

†
1,W

†
1 , S

†
2,W

†
2 , · · · ) (C.48)

• For any l ∈ [k′],

lim
n→∞

Px
(
X
†,(n)
tl

/∈
⋃

j: mj∈Glarge

B(mj ,∆n), X†,(n)
s ∈

⋃
j: mj∈G

Ωj ∀s ∈ [0, tl]
)

= 0 (C.49)

Proof. Let

νj,k =∆ µj(Ej,k) ∀j, k ≥ 1, j 6= k

pj,† =∆
∑

j̃: mj̃ /∈G

pj,̃j ∀mj ∈ Gsmall

qj,† =∆
∑

k:mk /∈G

νj,k +
∑

k: mk∈Gsmall

νj,kpk,† ∀mj ∈ Glarge.

In order to specify our choice of (∆n)n≥1, we consider a construction of sequences (∆̄(j))j≥0, (η̄(j))j≥0

as follows. Fix some θ ∈ (0, α − 1)/2). Let ∆̄(0) = η̄(0) = 1. One can see the existence of some
(∆̄(j))j≥1, (η̄(j))j≥1 such that

• ∆̄(j) ∈
(
0, ∆̄(j − 1)/2

]
, η̄(j) ∈

(
0, η̄(j − 1)/2

]
for all j ≥ 1;

• (Due to Lemma C.2) for any j ≥ 1, η ∈ (0, η̄(j)], (remember that x and i are the fixed constants
prescribed in the description of the lemma)

Px
(
σ∗0
(
η, ∆̄(j)

)
< ηθ, ĨG0

(
η, ∆̄(j)

)
= i
)
> 1− 1

2j
.

For definitions of σGk , τ
G
k , I

G
k , Ĩ

G
k , see (24)-(29).

• (Due to Lemma C.6) for any j ≥ 1, η ∈ (0, η̄(j)],∣∣∣∣Px(τ∗k (η, ∆̄(j)
)
− σ∗k

(
η, ∆̄(j)

)
< ηθ, IGk

(
η, ∆̄(j)

)
= i2

∣∣∣ ĨGk (η, ∆̄(j)
)

= i1

)
− pi1,i2

∣∣∣∣ < 1/2j

uniformly for all k ≥ 0 and all mi1 ∈ Gsmall,mi2 /∈ Gsmall. Also, by definition of σ∗ and τ∗, we
must have

Px
(
τ∗k
(
η, ∆̄(j)

)
− σ∗k

(
η, ∆̄(j)

)
= 0, IGk

(
η, ∆̄(j)

)
= i1

∣∣∣ ĨGk (η, ∆̄(j)
)

= i1

)
= 1

for all k ≥ 0 and mi1 ∈ Glarge.

• (Due to Proposition B.24) for any j ≥ 1, η ∈ (0, η̄(j)],

− 1

2j
+ exp

(
− (1 +

1

2j
)qi1u

)νi1,i2 − 1
2j

qi1

≤Px
(
σ∗k+1

(
η, ∆̄(j)

)
− τ∗k

(
η, ∆̄(j)

)
> u, ĨGk+1 = i2

∣∣∣ IGk (η, ∆̄(j)
)

= i1

)
≤ 1

2j
+ exp

(
− (1− 1

2j
)qi1u

)νi1,i2 + 1
2j

qi1

uniformly for all k ≥ 1, all u > 1/2j , and all mi1 ∈ Glarge,mi2 ∈ G.
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• (Due to Lemma C.7) for any j ≥ 1, for any j ≥ 1, η ∈ (0, η̄(j)],

Px
(
X

(n)
tk

/∈
⋃

j: mj∈Glarge

B(mj , ∆̄(j)), X(n)
s ∈

⋃
j: mj∈G

Ωj ∀s ∈ [0, tk]
)
< 1/2j (C.50)

uniformly for all k ∈ [k′].

Fix such (∆̄(j))j≥0, (η̄(j))j≥0. Define a function J(·) : N 7→ N as

J(n) = 0 ∨max{j ≥ 0 : η̄(j) ≥ ηn}

with the convention that max ∅ = −∞. Lastly, let

∆n = ∆̄(J(n)) ∀n ≥ 1.

Note that, due to limn ηn = 0, we have limn J(n) = ∞, hence limn ∆n = 0. Besides, since X
†,(n)
t =

X
(n)
t given X

(n)
s ∈

⋃
j: mj∈G Ωj for all s ∈ [0, t], by combining limn J(n) = ∞ with (C.50) we obtain

(C.49).
Now it remains to prove (C.48). To this end, it suffices to show that, for any positive integer K,

we have (S
†,(n)
0 ,W

†,(n)
0 , · · · , S†,(n)

K ,W
†,(n)
K ) converges in distribution (S†0,W

†
0 , · · · , S

†
K ,W

†
K) as n tends

to infinity. In particular, due to introduction of the dummy jumps, we know that for any k with
τ∗k (ηn,∆n) ≥ τG(ηn) (in other words, X̂†,(n) has reached state † within the first k jumps) we have

S
†,(n)
k+1 ∼ Exp(1) and W

†,(n)
k+1 ≡ †. Similarly, for any k with S†0 + · · ·+S†k ≤ τYG , we have S†k+1 ∼ Exp(1)

and W †k+1 ≡ †. Therefore, it suffices to show that, for any positive integer K, any series of strictly

positive real numbers (sk)Kk=0, any sequence (wk)Kk=0 ∈
(
Ḡ
)K+1

such that wj 6= † for any j < K,
indices ik such that wk = mik for each k, we have

lim
n→∞

Px
(
S
†,(n)
0 < t0,W

†,(n)
0 = w0; S

†,(n)
k > sk and W

†,(n)
k = wk ∀k ∈ [K]

)
=P
(
S†0 < s0,W

†
0 = w0; S†k > sk and W †k = wk ∀k ∈ [K]

)
(C.51)

Fix some (sk)Kk=0, (wk)Kk=0 ∈
(
Ḡ
)K+1

, and indices (ik)Kk=1 satisfying the conditions above. Besides,
arbitrarily choose some ε > 0 so that ε < mink=0,··· ,K sk. To proceed, we start by translating the
inequalities established above under the new system of notations.

• First of all, for all n sufficiently large, (remember that x and i are prescribed constants in the
description of this lemma)

Px
(
S̃
†,(n)
0 < ηθn, W̃

†,(n)
0 = mi

)
> 1− ε. (C.52)

• For all k ≥ 0 and all mi1 ∈ Gsmall,mi2 ∈ Glarge, it holds for all n sufficiently large that∣∣∣∣Px(S†,(n)
k − S̃†,(n)

k < ηθn, W
†,(n)
k = mi2

∣∣∣ W̃ †,(n)
k = mi1

)
− pi1,i2

∣∣∣∣ < ε. (C.53)

• On the other hand, for all k ≥ 0 and all mi1 ∈ Gsmall, it holds for all n sufficiently large that∣∣∣∣Px(S†,(n)
k − S̃†,(n)

k < ηθn, W
†,(n)
k = †

∣∣∣ W̃ †,(n)
k = mi1

)
−

∑
i2: mi2 /∈G

pi1,i2

∣∣∣∣
=

∣∣∣∣Px(S†,(n)
k − S̃†,(n)

k < ηθn, W
†,(n)
k = †

∣∣∣ W̃ †,(n)
k = mi1

)
− pi1,†

∣∣∣∣ < ε. (C.54)
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• For all k ≥ 0 and all mi1 ∈ Glarge, it holds for all n that

Px
(
S
†,(n)
k − S̃†,(n)

k = 0, W
†,(n)
k = mi1

∣∣∣ W̃ †,(n)
k = mi1

)
= 1. (C.55)

• For all k ≥ 0, all mi1 ∈ Glarge,mi2 ∈ G and all u > ε, the following claim holds for all n
sufficiently large:

− ε+ exp
(
− (1 + ε)qi1u

)νi1,i2 − ε
qi1

≤Px
(
S̃
†,(n)
k+1 − S

†,(n)
k > u, W̃

†,(n)
k+1 = mi2

∣∣∣ W †,(n)
k = mi1

)
≤Px

(
S̃
†,(n)
k+1 − S

†,(n)
k > u− ηθn, W̃

†,(n)
k+1 = mi2

∣∣∣ W †,(n)
k = mi1

)
≤ε+ exp

(
− (1− ε)qi1u

)νi1,i2 + ε

qi1
(C.56)

• On the other hand, for all k ≥ 0, all mi1 ∈ Glarge, the following claim holds for all n sufficiently
large:

− ε+ exp
(
− (1 + ε)qi1u

)−ε+
∑
i2: mi2 /∈G

νi1,i2

qi1

≤Px
(
S̃
†,(n)
k+1 − S

†,(n)
k > u, W̃

†,(n)
k+1 = †

∣∣∣ W †,(n)
k = mi1

)
≤Px

(
S̃
†,(n)
k+1 − S

†,(n)
k > u− ηθn, W̃

†,(n)
k+1 = †

∣∣∣ W †,(n)
k = mi1

)
≤ε+ exp

(
− (1− ε)qi1u

)ε+
∑
i2: mi2 /∈G

νi1,i2

qi1
(C.57)

• Here is one implication of (C.53)(C.54). Since |G| ≤ nmin, we have (when n is sufficiently large)

Px
(
S

(n)
k − S̃(n)

k ≥ ηθn
∣∣∣ W̃ (n)

k = mi1

)
< nmin · ε (C.58)

for all k ≥ 0 and mi1 ∈ Gsmall.

• Note that for any mi1 ,mi2 ∈ Glarge and any k ≥ 0

Px
(
S
†,(n)
k+1 − S

†,(n)
k > u, W

†,(n)
k+1 = mi2

∣∣∣ W †,(n)
k = mi1

)
=1{i2 6= i1}Px

(
S̃
†,(n)
k+1 − S

†,(n)
k > u, W̃

†,(n)
k+1 = mi2

∣∣∣ W †,(n)
k = mi1

)
+

∑
i3: mi3∈Gsmall

∫
s>0

Px
(
S
†,(n)
k+1 − S̃

†,(n)
k+1 ≥ (u− s) ∨ 0, W̃

†,(n)
k+1 = mi2

∣∣∣ W̃ †,(n)
k = mi3

)
· Px

(
S̃
†,(n)
k+1 − S

†,(n)
k = ds, W̃

†,(n)
k+1 = mi3

∣∣∣ W †,(n)
k = mi1

)
.

Fix some i3 with mi3 ∈ Gsmall. Due to (C.58)∫
s∈(0,u−ηθn]

Px
(
S
†,(n)
k+1 − S̃

†,(n)
k+1 ≥ u− s, W̃

†,(n)
k+1 = mi2

∣∣∣ W̃ †,(n)
k = mi3

)
· Px

(
S̃
†,(n)
k+1 − S

†,(n)
k = ds, W̃

†,(n)
k+1 = mi3

∣∣∣ W †,(n)
k = mi1

)
≤nminε.
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Meanwhile, by considering the integral on (u− ηθn,∞), we get∫
s∈(u−ηθn,∞)

Px
(
S
†,(n)
k+1 − S̃

†,(n)
k+1 ≥ (u− s) ∨ 0, W̃

†,(n)
k+1 = mi2

∣∣∣ W̃ †,(n)
k = mi3

)
· Px

(
S̃
†,(n)
k+1 − S

†,(n)
k = ds, W̃

†,(n)
k+1 = mi3

∣∣∣ W †,(n)
k = mi1

)
≥
∫
s∈(u,∞)

Px
(
W̃
†,(n)
k+1 = mi2

∣∣∣ W̃ †,(n)
k = mi3

)
· Px

(
S̃
†,(n)
k+1 − S

†,(n)
k = ds, W̃

†,(n)
k+1 = mi3

∣∣∣ W †,(n)
k = mi1

)
≥(pi3,i2 − ε)

(
− ε+ exp

(
− (1 + ε)qi1u

)νi1,i3 − ε
qi1

)
due to (C.53) and (C.56). As for the upper bound,∫

s∈(u−ηθn,∞)

Px
(
S
†,(n)
k+1 − S̃

†,(n)
k+1 ≥ (u− s) ∨ 0, W̃

†,(n)
k+1 = mi2

∣∣∣ W̃ †,(n)
k = mi3

)
· Px

(
S̃
†,(n)
k+1 − S

†,(n)
k = ds, W̃

†,(n)
k+1 = mi3

∣∣∣ W †,(n)
k = mi1

)
≤(nminε+ pi3,i2 + ε)

(
ε+ exp

(
− (1− ε)qi1u

)νi1,i3 + ε

qi1

)
due to (C.53), (C.56) and (C.58).

• Therefore, for any mi1 ,mi2 ∈ Glarge and any k ≥ 0,

Px
(
S
†,(n)
k+1 − S

†,(n)
k > u, W

†,(n)
k+1 = mi2

∣∣∣ W †,(n)
k = mi1

)
≤g(ε) + exp

(
− (1− ε)qi1u

)1{i2 6= i1}νi1,i2 +
∑
i3: mi3∈Gsmall νi1,i3pi3,i2

qi1

≤g(ε) + exp
(
− (1− ε)qi1u

)qi1,i2
qi1

(C.59)

and

Px
(
S
†,(n)
k+1 − S

†,(n)
k > u, W

†,(n)
k+1 = mi2

∣∣∣ W †,(n)
k = mi1

)
≥− g(ε) + exp

(
− (1 + ε)qi1u

)1{i2 6= i1}νi1,i2 +
∑
i3: mi3∈Gsmall νi1,i3pi3,i2

qi1

≥− g(ε) + exp
(
− (1 + ε)qi1u

)qi1,i2
qi1

(C.60)

where q∗ = maxi qi and

g(ε) =∆ 2ε+
ε

q∗
+ nmin(1 + ε)ε+ ε

1 + ε

q∗
nmin + nmin(ε+

ε

q∗
) + nmin(nminε+ ε+ 1)(1 +

1

q∗
)ε.

Note that limε↓0 g(ε) = 0.

• On the other hand, for the case where the marker process X̂†,(n) jumps to the cemetery state †
from some mi1 ∈ Glarge, note that

Px
(
S
†,(n)
k+1 − S

†,(n)
k > u, W

†,(n)
k+1 = †

∣∣∣ W †,(n)
k = mi1

)
=Px

(
S̃
†,(n)
k+1 − S

†,(n)
k > u, W̃

†,(n)
k+1 = †

∣∣∣ W †,(n)
k = mi1

)
+

∑
i3: mi3∈Gsmall

∫
s>0

Px
(
S
†,(n)
k+1 − S̃

†,(n)
k+1 ≥ (u− s) ∨ 0, W̃

†,(n)
k+1 = †

∣∣∣ W̃ †,(n)
k = mi3

)
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· Px
(
S̃
†,(n)
k+1 − S

†,(n)
k = ds, W̃

†,(n)
k+1 = mi3

∣∣∣ W †,(n)
k = mi1

)
.

Arguing similarly as we did above by considering the integral on [0, u − ηθn] and (u − ηθn,∞)
separately, and using (C.54) and (C.57), we then get (for all n sufficiently large)

Px
(
S
†,(n)
k+1 − S

†,(n)
k > u, W

†,(n)
k+1 = †

∣∣∣ W †,(n)
k = mi1

)
≤g(ε) + exp

(
− (1− ε)qi1u

)∑i2:mi2 /∈G
νi1,i2 +

∑
i2:mi2∈Gsmall νi1,i2pi2,†

qi1

=g(ε) + exp
(
− (1− ε)qi1u

)qi1,†
qi1

(C.61)

and

Px
(
S
†,(n)
k+1 − S

†,(n)
k > u, W

†,(n)
k+1 = †

∣∣∣ W †,(n)
k = mi1

)
≥− g(ε) + exp

(
− (1 + ε)qi1u

)∑i2:mi2 /∈G
νi1,i2 +

∑
i2:mi2∈Gsmall νi1,i2pi2,†

qi1

=− g(ε) + exp
(
− (1 + ε)qi1u

)qi1,†
qi1

(C.62)

For simplicity of presentation, we also let qj,0 = qj,† and pj,0 = pj,†. First of all, remember that we

have fixed some series of strictly positive real numbers (sk)Kk=0, some sequence (wk)Kk=0 ∈
(
Ḡ
)K+1

such that wj 6= † for any j < K, and indices ik such that wk = mik for each k. The definition of the
continuous-time Markov chain Y † implies that

P
(
S0 < t0,W0 = w0; Sk > sk and Wk = wk ∀k ∈ [K]

)
=P(πG(mi) = w0)

K∏
k=1

(
Sk > sk and Wk = mk

∣∣∣ Wk−1 = wk−1

)
=
(
1{mi ∈ Glarge, i0 = i}+ 1{mi ∈ Gsmall}pi0,i1

)
·
K∏
k=1

exp(−qik−1
sk)

qik−1,ik

qik−1

.

On the other hand, using (C.59)-(C.62), we know that for all n sufficiently large,

Px
(
S

(n)
0 < s0,W

(n)
0 = w0; S

(n)
k > sk and W

(n)
k = wk ∀k ∈ [K]

)
≥(1− ε)

(
1{mi ∈ Glarge, i0 = i}+ 1{mi ∈ Gsmall}(pi0,i1 − ε)

)
·
K∏
k=1

(
− g(ε) + exp(−(1 + ε)qik−1

sk)
qik−1,ik

qik−1

)
and

Px
(
S

(n)
0 < s0,W

(n)
0 = w0; S

(n)
k > sk and W

(n)
k = mk ∀k ∈ [K]

)
≤
(
1{mi ∈ Glarge, i0 = i}+ 1{mi ∈ Gsmall}(pi0,i1 + ε)

)
·
K∏
k=1

(
g(ε) + exp(−(1− ε)qik−1

sk)
qik−1,ik

qik−1

)
.

The arbitrariness of ε > 0 then allows us to establish (C.51) and conclude the proof.

Now we are ready to prove Lemma 10 and Lemma 11.
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Proof of Lemma 10. From Lemma C.9, one can see the existence of some (∆n)n≥1 with limn ∆n = 0

such that (C.32)-(C.35) hold. For simplicity of notations, we let X̂(n) = X̂∗,ηn,∆n , X(n) = X∗,ηn , and
let t̄ = tk′

Combine (C.32) with Lemma C.8, and we immediately get (41). In order to prove (42), it suffices
to show that for any ε > 0,

lim sup
n

Px
(
X

(n)
tk

/∈
⋃

j: mj∈Glarge

B(mj ,∆n)
)
≤ 4ε ∀k ∈ [k′].

Fix ε > 0, and observe following bound by decomposing the events

Px
(
X

(n)
tk

/∈
⋃

j: mj∈Glarge

B(mj ,∆n)
)

≤Px
(
X

(n)
tk

/∈
⋃

j: mj∈Glarge

B(mj ,∆n), X
(n)
t ∈

⋃
j: mj∈G

Ωj ∀t ∈ [0, t̄]
)

+Px
(
∃t ∈ [0, t̄] such that X

(n)
t /∈

⋃
j: mj∈G

Ωj

)
Therefore, given (C.35), it suffices to prove

lim sup
n

Px
(
∃t ∈ [0, t̄] such that X

(n)
t /∈

⋃
j: mj∈G

Ωj

)
≤ 3ε. (C.63)

Let

T
(n)
0 =∆ min{t ≥ 0 : X

(n)
t ∈

⋃
j:mj∈G

B(mj , 2∆n)}

I
(n)
0 = j ⇐⇒ X

(n)

T
(n)
0

∈ B(mj , 2∆n)

T
(n)
k =∆ min{t > T

(n)
k−1 : X

(n)
t ∈

⋃
j:mj∈G, j 6=I(n)

k−1

B(mj , 2∆n)}

I
(n)
k = j ⇐⇒ X

(n)

T
(n)
k

∈ B(mj , 2∆n).

Building upon this definition, we define the following stopping times and marks that only records the

hitting time to minimizer in large attraction fields inG (with convention k(n),large(−1) = −1, T
(n),large
−1 =

0, T
(n)
−1 = 0)

k(n),large(k) =∆ min{l > k(n),large(k − 1) : m
I

(n)
l

∈ Glarge}

T
(n),large
k =∆ T

(n)

k(n),large(k)
, I

(n),large
k =∆ I

(n)

k(n),large(k)
.

Now by defining

J (n)(t) =∆ #{k ≥ 0 : T
(n)
k ≤ t},

J
(n)
large(t) =∆ #{k ≥ 0 : T

(n),large
k ≤ t},

J (n)(s, t) =∆ #{k ≥ 0 : T
(n)
k ∈ [s, t]},

we use J (n)(t) to count the numbers of visits to local minima on G, and J
(n)
large(t) for the number of

visits to minimizers in the large attraction fields on G. J (n)(s, t) counts the indices k such that at

T
(n)
k a minimizer on G is visited and regarding the hitting time we have T

(n)
k ∈ [s, t].
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First of all, the weak convergence result in (C.32) implies the existence of some positive integer
N(ε) such that

lim sup
n

Px(J
(n)
large(t̄) > N(ε)) < ε.

Fix such N(ε). Next, from (C.34), we know the existence of some integer K(ε) such that

lim sup
n

sup
k≥0

Px
(
J (n)

(
T

(n),large
k−1 , T

(n),large
k

)
> K(ε)

)
≤ ε/N(ε).

Fix such K(ε) as well. From the results above, we know that for event

A1(n) =∆ {J (n)
large(t̄) ≤ N(ε)} ∩

{
J (n)

(
T

(n),large
k−1 , T

(n),large
k

)
≤ K(ε) ∀k ∈ [N(ε)]

}
,

we have lim supn Px
((
A1(n)

)c) ≤ 2ε. On the other hand, on event A1(n), we must have

J (n)(t̄) ≤ N(ε)K(ε).

Meanwhile, it follows immediately from (C.33) that

lim sup
n

sup
k≥0

P
(
∃t ∈ [T

(n)
k−1, T

(n)
k ] such that X

(n)
t /∈

⋃
j: mj∈G

Ωj

)
<

ε

N(ε)K(ε)
,

hence for event

A2(n) =∆
{
X

(n)
t ∈

⋃
j: mj∈G

Ωj ∀t ∈ [0, T
(n)
N(ε)K(ε)]

}
,

we must have lim supn Px
((
A2(n)

)c) ≤ ε. To conclude the proof, note that

A1(n) ∩A2(n) ⊆ {J (n)(t̄) ≤ N(ε)K(ε)} ∩
{
X

(n)
t ∈

⋃
j: mj∈G

Ωj ∀t ∈ [0, T
(n)
N(ε)K(ε)]

}
= {T (n)

N(ε)K(ε) ≥ t̄} ∩
{
X

(n)
t ∈

⋃
j: mj∈G

Ωj ∀t ∈ [0, T
(n)
N(ε)K(ε)]

}
⊆
{
X

(n)
t ∈

⋃
j: mj∈G

Ωj ∀t ∈ [0, t̄]
}

so we have established (C.63).

Proof of Lemma 11. From Lemma C.10, one can see the existence of some (∆n)n≥1 with limn ∆n = 0

such that (C.48) and (C.49) hold. For simplicity of notations, we let X̂†,(n) = X̂†,∗,ηn,∆n , X†,(n) =
X†,∗,ηn , and let t̄ = tk′

Combine (C.48) with Lemma C.8, and we immediately get (45). In order to prove (46), note that{
X
†,(n)
tk

/∈
⋃

j: mj∈Glarge

B(mj ,∆n) and X
†,(n)
tk

6= †
}

=
{
X
†,(n)
tk

/∈
⋃

j: mj∈Glarge

B(mj ,∆n) and X†,(n)
s ∈

⋃
j:mj∈G

Ωj ∀s ∈ [0, tk]
}

so the conclusion of the proof follows directly from (C.49).
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D Proofs of Lemma B.1,B.2,B.3

Proof of Lemma B.1. For any ε > 0,

P
(
U(ε) >

1

b(ε)

)
=
(

1− a(ε)
)b1/b(ε)c

.

By taking logarithm on both sides, we have

lnP
(
U(ε) >

1

b(ε)

)
= b1/b(ε)c ln

(
1− a(ε)

)
=
b1/b(ε)c
1/b(ε)

ln
(

1− a(ε)
)

−a(ε)

−a(ε)

b(ε)
.

Since limx→0
ln(1+x)

x = 1, we know that for ε sufficiently small, we will have

−ca(ε)

b(ε)
≤ lnP

(
U(ε) >

1

b(ε)

)
≤ − a(ε)

c · b(ε)
. (D.1)

By taking exponential on both sides, we conclude the proof.

Proof of Lemma B.2. To begin with, for any ε > 0 we have

P
(
U(ε) ≤ 1

b(ε)

)
= 1− P

(
U(ε) >

1

b(ε)

)
.

Using bound (D.1), we know that for ε sufficiently small, P(U(ε) > 1/b(ε)) ≥ exp(−c · a(ε)/b(ε)). The
upper bound follows from the generic bound 1− exp(−x) ≤ x, ∀x ∈ R with x = c · a(ε)/b(ε).

Now we move onto the lower bound. Again, from bound (D.1), we know that for sufficiently small
ε, we will have

P
(
U(ε) ≤ 1

b(ε)

)
≥ 1− exp(− 1√

c
· a(ε)

b(ε)
).

Due to the assumption that limε↓0 a(ε)/b(ε) = 0 and the fact that 1 − exp(−x) ≥ x√
c

for x > 0

sufficiently close to 0, we will have (for ε small enough) P
(
U(ε) ≤ 1

b(ε)

)
≥ 1

c ·
a(ε)
b(ε) .

Proof of Lemma B.3. Let ak =∆ xk − x̃k. From the fact that g ∈ C2 and Taylor expansion of g′, one
can easily see that

ak = η

k∑
j=1

(
g′(x̃j−1)− g′(xj−1)

)
+ η(z1 + · · ·+ zk) + x− x̃;

⇒ |ak| ≤ ηC(|a0|+ · · · |ak−1|) + c̃.

The desired bound then follows immediately from Gronwall’s inequality (see Theorem 68, Chapter V
of [24], where we let function α(t) be α(t) = |abtc|).

E Notations

Table E.1 lists the notations used in Appendix B.
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Table E.1: Summary of notations frequently used in Appendix B

[k] {1, 2, . . . , k}
η Learning rate (gradient descent step size)

b Truncation threshold of stochastic gradient

ε An accuracy parameter; typically used to denote an ε−neighborhood of si,mi

δ A threshold parameter used to define large noises

ε̄ A constant defined for (B.15)-(B.16). Since ε̄ < ε0, in (B.1) the claim holds for
|x−y| < ε̄. Note that the value of the constant ε̄ does not vary with our choice
of η, ε, δ.

M Upper bound of |f ′| and |f ′′| (B.3)

L Radius of training domain (B.3)

Ω The open interval (s−, s+); a simplified notation for Ωi

ϕ, ϕc ϕc(w) , ϕ(w, c) =∆ (w ∧ c) ∨ (−c) truncation operator at level c > 0

Z≤δ,ηn Zn1{η|Zn| ≤ δ} “small” noise (B.7)

Z>δ,ηn Zn1{η|Zn| > δ} “large” noise (B.8)

T ηj (δ) min{n > T ηj−1(δ) : η|Zn| > δ} arrival time of j-th large noise (B.9)

W η
j (δ) ZTηj (δ) size of j-th large noise (B.10)

Xη
n(x) Xη

n+1(x) = ϕL

(
Xη
n(x)− ϕb

(
η(f ′(Xη

n(x))− Zn+1)
))

, Xη
0 (x) = x SGD

yηn(x) yηn(x) = yηn−1(x)− ηf ′(yηn−1(x)), yη0(x) = x GD

Y ηn (x) yηn(x) perturbed by large noises (Tη(δ),Wη(δ)) GD + large jump

ỹηn(x; t,w) yηn(x) perturbed by noise vector (t,w) perturbed GD

xη(t, x) dxη(t;x) = −ηf ′
(
xη(t;x)

)
dt, xη(0;x) = x ODE

x(t, x) x1(t, x)

x̃η(t, x; t,w) xη(t, x) perturbed by noise vector (t,w) perturbed ODE

A(n, η, ε, δ)
{

max
k∈[n∧(Tη1 (δ)−1)]

η|Z1 + · · ·+ Zk| ≤ ε
}
. (B.28)

r r =∆ min{−s−, s+}. Effective radius of the attraction field Ω.

l∗ l∗ =∆ dr/be. The minimum number of jumps required to escape Ω when starting
from its local minimum m = 0.

h(w, t) A mapping defined as h(w, t) = x̃(tl∗ , 0; t,w).

t̄, δ̄ Necessary conditions for h(w, t) to be outside of Ω (B.21)-(B.22)

t̂(ε) t̂(ε) =∆ c1 log(1/ε). The quantity t̂(ε)/η provides an upper bound for the time it
takes xη to return to 2ε−neighborhood of local minimum m = 0 when starting
from somewhere ε−away from s−, s+. See (B.23).

E(ε)
{

(w, t) ⊆ Rl∗ × Rl
∗−1

+ : h(w, t) /∈ [(s− − ε) ∨ (−L), (s+ + ε) ∧ L]
}

p(ε, δ, η) The probability that, for t =
(
T ηj (δ) − 1

)l∗
j=1

and w =
(
ηW η

j (δ)
)l∗
j=1

, we have

(w, t) ∈ E(ε) conditioning on {T η1 (δ) = 1}. Intuitively speaking, it character-
izes the probability that the first l∗ large noises alone can drive the ODE out
of the attraction field. Defined in (B.53).
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να The Borel measure on R with density

να(dx) = 1{x > 0} αp+

xα+1
+ 1{x < 0} αp−

|x|α+1

where p−, p+ are constants in Assumption 2 in the main paper.

µ The product measure µ = (να)l
∗ × (Leb+)l

∗−1.

σ(η) min{n ≥ 0 : Xη
n /∈ Ω}. first exit time

H(x) P(|Z1| > x) = x−αL(x)

Treturn(ε, η) min{n ≥ 0 : Xη
n(x) ∈ [−2ε, 2ε]}
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