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Abstract. We consider a family of Markov chains whose transition dynamics are affected 
by model parameters. Understanding the parametric dependence of (complex) perform
ance measures of such Markov chains is often of significant interest. The derivatives and 
their continuity of the performance measures w.r.t. the parameters play important roles, 
for example, in numerical optimization of the performance measures, and quantification of 
the uncertainties in the performance measures when there are uncertainties in the parame
ters from the statistical estimation procedures. In this paper, we establish conditions that 
guarantee the smoothness of various types of intractable performance measures—such as 
the stationary and random horizon discounted performance measures—of general state 
space Markov chains and provide probabilistic representations for the derivatives.
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1. Introduction
Let X � (Xn : n ≥ 0) be a Markov chain taking values in a state space S. For the purpose of this paper, the state 
space S may be discrete or continuous. In many applications settings, it is natural to consider the behavior of X 
as a function of a parameter θ that affects the transition dynamics of the process. In particular, suppose that for 
each θ in some open neighborhood of θ0 ∈ Rd, P(θ) � (P(θ, x, dy) : x, y ∈ S) defines the one-step transition kernel 
of X associated with parameter choice θ. In such a setting, computing the derivative of some application-specific 
expectation is often of interest.

Such derivatives play a key role when one is numerically optimizing an objective function, defined as a Mar
kov chain’s expected value, over the decision parameter θ. In addition, such derivatives describe the sensitivity 
of the expected value under consideration to perturbations in θ. Such sensitivities are valuable in statistical appli
cations, and arise when one applies (for example) the delta method in conjunction with estimating equations 
involving some expectation of the observed Markov chain; see, for example, Lehmann and Casella [14]. More 
generally, sensitivity analysis is important when one is interested in understanding how robust the model is to 
uncertainties in the input parameters.

In particular, suppose that θ is a vector of statistical parameters, and that a data set of size n has been collected 
to estimate the underlying true parameter θ∗. In significant generality, the associated estimator θ̂n for θ∗ will sat
isfy a central limit theorem (CLT) of the form

n1=2(θ̂n � θ
∗) ⇒N(0, C)

as n→∞, where ⇒ denotes weak convergence and N(0, C) is a normally distributed random column vector with 
mean 0 and covariance matrix C; see, for example, Ibragimov and Has’minskii [10]. In many applications, one 
wishes to understand how the uncertainty in our estimator θ̂n of θ∗ propagates through the model associated with 
X to produce uncertainty in output measures of interest. Suppose, for example, that the decision maker focuses on a 
performance measure of the form α(θ) � EθZ, where Z is some appropriately chosen random variable (rv) and Eθ(·)
is the expectation operator under which X evolves according to P(θ). If α(·) is differentiable at θ∗, then

n1=2(α(θ̂n)� α(θ
∗)) ⇒ ∇α(θ∗)N(0, C)
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as n→∞, where ∇α(θ) is the (row) gradient vector evaluated at θ; see Serfling [18]. If, in addition, ∇α(·) is con
tinuous at θ∗ and C can be consistently estimated from the observed data via an estimator Cn, the interval

α(θ̂n)� z σn
ffiffiffi
n
√ , α(θ̂n) + z σn

ffiffiffi
n
√

� �

(1.1) 

is an asymptotic 100(1� δ)% confidence interval for α(θ∗) (provided ∇α(θ∗)C∇α(θ∗)T > 0), where z is chosen so 

that P(�z ≤N(0, 1) ≤ z) � 1� δ and σn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∇α(θ̂n)Cn∇α(θ̂n)
T

q

. (We note that the continuity of ∇α(·) at θ∗ is needed 
for the consistency of the estimator ∇α(θ̂n) for ∇α(θ∗).) The confidence interval (1.1) provides the modeler with 
the desired sensitivity and robustness of the model described by X to the statistical uncertainties present in the 
estimation of θ∗. In summary, the delta method rests on three conditions: (i) the existence of the derivative of α(·)
at θ∗, (ii) the continuity of the derivative at θ∗, and (iii) one’s ability to compute the derivative. This paper pro
vides close to the best possible conditions for verifying the existence and the continuity of the derivatives in the 
general state space Markov chain settings and provides probabilistic representations that lead to simulation esti
mators for the computation of those derivatives.

The problem of determining such differentiability has a long history and has been addressed through various 
approaches, including weak differentiation (Pflug [16], Vázquez-Abad and Kushner [19]), likelihood ratio (Glynn 
and L’Ecuyer [3]), measure-valued differentiation (Heidergott and Vázquez-Abad [8], Heidergott et al. [9]), and 
derivative regeneration (Glasserman [2]). However, most of the previous approaches are limited to special clas
ses of problems. For example, the results in Vázquez-Abad and Kushner [19] and Pflug [16] are limited to 
bounded performance functionals; Glasserman [2] imposes special structures in the the transition dynamics of 
the Markov chains and their parametrization; Glynn and L’Ecuyer [3] assume for random horizon expectations 
that the associated stopping times have finite exponential moments, and for stationary expectations that the Mar
kov chain is geometrically ergodic. Heidergott and Vázquez-Abad [8] provide conditions that do not require the 
geometric ergodicity for random horizon and stationary performance measures based on a measure-valued dif
ferentiation approach. However, their sufficient conditions are difficult to verify in general and still require that 
the associated stopping times possess at least finite second moment. Also based on measure-valued differentia
tion, Heidergott et al. [9] study stationary expectations and provide sufficient conditions verifiable based on the 
model building blocks without such restrictions. However, their sufficient conditions require geometric ergodic
ity of the Markov chain. In this paper, on the other hand, we provide sufficient conditions (verifiable based on 
the one-step transition dynamics) for random horizon expectations that do not require any moment conditions 
for the associated stopping times—hence, allowing even infinite horizon expectations. For stationary expecta
tions, we provide (again, easily verifiable) sufficient conditions that do not require geometric ergodicity.

We illustrate that our differentiability criterion is close to minimal via the example of the G/G/1 queue wait
ing time sequence with heavy tailed service times. If (Xn : n ≥ 0) is the waiting time sequence for the G/G/1 
queue, it is well known that the service time distribution needs to possess a finite (p+ 1) th moment in order for 
the stationary expectation α(θ) � EθXp

∞ to be finite. When we assume that the service time has a Pareto tail, such 
a moment condition corresponds to the case where the shape parameter r of the Pareto distribution satisfies 
r > p+ 1; hence, this is a necessary condition for the existence of the derivative. We show that with our Lyapunov 
strategy, one can successfully prove the differentiability of α with this minimal condition.

For both random horizon expectations and stationary expectations, we provide two different sets of sufficient 
conditions—one based on operator-theoretic arguments and the other one based on Lyapunov conditions. These 
two approaches complement each other. The operator ideas are simpler to apply, and immediately imply exis
tence of derivatives over the entire space of functions with finite weighted norm. The Lyapunov approach, on 
the other hand, allows one to craft a Lyapunov function that is specially tuned to the specific functional of inter
est, and hence allows one to obtain the weakest conditions for the given functional.

We point out that the theory developed in this paper extends easily to nonexplosive Markov jump processes, 
because the expectations discussed in Sections 2 through 4 correspond to linear systems involving the embedded 
discrete time Markov chains.

The rest of the paper is organized as follows. Section 2 develops a preliminary theory for both random horizon 
expectations and stationary expectations based on simple and clean operator-theoretic arguments. Section 3 pro
vides more general criteria for differentiability of random horizon expectations based on stochastic Lyapunov 
arguments. In Section 4, we apply the Lyapunov approach to studying differentiability for stationary expecta
tions. Section 5 concludes the paper with a brief discussion of the Lyapunov conditions for general random hori
zon expectations that cannot be written in the form studied in the previous sections.
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2. Operator-Theoretic Criteria for Differentiability
We start by studying differentiability in a setting in which one can use operator arguments to establish existance 
of derivatives. In this operator setting, the proofs and theorem statements are especially straightforward.

It should be noted that the probabilistic representations of the derivatives, whose existence are studied in this 
section, lead immediately to related simulation algorithms that can be deployed to compute the derivatives 
numerically. The specific forms of such simulation estimators will be discussed in Section 3 and Section 4, where 
we provide more general conditions for the differentiability.

Consider a Markov chain X � (Xn : n ≥ 0) living on state space S, with one-step transition kernel P � (P(x, dy) :
x, y ∈ S), where

P(x, dy) � P(Xn+1 ∈ dy |Xn � x)

for x, y ∈ S. We focus first on expectations of the form

u∗(x) � Ex
XT�1

j�0
exp

Xj�1

k�0
g(Xk)

 !

f (Xj) + exp
XT�1

k�0
g(Xk)

 !

f (XT), (2.1) 

where T � inf {n ≥ 0 : Xn ∈ Cc} is the first hitting time of the target set Cc ⊆ S, f : S→ R+, g : S→ R, and Ex(·)¢ 

E(· |X0 � x).
In (2.1), we permit the possibility that Cc � ∅, in which case T �∞ almost surely (a.s.), and u∗ is then to be inter

preted as the infinite horizon discounted reward:

u∗(x) � Ex
X∞

j�0
exp

Xj�1

k�0
g(Xk)

 !

f (Xj):

In addition to subsuming infinite horizon discounted rewards, (2.1) also includes expected hitting times (g ≡ 0, 
f � 1 on C and f � 0 on Cc), exit probabilities (g ≡ 0, f � 0 on C, and f (x) � I(x ∈ B) for x ∈ Cc, when one is consider
ing P(XT ∈ B|X0 � x)), and many other natural Markov chain expectations.

It is easy to verify that

u∗ �
X∞

n�0
Knf̃ , (2.2) 

where K � (K(x, dy) : x, y ∈ C) is the nonnegative kernel for which
K(x, dy) � exp (g(x))P(x, dy) (2.3) 

for x, y ∈ S, and

f̃ (x) � f (x) +
Z

Cc
exp (g(x))P(x, dy)f (y)

for x ∈ C. Here, we are taking advantage in (2.1) of the (common) notational convention that for a function 
h : B→ R, a measure η on B, and kernels Q1 and Q2 on B, the scalar ηh, the function Q1h, the measure ηQ1, and 
the kernel Q1Q2 are respectively defined via

ηh �
Z

B
h(y)η(dy),

(Q1h)(x) �
Z

B
h(y)Q1(x, dy),

(ηQ1)(A) �
Z

B
η(dx)Q1(x, A),

(Q1Q2)(x, A) �
Z

B
Q1(x, dy)Q2(y, A), 

whenever the right-hand sides are well-defined. Furthermore, we define the kernels Qn via Q0(x, dy) � δx(dy)
(where δx(:) is a unit point mass at x), and Qn �QQ(n�1) for n ≥ 1.

Our goal is to use operator-theoretic tools to study the differentiability of (2.2). To this end, we start by defin
ing the appropriate linear spaces that underlie this approach. Given a measurable space (B,B), measurable 
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w : B→ [1,∞), and h : B→ R, let ‖h‖w � sup{|h(x)|=w(x) : x ∈ B} and Lw � {h ∈ L : ‖h‖w <∞}, where L is the set of 
measurable functions. For a linear operator Q : Lw→ Lw and a functional η : Lw→ R, set

|||Q|||w � sup
h∈Lw:‖h‖w≠0

‖Qh‖w
‖h‖w 

and
‖η‖w � sup{|ηh| : h ∈ Lw, ‖h‖w ≤ 1}:

Then, let Lw � {Q ∈ L : |||Q|||w <∞}, and Mw � {η ∈M : ‖η‖w <∞}, where L and M are the sets of kernels, and 
measures, respectively. Each of the spaces Lw, Lw, and Mw are Banach spaces under their respective norms and 
addition/scalar multiplication operations. Furthermore, for Q1, Q2 ∈ Lw, h ∈ Lw, and η ∈Mw, it is easy to show 
that

|||Q1Q2|||w ≤ |||Q1|||w · |||Q2|||w (2.4) 

and

‖Qh‖w ≤ |||Q|||w · ‖h‖w,

‖ηQ‖w ≤ ‖η‖w · |||Q|||w,

|ηh| ≤ ‖η‖w · ‖h‖w; (2.5) 

see, for example, Dunford et al. [1] for the special case w ≡ 1. In view of (2.4), if |||Qm|||w < 1 for some m ≥ 1, then 
(I �Q) is invertible on Lw and

(I �Q)�1
�
X∞

n�0
Qn:

Given a parametrized family of kernels (Q(θ) ∈ Lw : θ ∈ (a, b)), we say that Q(·) is continuous in Lw at θ0 ∈ (a, b) if 
|||Q(θ0 + h)�Q(θ0)|||w→ 0 as h→ 0, and differentiable in Lw at θ0 ∈ (a, b) with derivative Q′(θ0) if there exists a 
kernel Q′(θ0) ∈ Lw for which

�
�
�
�

�
�
�
�

�
�
�
�
Q(θ0 + h)�Q(θ0)

h
�Q′(θ0)

�
�
�
�

�
�
�
�

�
�
�
�
w
→ 0 

as h→ 0. If Q(·) is differentiable in a neighborhood of θ0 with derivative Q′(·), and Q′(·) is continuous at θ0 in 
Lw, then we say that Q(·) is continuously differentiable at θ0. Similarly, given families ( f (θ) ∈ Lw : θ ∈ (a, b)) and 
(η(θ) ∈Mw : θ ∈ (a, b)), we say that f (·) is continuous in Lw at θ0 if ‖ f (θ0 + h)� f (θ0)‖w→ 0 as h→ 0, and differentia
ble in Lw at θ0 if there exists f ′(θ0) ∈ Lw such that

‖ f (θ0 + h)� f (θ0)

h
� f ′(θ0)‖w→ 0 

as h→ 0; and η(·) is continuous in Mw at θ0 if ‖η(θ0 + h)� η(θ0)‖w→ 0 as h→ 0, and differentiable in Mw at θ0 if 
there exists η′(θ0) ∈Mw such that

‖η(θ0 + h)� η(θ0)

h
� η′(θ0)‖w→ 0 

as h→ 0. As in Lw, if f (·) and η(·) are differentiable and their derivatives are continuous at θ0 in Lw and Mw, 
respectively, we say that they are continuously differentiable.

Assuming that (Q(θ) : θ ∈ (a, b)) is n-times differentiable in some neighborhood N of θ0, with derivative 
(Q(n)(θ) : θ ∈N ), we say that Q(·) is (n+ 1)-times differentiable in Lw at θ0 if (Q(n)(θ) : θ ∈N ) is differentiable at 
θ0, with corresponding derivative Q(n+1)(θ0). We can analogously define f (n+1)(θ0) and η(n+1)(θ0) in the spaces Lw 
and Mw, respectively. (We restrict our discussion in this paper to scalar θ, because the vector case introduces no 
new mathematical issues.)

We can now state our first result, pertaining to the differentiability of u∗.

Theorem 2.1. Suppose there exists w : C→ [1,∞) and θ0 ∈ (a, b) for which 
a. |||Km(θ0)|||w < 1 for some m ≥ 1;
b. K(·) is (continuously) differentiable in Lw at θ0, with derivative K′(θ0);
c. f̃ (·) is (continuously) differentiable in Lw at θ0, with derivative f̃ ′(θ0).
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Then, 
i. (I � K(θ)) is invertible on Lw for θ in a neighborhood of θ0;
ii. Setting G(θ) � (I � K(θ))�1, G(·) is (continuously) differentiable in Lw at θ0, and

G′(θ0) � G(θ0)K′(θ0)G(θ0);

iii. u∗(θ) �
P∞

n�0 Kn(θ)f̃ (θ) is (continuously) differentiable in Lw at θ0, with

(u∗)′(θ0) � G′(θ0)f̃ (θ0) +G(θ0)f̃
′
(θ0): (2.6) 

If, in addition, K(·) and f̃ (·) are n-times (continuously) differentiable in Lw and Lw, respectively, at θ0, then Q(·) and u∗(·)
are n-times (continuously) differentiable at θ0 in Lw and Lw, respectively, and Q(n)(θ0) and (u∗)(n)(θ0) can be recursively 
computed via

G(n)(θ0) �
Xn�1

j�0

n
j

� �

G( j)(θ0)K(n�j)(θ0)G(θ0) (2.7) 

and

(u∗)(n)(θ0) � G(θ0)

�

f̃ (n)(θ0) +
Xn�1

j�0

n
j

� �

K(n�j)(θ0)(u∗)( j)(θ0)

�

, (2.8) 

where, as usual, K(0)(θ) ≡ K(θ) and f̃ (0)(θ) � f̃ (θ).

Proof. Part (i) is obvious. For part (ii), note that assumptions (a) and (b) imply that there exists a neighborhood N of 
θ0 for which supθ∈N |||Km(θ)|||w < 1 and supθ∈N |||K(θ)|||w <∞, from which it follows that supθ∈N |||G(θ)|||w <∞. Fur
thermore, because (I � K(θ0 + h))G(θ0 + h) � G(θ0 + h)(I � K(θ0 + h)) � I, evidently

(G(θ0 + h)� G(θ0))(I � K(θ0)) � G(θ0 + h)(K(θ0 + h)� K(θ0)), 

so that
G(θ0 + h)� G(θ0) � G(θ0 + h)(K(θ0 + h)� K(θ0))G(θ0): (2.9) 

Clearly, this implies that |||G(θ0 + h)� G(θ0)|||w ≤ |||G(θ0 + h)|||w|||K(θ0 + h)� K(θ0)|||w|||G(θ0)|||w→ 0 as h→ 0, so G(·)
is continuous in Lw at θ0. Consequently, (2.9) implies that G(·) is differentiable in Lw at θ0, with G′(θ0) �
G(θ0)K′(θ0)G(θ0). In case K′ is continuous, continuity of G′ is also immediate from this expression.

For part (iii), the result follows analogously from the identity

u∗(θ0 + h) � u∗(θ0) � G(θ0)( f̃ (θ0 + h) � f̃ (θ0)) + (G(θ0 + h) � G(θ0))f̃ (θ0 + h):

The proof for the n-fold derivatives for n ≥ 2 is very similar and therefore omitted. w

Remark 2.1. Suppose that K(·) possesses a density (k(·, x, y) : x, y ∈ C) that is n-times differentiable (with (point
wise) derivative (k(n)(·, x, y) : x, y ∈ C)). For ɛ > 0 and 0 ≤ j ≤ n, let ω̃( j)ɛ (x, y) � sup|θ�θ0 |<ɛ

|k( j)(θ, x, y)|. Then, the con
ditions

sup
x∈C

Z

C
Km(θ0, x, dy)w(y)w(x) < 1 for some m ≥ 1, (2.10) 

sup
x∈C

Z

C
ω( j)ɛ (x, y)w(y)

w(x)
K(θ0, x, dy) <∞, (2.11) 

and

sup
x∈C

Z

Cc
(1+ ω̃( j)ɛ (x, y)) | f (y)|w(x) K(θ0, x, dy) <∞, (2.12) 

for j � 0, : : : , n imply (a), (b), and (c) of Theorem 2.1, implying the validity of (2.7) and (2.8).

There is an analogous differentiability result for measures. For a given initial distribution µ on C, let ν be the 
measure defined by

ν(dy) � Eµ
XT�1

j�0
exp

Xj�1

k�0
g(Xk)

 !

I(Xj ∈ dy)
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for y ∈ S, where Eµ(·)¢
Z

Cµ(dx)Ex(·). Then,

ν �
X∞

n�0
µKn, 

where K is defined as in (2.3). Assume that µ(·) and K(·) now depend on the parameter θ (so that ν does as well). 
The following result has a proof identical to that of Theorem 2.1, and is therefore omitted.

Theorem 2.2. Suppose there exists w : C→ [1,∞) and θ0 ∈ (a, b) for which 
a. |||Km(θ0)|||w < 1 for some m ≥ 1;
b. K(·) is (continuously) differentiable in Lw at θ0, with derivative K′(θ0);
c. µ(·) is (continuously) differentiable in Mw at θ0, with derivative µ′(θ0).
Then, ν(θ) �

P∞
n�0µ(θ)Km(θ) is (continuously) differentiable in Mw in θ0, with

ν′(θ0) � µ
′(θ0)G(θ0) + ν(θ0)G′(θ0):

If, in addition, K(·) and µ(·) are n-times (continuously) differentiable in Lw and Mw, respectively, at θ0, then ν(·) is 
n-times (continuously) differentiable in Mw, and ν(n)(θ0) can be recursively computed via

ν(n)(θ0) � µ(n)(θ0) +
Xn�1

j�0

n
j

� �

ν( j)K(n�j)(θ0)

0

@

1

AG(θ0):

We finish this section with a short operator-theoretic argument establishing existence of a derivative for the sta
tionary distribution under the assumption of geometric ergodicity (see condition (a) in the following, which is 
the key Lyapunov condition that implies geometric ergodicity in chapter 15 of Meyn and Tweedie [15]).

Theorem 2.3. Suppose that there exists a subset A ⊆ S, ɛ, c > 0, λ, r ∈ (0, 1), an integer m ≥ 1, a probability measure φ on 
S, and w : S→ [1,∞) such that 

a. (P(θ0)w)(x) ≤ rw(x) + cI(x ∈ A) for x ∈ S;
b. Pm(θ, x, dy) ≥ λφ(dy) for x ∈ A, y ∈ S, and |θ� θ0| < ɛ;
c. P(·) is (continuously) differentiable in Lw at θ0.
Then, X is positive Harris recurrent for θ in a neighborhood of θ0, and the stationary distributions π(θ) ∈Mw for θ in 

a neighborhood of θ0 are (continuously) differentiable in Mw at θ0. Furthermore, if Π(θ0) is the kernel defined by 
Π(θ0, x, dy) � π(θ0, dy) for x, y ∈ S, (I � P(θ0) +Π(θ0)) has an inverse on Lw and

π′(θ0) � π(θ0)P′(θ0)(I � P(θ0) +Π(θ0))
�1
: (2.13) 

If, in addition, P(·) is n-times (continuously) differentiable in Lw at θ0, then π(·) is n-times (continuously) differentiable in 
Mw at θ0, and π(n)(θ0) can be recursively computed via

π(n)(θ0) �
Xn�1

j�0

n
j

� �

π( j)(θ0)P(n�j)(θ0)(I � P(θ0) +Π(θ0))
�1
:

Remark 2.2. Note that theorem 4 of Glynn and L’Ecuyer [3] is closely related to the Theorem 2.3. See also remark 
11 and the Kendall set assumption in Glynn and L’Ecuyer [3]. Heidergott et al. [9] and Heidergott and Hordijk 
[6] also impose similar assumptions to establish the measure-valued derivative of the stationary distribution.

Proof. In view of (a) and (c), there exists r′ < 1 such that
(P(θ0 + h)w)(x) ≤ r′w(x) + cI(x ∈ A) (2.14) 

for x ∈ S and |h| sufficiently small. Assumptions (a) and (b), and the fact that w ≥ 1 implies that X is positive 
Harris recurrent for θ in a neighborhood of θ0. We can now appeal to theorem 2.3 of Glynn and Meyn [4] to 
establish that (I � P(θ0) +Π(θ0)) is invertible on Lw, with (I � P(θ0) +Π(θ0))

�1
∈ Lw.

Furthermore, according to Glynn and Zeevi [5], (2.14) implies that π(θ0 + h)w ≤ c=(1� r′), and hence ‖π(θ0 +
h)‖w ≤ c=(1� r′): Also,

(π(θ0 + h)� π(θ0))(I � P(θ0)) � π(θ0 + h)(I � P(θ0))
� π(θ0 + h)(P(θ0 + h)� P(θ0)):

In addition, νΠ(θ0) � π(θ0) for any probability ν on S. So (π(θ0 + h)� π(θ0))Π(θ0) � 0. Consequently,
(π(θ0 + h)� π(θ0))(I � P(θ0) +Π(θ0)) � π(θ0 + h)(P(θ0 + h)� P(θ0)), 
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from which it follows that

π(θ0 + h)� π(θ0) � π(θ0 + h)(P(θ0 + h)� P(θ0))(I � P(θ0) +Π(θ0))
�1
: (2.15) 

Thus,

‖π(θ0 + h) � π(θ0)‖w ≤
c

1 � r′ |||P(θ0 + h) � P(θ0)|||w · |||(I � P(θ0) +Π(θ0))
�1
|||w: (2.16) 

Because P(·) is differentiable in Lw, |||P(θ0 + h)� P(θ0)|||w→ 0 as h→ 0, so π(θ0 + h) → π(θ0) in Mw as h→ 0. Let
ting h→ 0 in (2.15) then yields (2.13).

For the continuity of the derivative in case P(·) is continuously differentiable, note first that (a) and (b) imply 
that |||(P(θ0)�Π(θ0))

m
|||w < 1 for some m ≥ 1; this along with the continuity of P(·) and π(·), in turn, implies 

that sup|h|≤h0
|||(P(θ0 + h)�Π(θ0 + h))m|||w < 1 for a small enough h0. Therefore, we conclude that |||(I � P(θ0 + h)+

Π(θ0 + h))�1
|||w is bounded (uniformly with respect to (w.r.t.) h). From this, it is easy to see that the same argu

ment as for (2.13) works with θ � θ0 + h instead of θ0 and proves that

π′(θ0 + h) � π(θ0 + h)P′(θ0 + h)(I � P(θ0 + h) +Π(θ0 + h))�1
: (2.17) 

Now,

π′(θ0 + h) � π′(θ0) � π′(θ0 + h) � π(θ0) � π(θ0 + h)
� h

� �

� π′(θ0) �
π(θ0 + h) � π(θ0)

h

� �

� (I)�(II), 

where we have already seen that (II) converges to 0. To show that (I) also vanishes, note that
(π(θ0) � π(θ0 + h))(I � P(θ0 + h) +Π(θ0 + h)) � (π(θ0) � π(θ0 + h))(I � P(θ0 + h))

� π(θ0)(I � P(θ0 + h)) � π(θ0)(P(θ0) � P(θ0 + h)), 

and hence,
π(θ0) � π(θ0 + h)

� h
� π(θ0)

P(θ0 + h) � P(θ0)

h
(I � P(θ0 + h) +Π(θ0 + h))�1

: (2.18) 

From (2.17), (2.18), the continuity of π(·), the continuous differentiability of P(·), and the uniform boundedness of 
the norm of (I � P(θ0 + h) +Π(θ0 + h))�1, we conclude that (I) vanishes. Therefore, π′(·) is continuous at θ0.

Finally, as in Theorem 2.1, the proof for the n-fold derivatives for n ≥ 2 follows similar lines, and is therefore 
omitted. w

We conclude this section with a brief discussion of the role of w. Note that the growth rate of w decides the extent 
of the performance measures to which the theorems in this section apply. For example, the Mw-differentiability of 
π(θ) in Theorem 2.3 establishes the differentiability of the stationary expectations of f for all f’s that are majorized by 
w. On the other hand, the sufficient conditions are also stated in terms of w, and it tends to be harder to establish 
such sufficient conditions when w’s grow faster. Therefore, in the context of optimization or sensitivity analysis, the 
choice of w should be made in such a way that it covers sufficiently wide range of performance measures and objec
tive functions for the purpose of the tasks at hand, while the sufficient conditions are satisfied at the same time.

The condition (a) of Theorem 2.1, 2.2, and 2.3 are the key inequalities that ensure the differentiability of the 
expectations of our interest. Note that the condition (a) of Theorem 2.1 and 2.2 are equivalent to ZCKm(θ0)w(x) ≤
rw(x) for some r ∈ (0, 1), and hence, we see that w plays the role of a Lyapunov function in all three main theo
rems. It should be noted that the operator-theoretic formulation in this section allows simple statements at the 
cost of stronger conditions. For example, Theorem 2.3 establishes, in the presence of a single Lyapunov function 
w, the n-fold differentiability of the stationary distribution π(·) in Mw, but the existence of such w requires geo
metric ergodicity; compare this to Theorem 4.1, which involves two Lyapunov conditions but does not require 
geometry ergodicity. Establishing sufficient conditions that are closer to necessary (at the cost of slightly more 
involved sufficient conditions) is the overarching subject of the rest of this paper.

3. Lyapunov Criteria for Differentiability of Random Horizon Expectations
Let Λ � (a, b) be an open interval containing θ0. For each θ ∈Λ, let Eθx (·)¢Eθ(·|X0 � x) be the expectation operator 
associated with X, when X is driven by the one-step transition kernel P(θ). As in Section 2, we consider

u∗(θ, x) � Eθx
XT�1

j�0
exp

Xj�1

k�0
g(Xk)

 !

f (Xj) + exp
XT�1

k�0
g(Xk)

 !

f (XT) (3.1) 
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for each x ∈ C given f : S→ R, g : S→ R, ∅≠ C ⊆ S, and T � inf {n ≥ 0 : Xn ∈ Cc}. Our goal, in this section, is to pro
vide Lyapunov conditions under which u∗(θ) � (u∗(θ, x) : x ∈ C) is differentiable at θ0, and to provide an expres
sion for the derivative u∗′(θ).

Note that if f is nonnegative, then u∗(θ) is always well-defined. Furthermore, by conditioning on X1, it is easily 
seen that

u∗(θ, x) � f (x) +
Z

Cc
exp (g(x))P(θ, x, dy)f (y) +

Z

C
exp (g(x))P(θ, x, dy)u∗(θ, y)

for x ∈ C, and hence

u∗(θ) � f̃ (θ) +K(θ)u∗(θ), (3.2) 

where as in Section 2,

f̃ (θ, x) � f (x) +
Z

Cc
exp (g(x))P(θ, x, dy)f (y)

for x ∈ C, and K(θ) � (K(θ, x, dy) : x, y ∈ C) is the nonnegative kernel on C for which
K(θ, x, dy) � exp (g(x))P(θ, x, dy):

Given (3.2), formal differentiation of both sides of the equation yields

u∗′(θ0) � f̃ ′(θ0) + K′(θ0)u∗(θ0) + K(θ0)u∗′(θ0), (3.3) 

so that u∗′(θ) should satisfy the linear system

(I � K(θ0))u∗′(θ0) � f̃ ′(θ0) +K′(θ0)u∗(θ0): (3.4) 

When |C| is finite and g is negative, it will frequently be the case that the matrix K(θ0) has spectral radius less 
than 1, in which case I � K(θ0) is invertible and

(I � K(θ0))
�1
�
X∞

n�0
Kn(θ0): (3.5) 

In this case,

u∗′(θ0) �
X∞

n�0
Kn(θ0) f̃ ′(θ0) + K′(θ0)u∗(θ0)

� �
:

But (3.2) and (3.5) further imply that

u∗(θ0) �
X∞

n�0
Kn(θ0)f̃ (θ0), (3.6) 

and hence we arrive at the formula

u∗′(θ0) �
X∞

m�0

X∞

n�0
Km(θ0)K′(θ0)Kn(θ0)f̃ (θ0) +

X∞

m�0
Km(θ0)f̃

′
(θ0): (3.7) 

The remainder of this section is largely concerned with rigorously extending the formula (3.7) to the general state 
space setting, under Lyapunov criteria that are close to minimal (and easily checkable from the model building 
blocks). We start by observing that when f is nonnegative, Fubini’s theorem implies that

u∗(θ, x) �
X∞

j�0
Eθx exp

Xj�1

k�0
g(Xk)

 !

f (Xj)I(T > j)

+
X∞

j�0
Eθx exp

Xj�1

k�0
g(Xk)

 !

I(T ≥ j)f (Xj)I(Xj ∈ Cc)

�
X∞

j�0
(Kj(θ)f̃ (θ))(x), (3.8) 
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thereby rigorously verifying (3.6). To simplify the notation in the remainder of this paper, we set K � K(θ0) and 
put

G �
X∞

n�0
Kn: (3.9) 

Our path to providing rigorous conditions under which (3.7) holds involves the following key absolute continuity 
assumption:

A1. The kernels (K(θ) : θ ∈Λ) are absolutely continuous with respect to K, in the sense that there exists a (meas
urable) density (k(θ, x, y) : x ∈ C, y ∈ S) such that

K(θ, x, dy) � k(θ, x, y)K(x, dy)

for θ ∈Λ, x ∈ C, y ∈ S.

Our absolute continuity condition is often a mild hypothesis. For example, when X has a transition density 
with respect to a reference measure η, A1 is in force when the support of the density is independent of θ.

We also need to assume that K(θ) is suitably differentiable at θ0.

A2. There exists ɛ > 0 such that for each x ∈ C and y ∈ S, k(·, x, y) is continuously differentiable, with derivative 
k′(·, x, y), in [θ0 � ɛ,θ0 + ɛ].

Set ωɛ(x, y) � sup {|k′(θ, x, y)| : |θ� θ0| < ɛ}, k′(x, y) � k′(θ0, x, y), and K′(x, dy) � k′(x, y)K(x, dy). (Note that K′ is a 
signed kernel, and not nonnegative.)

Our hypotheses are stated in terms of K(θ), not P(θ), in order to offer the extra generality needed to cover set
tings in which derivatives involving parameters in the discount factor exp (g(·)) are of interest. Such derivatives 
are commonly considered in the finance literature when attempting to hedge uncertainty in the so-called “short 
rate.” (The resulting derivative is called rho in the finance context.)

Finally, we also need to assume f̃ (θ) is suitably differentiable at θ0. To permit derivatives in parameters that 
involve the discount factor, we write f̃ (θ) in the form

f̃ (θ, x) � f (x) +
Z

Cc
K(θ, x, dy)f (y): (3.10) 

A3. Assume that

r̃ɛ(x)¢
Z

Cc
ωɛ(x, y)| f (y)|K(θ0, x, dy) < ∞

for x ∈ C.

In many applications, f ≡ 0 on Cc, and hence, f̃ (θ) is independent of θ and A3 need not be verified (e.g. 
expected hitting times).

Throught the rest of this section, we will slightly abuse notation and let K(θ)h(x) denote 
R

Ch(y)K(x, dy). We are 
now ready to state the main theorem of this section.

Theorem 3.1. Assume A1, A2, and A3. Suppose there exists ɛ > 0 and two finite-valued nonnegative functions v0 and v1 
defined on C for which

(K(θ)v0)(x) ≤ v0(x)� | f̃ (θ, x)| (3.11) 

for x ∈ C and |θ� θ0| < ɛ, and

(Kv1)(x) ≤ v1(x)�
Z

C
ωɛ(x, y)v0(y)K(x, dy)� r̃ɛ(x) (3.12) 

for x ∈ C. Then, u∗(·, x) is differentiable at θ0 and

u∗′(θ0) �

Z

C

Z

C

Z

C
G(x, dy)K′(y, dz)G(z, dw)f̃ (w) +

Z

C

Z

Cc
G(x, dy)K′(y, dz)f (z): (3.13) 
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If, in addition,
Z

C
ωɛ(x, y)v1(y)K(x, dy) < ∞ (3.14) 

and (3.12) holds in a neighborhood of θ0, that is,

(K(θ)v1)(x) ≤ v1(x) �
Z

C
ωɛ(x, y)v0(y)K(x, dy) � r̃ɛ(x), ∀θ ∈ [θ0 � ɛ,θ0 + ɛ], (3.12′)

then u∗′(·, x) is continuous on [θ0 � ɛ,θ0 + ɛ].

Recalling the definition of G, we see that (3.13) is indeed the general state space analog of (3.7). The functions 
v0 and v1 appearing in Theorem 3.1 are often called (stochastic) Lyapunov functions. A standard means of guess
ing good choices for v0 and v1 is to recognize that u∗(θ) satisfies (3.11) with equality if f̃ is nonnegative, whereas

Z

C

Z

C
K(y, dz)ωɛ(y, z)v0(z) + r̃ɛ(y)

� �

G(x, dy)

satisfies (3.12) with equality. When C ⊆ Rm is unbounded, one can often approximate the large x behavior of 
these functions, and use these approximations as choices for v1 and v2, respectively.

The proof of Theorem 3.1 rests on the following easy bound.

Proposition 3.1. Suppose that Q � (Q(x, dy) : x, y ∈ C) is a nonnegative kernel and that f : C→ R+. If v : C→ R+ is a 
finite-valued function for which

Qv ≤ v� f , (3.15) 

then,
X∞

n�0
Qnf ≤ v: (3.16) 

Proof. Note that (3.15) implies that Qv ≤ v, and hence Qnv ≤ v for n ≥ 0. It follows that Qn v is finite-valued for 
n ≥ 0. Inequality (3.15) can be rewritten as

f ≤ v�Qv: (3.17) 

Applying Qj to both sides of (3.17), we get

Qjf ≤ Qjv � Qj+1v (3.18) 

Summing both sides of (3.18) over j � 0, 1, : : : , n, we find that
Xn

j�0
Qjf ≤ v�Qn+1v ≤ v:

Sending n→∞ yields (3.16). w

Proof of Theorem 3.1. For the purposes of this proof, ɛ is taken as the smallest of the ɛ’s appearing in A2, A3, 
and the statement of the theorem. We start by observing that Proposition 3.1, applied to the Lyapunov bound 
(3.11), guarantees that

X∞

n�0
Kn(θ)| f̃ (θ)| ≤ v0, 

and hence Fubini’s theorem implies that u∗(θ) is finite-valued, u∗(θ) �
P∞

n�0 Kn(θ)f̃ (θ), and |u∗(θ)| ≤ v0. Because 
u∗(θ) is finite-valued (as is K(θ)u∗(θ)), we can write

u∗(θ0 + h)� u∗(θ0) � K(θ0 + h)u∗(θ0 + h)� K(θ0)u∗(θ0) + f̃ (θ0 + h)� f̃ (θ0), 

and hence,

(I � K)(u∗(θ0 + h) � u∗(θ0)) � (K(θ0 + h) � K(θ0))u∗(θ0 + h) + ( f̃ (θ0 + h) � f̃ (θ0)): (3.19) 
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For |h| < ɛ,
Z

C
(K(θ0 + h, x, dy)� K(θ0, x, dy))u∗(θ0 + h, y)

�
�
�
�

�
�
�
�

≤

Z

C
|k(θ0 + h, x, y)� k(θ0, x, y)|K(x, dy)v0(y)

≤ |h|
Z

C
sup
|θ�θ0 |<ɛ

|k′(θ, x, y)|K(x, dy)v0(y)

� |h|
Z

C
ωɛ(x, y)K(x, dy)v0(y):

Similarly, for |h| < ɛ,

| f̃ (θ0 + h, x)� f̃ (θ0, x)|

≤ |h|
Z

Cc
ωɛ(x, y)K(x, dy)| f (y)|

≤ |h|r̃ɛ(x):

Recall that we assumed that r̃ɛ(x) <∞ in Assumption A3. Consequently, Proposition 3.1, together with the 
Lyapunov bound (3.12), ensures that

Z

C
G(x, dy)

��
�
�
�

Z

C
(K(θ0 + h, y, dz)� K(θ0, y, dz))u∗(θ0 + h, z)

�
�
�
�+ f̃ (θ0 + h, y)� f̃ (θ0, y)
�
�

�
�

�

≤ |h|v1(x):

It follows from (3.19) that u∗(θ, x) is continuous at θ0 and

u∗(θ0 + h, x)� u∗(θ0, x)
h

�

Z

C
G(x, dy)

Z

C

k(θ0 + h, y, z)� k(θ0, y, z)
h

u∗(θ0 + h, z)K(y, dz)
�

+

Z

Cc

k(θ0 + h, y, z)� k(θ0, y, z)
h f (z)K(y, dz)

�

:

But,

k(θ0 + h, y, z) � k(θ0, y, z)
h

→ k′(y, z) (3.20) 

and

u∗(θ0 + h, z) → u∗(θ0, z) (3.21) 

as h→ 0. Also,

k(θ0 + h, y, z)� k(θ0, y, z)
h

u∗(θ0 + h, z)
�
�
�
�

�
�
�
� ≤ ωɛ(y, z)v0(z) (3.22) 

for y, z ∈ C, and

|k(θ0 + h, y, z)� k(θ0, y, z)|
h

≤ ωɛ(y, z) (3.23) 

for y ∈ C, z ∈ Cc. The Lyapunov bound (3.12), together with Proposition 3.1, guarantees that
Z

C
G(x, dy)

Z

C
ωɛ(y, z)v0(z)K(y, dz) +

Z

Cc
ωɛ(y, z)| f (z)|K(y, dz)

� �

<∞: (3.24) 

In view of (3.20) through (3.24), the dominated convergence theorem therefore establishes that u∗(θ, x) is differen
tiable at θ0, and

u∗′(θ0, x) �
Z

C
G(x, dy)

Z

C
k′(y, z)u∗(θ0, z)K(y, dz) +

Z

C
G(x, dy)

Z

Cc
k′(y, z)f (z)K(y, dz), (3.25) 

which is equivalent to (3.13).
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Turning to the continuity of u∗′(·, x), note one can easily check that

u∗′(θ) � f̃ ′(θ) +K′(θ)u∗(θ) +K(θ)u∗′(θ)

For θ ∈ [θ0 � ɛ,θ0 + ɛ], where K′(θ)u∗(θ, x) � Z

C
k′(θ, x, y)u∗(θ, y)K(x, dy), and hence,

u∗′(θ+ h)� u∗′(θ) � G(θ)( f̃ ′(θ+ h)� f̃ ′(θ)) +G(θ)((K′(θ+ h)� K′(θ))u∗(θ+ h))
+G(θ)(K′(θ)(u∗(θ+ h)� u∗(θ))) +G(θ)((K(θ+ h)� K(θ))u∗′(θ+ h)):

Now, a similar argument (via dominated convergence and the Lyapunov conditions) as the one that leads to 
(3.25)—along with (3.14), and (3.12′)—shows that u∗′(θ+ h)� u∗′(θ) → 0 for θ ∈ [θ0 � ɛ,θ0 + ɛ]. w

Our proof also yields the following (computable) bound on u∗′(θ0), namely,
|u∗′(θ0, x)| ≤ v1(x), (3.26) 

for x ∈ C. Moreover, (3.13) implies that

U′¢
X

m+n<T
exp

Xm+n

i�0
g(Xi)

 !

k′(θ0, Xm, Xm+1) f (Xm+n+1) (3.27) 

is an unbiased estimator for u∗′(θ0).
In many applications, the parameter θ enters the dynamics in a very specific way, which allows further simpli

fication of the result. In particular, whenever S is a separable metric space, we can always express X as the solu
tion to a stochastic recursion; see, for example, Kifer [12]. Namely, we can find a mapping r : S × S′ → S and a 
sequence (Zn : n ≥ 1) of independent and identically distributed (iid) S′-valued random elements such that

Xn+1 � r(Xn, Zn+1) (3.28) 

for n ≥ 0. Suppose that θ affects the dynamics of X only through the distribution of the Zn’s. Assume that for 
z ∈ S′,

Pθ(Z1 ∈ dz) � p(θ, z)Pθ0(Z1 ∈ dz), (3.29) 

where p(·, z) is continuously differentiable for z ∈ S′. If u∗(θ, x) is defined as in (3.1), then u∗(·, x) is differentiable at 
θ0 and u∗′(θ0, x) is given by (3.13) (where K′(x, dy) � Eθ0I(r(x, Z1) ∈ dy)p′(θ0, Z1)), provided that there exists ɛ > 0 
and finite-valued nonnegative functions v0 and v1 defined on C ⊆ S for which

Eθ0 v0(r(x, Z1))p(θ, Z1) ≤ v0(x)� | f̃ (θ, x)| (3.30) 

for x ∈ C and |θ� θ0| < ɛ, and

Eθ0 v1(r(x, Z1)) ≤ v1(x)� Eθ0 v0(r(x, Z1)) sup
|θ�θ0 |<ɛ

|p′(θ, Z1)|I(r(x, Z1) ∈ C)

� Eθ0 | f (r(x, Z1))| sup
|θ�θ0 |<ɛ

|p′(θ, Z1)|I(r(x, Z1) ∈ Cc), 

for x ∈ C; the proof is essentially identical to that of Theorem 3.1 and is omitted.
According to Theorem 3.1, for functions f satisfying the Lyapunov bound,

u∗′(θ0, x) �
Z

S
ν′(x, dy)f (y), 

where

ν′(w, dz) �

Z

C
G(w, dx)

Z

C
K′(x, dy)

Z

C
G(y, dz), w, z ∈ C

Z

C
G(w, dx)

Z

Cc
K′(x, dz), w ∈ C, z ∈ Cc:

8
<

:

Hence, our derivative can be represented in terms of a signed measure. (In general, ν′(x, S) is nonzero in this 
setting.)

Our approach also extends, in a straightforward way, to higher-order derivatives. Formal differentiation of 
(3.2) n times yields the identity

u∗(n)(θ) � f̃ (n)(θ) +
Xn

j�0

n
j

� �

K(n�j)(θ)u∗( j)(θ), 
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which suggests that the nth order derivative u∗(n)(θ) can then be recursively computed from u∗(0)(θ), . . . , 
u∗(n�1)(θ) by solving the linear (integral) equation

(I � K(θ))u∗(n)(θ) � f̃ (n)(θ) +
Xn�1

j�0

n
j

� �

K(n�j)(θ)u∗( j)(θ): (3.31) 

In particular, it should follow that

u∗(n)(θ) � G f̃ (n)(θ) +
Xn�1

j�0

n
j

� �

K(n�j)(θ)u∗( j)(θ)

0

@

1

A: (3.32) 

Rigorous verification of (3.32) can be implemented with a family v0, v1, : : : , vn of Lyapunov functions. Specifically, 
assume that the densities k(·, x, y) (for x ∈ S, y ∈ S) are n-times continuously differentiable in some neighborhood 
[θ0 � ɛ,θ0 + ɛ] of θ0, and set

ω( j)ɛ (x, y) � sup
|θ�θ0 |<ɛ

|k( j)(θ, x, y)|

for x ∈ C, y ∈ S.

Theorem 3.2. Suppose that there exists ɛ > 0 and a family of finite-valued nonnegative functions v0, v1, : : : , vn defined on 
C for which

(K(θ)v0)(x) ≤ v0(x)� | f̃ (θ, x)|

for x ∈ C and |θ� θ0| < ɛ;

(K(θ)vl)(x) ≤ vl(x)�
Xl�1

j�0

l
j

� �Z

C
ω(l�j)
ɛ (x, y)vj(y)K(θ, x, dy)�

Z

Cc
ω(l)ɛ (x, y)| f (y)|K(θ, x, dy)

for x ∈ C, |θ� θ0| < ɛ, and 1 ≤ l ≤ n; and
Z

C
ω(n)ɛ (x, y)vn(y)K(x, dy) <∞

for x ∈ C: Then, u∗(·, x) is n-times continuously differentiable at θ0, and the derivative can be recursively computed from the 
equations

u∗(l)(θ0, x) �
Z

C
G(x, dy)

Z

C

Xl�1

j�0

l
j

� �

k(l�j)(θ0, x, y)u∗( j)(y)K(x, dy)

+

Z

C
G(x, dy)

Z

Cc
k(l)(y, z)f (z)K(y, dz):

The proof of Theorem 3.2 mirrors that of Theorem 3.1, and is therefore omitted. As in the proof of Theorem 3.1, 
the argument establishes the bound |u∗(n)(θ0, x)| ≤ vn(x) for x ∈ C on the nth order derivative.

The previous results that come closest to our results in this section are Glynn and L’Ecuyer [3] and Heidergott 
and Vázquez-Abad [8]. Glynn and L’Ecuyer [3] study more general functionals over the random horizon than 
those studied in this section, however, they require geometric moments of the associated stopping times, which 
is often a much stronger condition than necessary. The sufficient conditions in Heidergott and Vázquez-Abad [8] 
do not assume geometric moments of the stopping times. However, they study a quite restricted class of random 
horizon expectations—that is, the ones of the form Eθx

PT
j�0 f (Xj)—and they require that the stopping time possess 

at least finite second moment. Moreover, their sufficient conditions for differentiability are not given in terms of 
conditions that can be checked directly from the transition function of the Markov chain (unlike the Lyapunov 
criteria used in our paper). Instead, they provide conditions that require the expectation of a certain functional of 
the parametrized maximum of the Markov chains over the random horizon to be finite:

E

"

sup
θ∈Λɛ

τθ(α)
Xsupθ∈Λɛτθ(α)

i�1
sup
θ∈Λɛ

| f (Xθm)|
�

<∞, 
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where {Xθ}θ∈Λɛ is the coupled family of Markov chains with the corresponding transition distributions 
{P(θ,x,dy)}θ∈Λɛ and {τθ(α)} is the associated stopping times. As a result, verifying such conditions typically 
requires cleverly bounding the above functionals with some other random variable that does not depend on θ’s 
and then bounding the expectation of the random variable.

4. Lyapunov Criteria for Differentiability of Stationary Expectations
Perhaps the most commonly occurring expectations that arise in applications are those associated with steady- 
state behavior. Our Lyapunov approach is also well-suited to establishing differentiability in this context. As in 
Section 3, it is informative to first study the problem nonrigorously.

A stationary distribution π(θ) � (π(θ, dx) : x ∈ S) of the Markov chain X associated with one-step transition ker
nel P(θ) will satisfy

π(θ) � π(θ)P(θ): (4.1) 

Differentiating both sides of (4.1) with respect to θ, we obtain
π′(θ) � π′(θ)P(θ) + π(θ)P′(θ), 

which leads to the equation
π′(θ)(I � P(θ)) � π(θ)P′(θ):

This equation is similar to (3.4). However, unlike (3.4), the operator I � P(θ) appearing here will never be inverti
ble, even when |S| <∞. In addition, I � P(θ) is acting on a measure rather than a function in this setting. Thus, a 
different approach is needed here.

For a given function f : S→ R, set α(θ) � π(θ)f . Thus,
α(θ0 + h)� α(θ0)� π(θ0 + h)f � π(θ0)f

� π(θ0 + h) fc,
(4.2) 

where fc(x) � f (x)� π(θ0)f . Whereas I � P(θ0) is singular, the Poisson’s equation
(I � P(θ0))g � fc (4.3) 

is, under suitable technical conditions, generally solvable for g (because of the special structure of the right-hand 
side, namely π(θ0) fc � 0). Substituting (4.3) into (4.2), we get

α(θ0 + h)� α(θ0) � π(θ0 + h)(I � P(θ0))g
� π(θ0 + h)(P(θ0 + h)� P(θ0))g:

(4.4) 

This suggests that
α′(θ0) � π(θ0)P′(θ0)g: (4.5) 

We now turn to making this argument rigorous.
We start by assuming that (P(θ) : θ ∈Λ) itself satisfies the absolute continuity condition:

A4. The family of one-step transition kernels (P(θ) : θ ∈Λ) is absolutely continuous with respect to P(θ0), in the 
sense that there exists a density (p(θ, x, y) : θ ∈Λ, x, y ∈ S) for which

P(θ, x, dy) � p(θ, x, y)P(θ0, x, dy)

for x, y ∈ S, and θ ∈Λ. Furthermore, there exists ɛ > 0 for which p(·, x, y) is continuously differentiable on [θ0 �

ɛ,θ0 + ɛ] for each x, y ∈ S.

Set ωɛ(x, y) � sup|θ�θ0 |<ɛ
|p′(θ, x, y)|: Our next assumption involves a (uniform) minorization condition over the set A, 

which is standard in the theory of Harris recurrent Markov chains; see, for example, Meyn and Tweedie [15]:

A5. There exists ɛ > 0, a subset A ⊆ S, an integer n ≥ 1, λ > 0, and a probability φ for which
Pn(θ, x, dy) ≥ λφ(dy)

for x ∈ A, y ∈ S, and |θ� θ0| < ɛ.

For a, b ∈ R, let a ∨ b¢max(a,b). We can now state our main theorem on differentiability of stationary 
expectations.
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Theorem 4.1. Assume that A4 and A5 hold. Let κ : R+ → R+ be a function for which κ(x) ≥ x and κ(x)=x→∞ as x→∞. 
Suppose that there exist positive constants ɛ, c0, and c1, and nonnegative finite-valued functions q, v0, and v1 for which

(P(θ)v0)(x) ≤ v0(x)� (q(x) ∨ 1) + c0I(x ∈ A), (4.6) 

(P(θ)v1)(x) ≤ v1(x)� κ
Z

S
(1 ∨ ωɛ(x, y))(v0(y) + 1)P(θ, x, dy)

� �

+ c1I(x ∈ A), (4.7) 

for x ∈ S, |θ� θ0| < ɛ, and

sup
x∈A

v0(x) <∞ (4.8) 
Then, 

i. There exists an open interval N containing θ0 for which X is a positive recurrent Harris chain under P(θ) for each 
θ ∈N ;

ii. There exists a unique stationary distribution π(θ) satisfying π(θ) � π(θ)P(θ) for each θ ∈N and π(θ)q ≤ c0 for 
θ ∈N ;

iii. For each f such that | f (x)| ≤ q(x) ∨ 1 for x ∈ S, there exists a solution g (denoted g � Γf ) of Poisson’s equation satisfying

((I � P(θ0))g)(x) � f (x)� π(θ0)f 

for x ∈ S, and |g(x)| � |(Γf )(x)| ≤ a(v0(x) + 1) for x ∈ S, where a is a finite constant;

iv. For each f such that | f (x)| ≤ q(x) ∨ 1, α(θ) � π(θ)f is continuously differentiable at θ0, and 

α′(θ0) �

Z

S
π(θ0, dx)

Z

S
p′(θ0, x, y)(Γf )(y)P(θ0, x, dy): (4.9) 

Proof. It is a standard fact that A5, (4.6), and (4.8) imply that X is a positive recurrent Harris chain under P(θ) for 
θ ∈N (where N is selected so that A5, (4.6), and (4.8) are all in force); see, for example, (Meyn and Tweedie [15]). 
As a consequence, there exists a unique stationary distribution π(θ) for each θ ∈N . Furthermore, (4.6) implies 
that the bound π(θ)q ≤ c0 holds for θ ∈N ; see, for example, corollary 4 of Glynn and Zeevi [5]. Because X is Har
ris recurrent (and (4.6) holds), one can now invoke theorem 2.3 of Glynn and Meyn [4] to obtain (iii).

Turning to (iv), note that (4.7) guarantees that π(θ)v0 <∞ for θ ∈N , so that π(θ)|Γf | <∞.
With (i), (ii), and (iii) having been verified, we can now appeal to (4.4) to write

π(θ0 + h)f � π(θ0)f � π(θ0 + h)(P(θ0 + h) � P(θ0))Γf

�

Z

S
π(θ0 + h, dx)

Z

S
(P(θ0 + h, x, dy) � P(θ0, x, dy))(Γf )(y): (4.10) 

Set s(x) � Z

Sωɛ(x, y)(v0(y) + 1)P(θ0, x, dy) and put Im(x) � I(s(x) ≥m), Ic
m(x) � I(s(x) <m).

Observe that because |p(θ0 + h, x, y)� p(θ0, x, y)|=h ≤ ωɛ(x, y), and |(Γf )(y)| ≤ a(v0(y) + 1),
Z

S
π(θ0 + h, dx)Im(x)

�
�
�
�

P(θ0 + h)� P(θ0)

h (Γf )
� �

(x)
�
�
�
�

≤

Z

S
π(θ0 + h, dx)Im(x)

Z

S
ωɛ(x, y) a(v0(y) + 1)P(θ0, x, dy)

≤ a
Z

S
π(θ0 + h, dx)Im(x)s(x)

≤
a

inf κ(s(y))
s(y)

: s(y) ≥m)
� �

Z

S
π(θ0 + h, dx)κ(s(x))

s(x)
s(x)

≤
a

inf κ(s(y))
s(y)

: s(y) ≥m)
� �

Z

S
π(θ0 + h, dx)κ

Z

S
(1 ∨ ωɛ(x, y))(v0(y) + 1)P(θ0, x, dy)

� �

≤
a

inf κ(s(y))s(y) : s(y) ≥m)
� � c1, (4.11) 

where the last inequality follows from (4.7) and corollary 4 of Glynn and Zeevi [5].
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On the other hand,
Z

S
π(θ0 + h, dx)Ic

m(x)
P(θ0 + h) � P(θ0)

h
(Γf )(x)¢

Z

S
π(θ0 + h, dx)sm

h (x) � π(θ0 + h)sm
h , 

where
|sm

h (x)| ≤ a
Z

S
ωɛ(x, y)(v0(y) + 1)P(θ0, x, dy)I(s(x) < m) ≤ am, (4.12) 

so sm
h is bounded. It follows that

π(θ0 + h)sm
h � π(θ0)sm

h � π(θ0 + h)(P(θ0 + h)� P(θ0))(Γsm
h ):

Note that Γs
m
h

am

�
�
�

�
�
� ≤ a(v0 + 1) because sm

h
am

�
�
�

�
�
� ≤ q ∨ 1 from (4.12), and hence,

|π(θ0 + h)sm
h � π(θ0)sm

h | ≤ a2m|h|
Z

S
π(θ0 + h, dx)

Z

S
ωɛ(x, y)P(θ0, x, dy)(v0(y) + 1)

≤ a2m|h|
Z

S
π(θ0 + h, dx)s(x)

≤ a2m|h|c1→ 0 (4.13) 

as h→ 0. Finally,
Z

S
π(θ0, dx)sm

h (x) �
Z

S
π(θ0, dx)Ic

m(x)
Z

S

p(θ0 + h, x, y)� p(θ0, x, y)
h

P(θ0, x, dy)(Γf )(y), 

and
p(θ0 + h, x, y) � p(θ0, x, y)

h
→ p′(θ0, x, y)

as h↘ 0. Furthermore, |p(θ0 + h, x, y)� p(θ0, x, y)|=h ≤ ωɛ(x, y), (Γf )(y) ≤ a(v0(y) + 1), and
Z

S
π(θ0, dx)

Z

S
ωɛ(x, y)P(θ0, x, dy)(v0(y) + 1) ≤

Z

S
π(θ0, dx)s(x) ≤ c1, 

so the dominated convergence theorem implies that
Z

S
π(θ0, dx)sm

h (x) →
Z

S
π(θ0, dx)Ic

m(x) ·
Z

S
p′(θ0, x, y)P(θ0, x, dy)(Γf )(y) (4.14) 

as h↘ 0.
If we first let h→ 0 and then let m→∞, (4.10) through (4.14) imply part (iv) of our theorem.
Finally, turning to the continuity of the derivative, note that the exactly same argument as earlier gives α′(θ0 +

h) �
R

S
π(θ0 + h, dx)p′(θ0 + h, x, y)Γθ0+h f (x)P(θ0, x, dy) where Γθ0+h f is the solution g of the Poisson equation 

g� P(θ0 + h)g � f � π(θ0 + h)f . Because

α′(θ0 + h)� α′(θ0) � α′(θ0 + h)� α((θ0 + h) + (� h))� α(θ0 + h)
� h

� �

� α′(θ0)�
α(θ0 + h)� α(θ0)

h

� �

, 

and we have seen that the second term vanishes as h→ 0, we are done if we show that the first term also van
ishes. Similarly as in (4.4), α(θ0)� α(θ0 + h) � π(θ0)(P(θ0)� P(θ0 + h))Γθ0+h f . Therefore,

α′(θ0 + h)� α((θ0 + h) + (� h))� α(θ0 + h)
� h � α′(θ0 + h) +α(θ0)� α(θ0 + h)

h

�

Z

S
π(θ0 + h, dx)p′(θ0 + h, x, y)Γθ0+h f (x)P(θ0, x, dy)

+

Z

S
π(θ0, dx)p(θ0, x, y)� p(θ0 + h, x, y)

h Γθ0+h f (x)P(θ0, x, dy)

�

Z

S
(π(θ0 + h, dx)� π(θ0, dx))p′(θ0 + h, x, y)Γθ0+h f (x)P(θ0, x, dy) (4.15) 

+

Z

S
π(θ0, dx) p′(θ0 + h, x, y) + p(θ0, x, y)� p(θ0 + h, x, y)

h

� �

Γθ0+h f (x)P(θ0, x, dy): (4.16) 
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Upon a perusal of the proof of theorem 2.3 of Glynn and Meyn [4], one can see that the uniform minorization 
condition A5 and the uniform Lyapunov inequality (4.6) imply |Γθ0+h f (x)| ≤ a(v0(x) + 1) with the same constant a 
as in (iii). One can prove that (4.15) vanishes as h→ 0 by the same argument as (4.11) and (4.13). On the other 
hand, (4.16) vanishes by the continuous differentiability condition A4 of p and the dominated convergence along 
with (4.7). w

As for Theorem 3.1, the proof also establishes a computable bound on |α′(θ0)|, namely |α′(θ0)| ≤ ac1 where a is the 
constant in (iii). Also, the representation (4.9) of the derivative leads to the simulation estimator as well. Assuming 
without loss of generality that X possesses an atom A, (4.9) can be written as an infinite sum of expectations:

α′(θ0) �
X∞

i�1
Eθ0
π(θ0)

p′(θ0, X0, X1)( f (Xi)� π(θ0)f )I(τ1(A) ≥ i), 

where τ1(A) � inf {n ≥ 1 : Xn ∈ A}. Such a quantity can be estimated via cross-spectral density estimation meth
ods; see, for example, Rosenblatt [17]. Again, as in Section 3, we can further simplify the conditions when X is 
the solution to the stochastic recursion (3.28), in which the parameter θ affects only the distribution Z1. When 
p(·, z) is continuously differentiable, (4.7) may be simplified as

(P(θ)v1)(x) ≤ v1(x)� κ Eθ0

 

1 ∨ sup
|θ�θ0 |<ɛ

|p′(θ, Z1)|

!

(v0(r(x, Z1)) + 1)p(θ, Z1)

 !

+ c1I(x ∈ A): (4.17) 

With A5, (4.6), and (4.8) also in force, this ensures the differentiability of α(·) at θ0, with α′(θ0) given by

α′(θ0) �

Z

S
π(θ0, dx)Eθ0(Γf )(r(x, Z1))p′(θ0, Z1): (4.18) 

A useful example on which to illustrate our theory (and an important model in its own right) is that of the 
waiting time sequence W � (Wn : n ≥ 0) for the single-server G/G/1 queue, with first-come, first-serve queue dis
cipline. Let Vn be the service time for the nth customer, and let χn+1 be the interarrival time that elapses between 
the arrival of the nth and (n+ 1)st customer. If Wn is the waiting time (exclusive of service) for customer n, the 
Wn’s satisfy the stochastic recursion

Wn+1 � [Wn +Vn � χn+1]
+ (4.19) 

for n ≥ 0, where [x]+¢max(x, 0): Assume that the Vn’s are iid, independent of the χn’s (which are also assumed 
iid). Then, W is a Markov chain taking values in S � [0,∞). It is well known that W is a positive recurrent Harris 
chain if EV0 < Eχ1, and that EVp+1

0 <∞ is then a necessary and sufficient condition for guaranteeing the finiteness 
of πfp, where fp(x) � xp (with p > 0); see, for example, Kiefer and Wolfowitz [11]. This suggests that it then typi
cally will be the case that the pth moment should be differentiable when EVp+1

0 <∞. This can be immediately 
seen in the setting of the M/M/1 queue, where this follows directly from the Pollaczek-Khintchine formula.

We consider this problem in the special case in which the service times are finite mean Pareto random varia
bles (rv’s), and θ influences the scale parameter of the Pareto distribution. In other words, we consider the setting 
in which

Pθ(V0 > v) � (1 + θv)�α 

for α > 1. In this case, the density of V0 under Pθ is given by θhV(θv), where hV(v) � α(1+ v)�α�1, so that

p(θ, v) � θ

θ0

� �
1+θv
1+θ0v

� ��α�1
, 

and

p′(θ, v) � p(θ, v) 1
θ
� (α + 1) v

(1 + θv)

� �

:

Note that both the density p and its derivative (with respect to θ) are bounded functions. Furthermore, the rv 
p′(θ0, Vi) has mean zero under Pθ0 . For any c > 0, the set A � [0, c] is easily seen to satisfy condition A5, and A4 is 
trivially verified (with ωɛ(·) bounded). Then, if v0(x) � a1xp+1, v1(x) � a2xr+2, and κ(x) � x

1+r
1+p (with r > p and a1, a2 

chosen suitably), we see that (4.6), (4.7), and (4.8) all hold, guaranteeing the differentiability of π(θ) fp (according 
to Theorem 4.1).
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For example, to verify (4.6), we note that

x�p[(P(θ)v0)(x) � v0(x)] � a1xEθ0 1 + 1
x
θ0

θ
V0 � χ1

� �� �+� �p+1

� a1x:

Observe that as x→∞,

xfp+1 1+ 1
x
θ0

θ
V0 � χ1

� ��+� �

� x � x fp+1(1) + f ′p+1(1)
1
x

� �
θ0

θ
V0 � χ1

� �� �

� x+ o(1) a:s:
�

� (p+ 1) θ0

θ
V0 � χ1

� �

+ o(1) a:s:

where o(1) represents a function k(x) such that k(x) → 0 as x→∞ uniformly in a neighborhood of θ0. In addition, 
note that for p > 0 and x > 0, the mean value theorem implies that fp+1(1+ x) � fp+1(1) + f ′p+1(1+ ξ)x for some 
ξ ∈ [0, x], so that fp+1(1+ x) � fp+1(1) + (p+ 1)(1+ ξ)px ≤ 1+ (p+ 1)(1+ x)px. Consequently,

x 1+ 1
x
θ0

θ
V0 � χ1

� �� �+� �p+1

� x ≤ x 1+ 1
x
θ0

θ
V0

� �p+1
� x 

≤ x 1+ (p+ 1) 1+ 1
x
θ

θ0
V0

� �p 1
x
θ

θ0
V0

� �

� x 

≤ (p+ 1) 1+ 1
x
θ

θ0
V0

� �p θ

θ0
V0:

Because EVp+1
0 <∞, Fatou’s lemma applies to ensure that

lim sup
x→∞

sup
θ

Eθ0 xfp+1 1+ 1
x
θ0

θ
V0 � χ1

� �� �+� �

� x
� �

≤ (p+ 1)Eθ0 sup
θ

θ0

θ
V0 � χ1

� �

� (p+ 1) sup
θ

1
θ(α� 1)� Eχ1

� �

, 

as x→∞ (with convergence that is uniform in a neighborhood of θ0). If we choose a1 so that a1(p+ 1)
supθ 1

θ(α�1)� Eχ1

� �
≤�2 and c so that

a1 sup
θ

Eθ0 xfp+1 1+ 1
x
θ0

θ
V0 � χ1

� �� �+� �

� x
� �

≤�1 

for x ≥ c, then (4.6) is validated. A similar argument applies to (4.7), in view of the boundedness of ωɛ(·). Our 
argument therefore establishes that πfp is differentiable if EVq

0 <∞ for some q > p+ 2. This is not quite the 
“correct” result (in that we previously argued that EVp+1

0 <∞ should be sufficient.)
The reason that our argument fails to provide optimal condition here has to do with special random walk 

structure that is present in the process W that is difficult for general machinery to exploit. The challenge arises in 
(4.4). Note that the argument just provided for W involves using v0 � a1 fp+1 as a bound on the solution g to Pois
son’s equation for fp. (As we shall see in a moment, g is indeed exactly of order xp+1). The problem is that neither 
P(θ0 + h) fp+1 nor P(θ0) fp+1 in (4.4) are integrable with respect to π(θ0 + h) unless EVp+2

0 <∞. This is what leads to 
the extra moment appearing in our earlier argument for W. Thus, any argument that yields differentiability 
under the hypothesis EVp+1

0 <∞ must take advantage of the fact that the random walk structure of W yields the 
integrability of (P(θ0 + h)� P(θ0))g under EVp+1

0 <∞ without demanding the integrability of P(θ0)g and P(θ0 +
h)g separately.

It is shown in Glynn and Meyn [4] that, in view of the fact that W regenerates at hitting times of {0}, the solu
tion g to Poisson’s equation for fp can be expressed as

g(x) � Eθ0
x

Xτ(0)�1

j�0
( fp(Wj) � π(θ0) fp), (4.20) 
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where τ(0) � inf {n ≥ 1 : Wn � 0} is the hitting time of {0}. Let Zj � Vj�1 � χj, Sj � Z1+⋯ +Zj, (for j ≥ 1), τx(0) � inf { j ≥
1 : x+ Sj ≤ 0}, µ � EZ1, and note that (4.20) implies that

(P(θ0 + h)g)(x)� (P(θ0)g)(x) � Eθ0 g(W1)[p(θ0 + h, V0)� 1]

� Eθ0
Xτx(0)�1

j�1
[(x+ Sj)

p
� π(θ0) fp](p(θ0 + h, V0)� 1)I(x+Z1 > 0): (4.21) 

But,

Xτx(0)�1

j�1
(x + Sj)

p
(p(θ0 + h, V0) � 1) � xp

Xτx(0)�1

j�1

��

1 +
Sj � V0

x

�p
+ pξj(x)p�1 V0

x

�

(p(θ0 + h, V0) � 1), 

where ξj(x) lies between 1+ Sj=x� V0=x and 1+ Sj=x. Note that

Xτx(0)�1

j�1
(1+ Sj=x)p�1 1

x �
Z τx(0)�1

0
(1+ S⌈u⌉=x)p�1 1

x du �
Z τx (0)�1

x

0
(1+ Sx(u))p�1du, 

where Sx(u) � S⌈xu⌉=x. Similarly, 
Pτx(0)�1

j�1 (1+ Sj=x� V0=x)p�1 1
x �

Z τx (0)�1
x

0
(1+ Sx(u)� V0=x)p�1du: Because Sx(·) con

verges to a straight line with slope µ, and τx(0)�1
x converges to 1=|µ|, while V0=x vanishes almost surely as x→∞,

Xτx(0)�1

j�1
ξj(x)p�1 1

x →
Z 1=|µ|

0
(1+µs)p�1ds a:s:

�
1
|µ|
·
1
p 

as x→∞. Furthermore, p(θ0 + h, V0)� 1 is a mean zero rv that is independent of (1+ (Sj � V0)=x)p for j ≥ 1 and 
Eτx(0) ~ x=|µ| as x→∞ (where a1(x) ~ a2(x) as x→∞means that a1(x)=a2(x) → 1 as x→∞). In view of (4.21), this 
suggests that

(P(θ0 + h)g)(x)� (P(θ0)g)(x) ~
xp

|µ|
EV0(p(θ0 + h, V0)� 1)

as x→∞ (i.e., one power lower than the growth of g itself). Thus, this style of argument can successfully deal with 
the integrability issue discussed earlier, and leads to a validation of the derivative formula (4.9) for W under the 
assumption EVp+1

0 <∞. A rigorous statement and the remaining details of the proof can be found in Appendix A.
This differentiation result for W can also be found in Heidergott and Hordijk [7], with a different (and longer) 

proof, and with some steps that appear to be incomplete. (In particular, the paper asserts that Eθ0
x
Pτ(0)�1

j�0 fp(Wj) is 
bounded for any fixed θ and p, which implies that our function g grows at most linearly regardless of p; see Lemma 
5.5 of the paper). Another related result can be found in Leahu et al. [13], which also proves the differentiability of 
the G/G/1 queue. However, it requires that the stationary waiting time has p + 1 moments, which in turn requires 
that the service time has p + 2 moments; see condition (iv) in theorem 4. As discussed earlier, this is a stronger 
assumption than necessary.

For general Markov chain stationary expectations, the previous results that come closest to Theorem 4.1 are 
Glynn and L’Ecuyer [3] and Heidergott et al. [9]. However, the sufficient conditions provided in these papers 
require geometric ergodicity of the Markov chain, which is a much stronger condition than our Lyapunov condi
tions. For example, for the G/G/1 queue in the previous example to be geometrically ergodic, the service time 
distribution needs to possess an exponential moment. It should be noted that in case the Markov chain possesses 
an atom α, the sufficient condition for the random horizon result in Heidergott and Vázquez-Abad [8] can also 
be used for checking the differentiability of the stationary expectation of Markov chains taking advantage of the 
fact that the stationary expectation can be written as π(θ)g � Eθα

Pτ(α)�1
n�0 g(Xn)=Eθατ(α): However, as pointed out in 

Section 3, the sufficient conditions provided there are often not straightforward to verify.

5. Lyapunov Criteria for Differentiability of General Random Horizon Expectations
In this section, we discuss the differentiability of the Markov chain expectations that cannot be described as solu
tions of linear systems as in the previous sections. More specifically, let T¢inf {n ≥ 0 : Xn ∈ Cc} and consider for 
each positive integer k a functional fk : Ck × Cc→ R. We are interested in the differentiability of

u(θ, x) � Eθx fT(X0, X1, : : : , XT)
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for fT(X0, X1, : : : , XT)’s that can be bounded by the functionals of the form studied in Section 2. For example, fT(X0, 
X1, : : : , XT) can be a function of the maximum of Xi’s between time 0 and T. Set υɛ(x, y) � sup {|p(θ, x, y)| :
|θ� θ0| < ɛ}, ωɛ(x, y) � sup {|p′(θ, x, y)=p(θ, x, y)| : |θ� θ0| < ɛ}, and for each p > 1,

υ̂p
ɛ(x)¢

Z

Cc
υp
ɛ(x, dy)P(θ0, x, dy), 

ω̂p
ɛ(x)¢

Z

C
ωp
ɛ(x, y)P(θ0, x, dy) +

Z

C

Z

Cc
ωp
ɛ(y, z)P(θ0, y, dz)P(θ0, x, dy), 

and
f̂

p
(θ, x)¢f p(x) +

Z

Cc
exp (p · g(x))f p(y)P(θ, x, dy):

Theorem 5.1. Assume that A4 in Section 4 holds. Suppose that fT(X0, X1, : : : , XT) ≤
PT

j�0 exp
Pj�1

k�0 g(Xk)
� �

f (Xj) almost 
surely for some g : S→ R and f : S→ R+, and there exist constants ɛ,γ ∈ (0, 1), q, r, s > 1, and nonnegative finite-valued 
functions v0, v1, and v2 such that 1=q+ 1=r+ 1=s < 1 and

Z

C
υq
ɛ(x, y)v0(y)P(θ0, x, dy) ≤ v0(x)� |υ̂q

ɛ(x)|, ∀x ∈ C, (5.1) 
Z

C
v1(y)P(θ0, x, dy) ≤ v1(x)� |ω̂r

ɛ(x)|, ∀x ∈ C, (5.2) 
Z

C
exp (sg(x))v2(y)P(θ0, x, dy) ≤ v2(x)� | f̂

s
(θ0, x)|, ∀x ∈ C, (5.3) 

Z

C
v3(y)P(θ0, x, dy) ≤ γv3(x)� Pθ0

x (X1 ∈ Cc), ∀x ∈ C: (5.4) 

Then, u(θ, x) is differentiable at θ0 and
u′(θ, x) � Eθ0

x fT(X0, X1, : : : , XT)L′T(θ), (5.5) 
where

L′T(θ)¢LT(θ)
XT

i�1

p′(θ, Xi�1, Xi)

p(θ, Xi�1, Xi)
and LT(θ)¢

YT

i�1
p(θ, Xi�1, Xi):

If (5.3) and (5.4) hold in a neighborhood of θ0, then u′(·, x) is continuous at θ0.
Proof. It is well known (see, for example, Glynn and L’Ecuyer [3]) that

u(θ0 + h) � Eθ0
x L(θ0 + h) fT(X0, X1, : : : , XT), 

and hence,
1
h Eθ0+h

x fT(X0, X1, : : : , XT) � Eθ0
x fT(X0, X1, : : : , XT)

� �
� Eθ0

x
L(θ0 + h) � L(θ0)

h fT(X0, X1, : : : , XT)

for each h ∈ (θ0 � ɛ,θ0 + ɛ). Because (LT(θ0 + h)� LT(θ0))=h→ L′T(θ0) almost surely as h→ 0, (5.5) follows if the 
integrand on the right-hand side is uniformly integrable. To establish such a uniform integrability, pick δ > 1 suf
ficiently close to 1 so that a � (1=q+ δ=r+ δ=s)�1

> 1. We will show that

sup
|h|<ɛ

Eθ0
x

LT(θ0 + h)� LT(θ0)

h fT(X0, X1, : : : , XT)

�
�
�
�

�
�
�
�

a
<∞:

Note that due to the continuous differentiability of p(·, x, y), (LT(θ0 + h)� LT(θ0))=h � L′T(θ
∗) where |θ∗ � θ0| < h. 

From Hölder inequality,

Eθ0
x

LT(θ0 + h)� LT(θ0)

h fT(X0, X1, : : : , XT)

�
�
�
�

�
�
�
�

a

� Eθ0
x | fT(X0, : : : , XT)L′T(θ

∗)|
a
� Eθ0

x fT(X0, : : : , XT)
YT

i�1
p(θ∗, Xi�1, Xi)

XT

i�1

p′(θ∗, Xi�1, Xi)

p(θ∗, Xi�1, Xi)

�
�
�
�
�

�
�
�
�
�

a

≤

�

Eθ0
x

YT

i�1
υq
ɛ(Xi�1, Xi)

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¢ (I)

�a=q�

Eθ0
x

�
XT

i�1
ωɛ(Xi�1, Xi)

�r=δ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¢ (II)

�aδ=r
(Eθ0

x | fT(X0, : : : , XT)|
s=δ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¢ (III)

)
aδ=s

: (5.6) 
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We proceed to proving (I), (II), and (III) are all finite. Starting with (I), note that from (5.1) following a similar 
argument as in the proof of Theorem 3.1 along with Proposition 3.1, one can check that this implies that (I) is 
finite, in particular, bounded by v0(x). We now move onto (III) and omit the proof for (II) because the argument 
for (II) is similar to (III) but only slightly easier. We start with observing that (5.4) implies that T possesses a finite 
exponential moment: Eθ0

x γ
�T <∞. Now we turn to proving Eθ0

x | fT(X0, X1, : : : , XT)|
s=δ
<∞, which, in turn, is 

implied by the finiteness of Eθ0
x |
PT

j�0 exp (
Pj�1

k�0 g(Xk))f (Xj)|
s=δ due to the assumption of the current theorem. Note 

that from (5.3) and again following the same reasoning as in the proof of Theorem 3.1,

Eθ0
x

XT

j�0
exp

�
Xj�1

k�0
g(Xk)

�

f (Xj)

 !s

<∞: (5.7) 

Therefore,

Eθ0
x

XT

j�0
exp

�
Xj�1

k�0
g(Xk)

�

f (Xj)

0

@

1

A

s=δ

≤ Eθ0
x T max

0≤j≤T
exp

�
Xj�1

k�0
g(Xk)

�

f (Xj)

 !s=δ

≤ Eθ0
x T s

δ�1
� �δ�1

δ

 

Eθ0
x max

0≤j≤T
exp

�
Xj�1

k�0
g(Xk)

�

f (Xj)

 !s!1
δ

≤ Eθ0
x T s

δ�1
� �δ�1

δ

 

Eθ0
x

XT

j�0
exp

�
Xj�1

k�0
g(Xk)

�

f (Xj)

 !s!1
δ

< ∞: (5.8) 

Note that in case (5.3) and (5.4) hold in the neighborhood of θ0, the previous argument can be carried out for θ’s 
that are sufficiently close to θ0 as well to show that u′(θ) � Eθ0

x fT(X0, : : : , XT)L′T(θ), and note that the previous 
argument in fact proves the uniform integrability of | fT(X0, : : : , XT)L′T(θ)|’s in a neighborhood of θ0. Therefore, 
the continuity of the derivative follows. w

In the case that X is the solution to the stochastic recursion (3.28), the conditions of Theorem 5.1 simplify again. 
That is, if (5.4) holds, and for some q, r, s > 1 such that 1=q+ 1=r+ 1=s < 1,

Eθ0 v2(r(x, Z1))exp (s · g(x))p(θ0, Z1) ≤ v2(x)� | f̂
s
(θ0, x)|, (5.9) 

E
�

sup
|θ�θ0 |<ɛ

|p(θ, Z1)|
q
�

<∞, and E
�

sup
|θ�θ0 |<ɛ

|p′(θ, Z1)=p(θ, Z1)|
r
�

<∞, (5.10) 

then u′(·, x) is differentiable at θ0, and if in addition (5.4) and (5.9) hold for θ’s in the neighborhood of θ0, then 
the derivative is continuous. The proof is similar, with the only difference arising in bounding what corresponds 
to (5.6). That is, instead of (5.6), here we need to bound

Eθ0
x | fT(X0, : : : , XT)L′T(θ

∗)|
a

� Eθ0
x fT(X0, : : : , XT)

YT

i�1
p(θ∗ , Zi)

XT

i�1

p′(θ∗, Zi)

p(θ∗ , Zi)

�
�
�
�
�

�
�
�
�
�

a

≤

�

Eθ0
x

YT

i�1
υq=δ
ɛ (Zi)

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¢ (I)

�aδ=q�

Eθ0
x

�
XT

i�1
ωɛ(Zi)

�r=δ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¢ (II)

�aδ=r
(Eθ0

x | fT(X0, : : : , XT)|
s=δ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¢ (III)

)
aδ=s 

uniformly in h where υɛ(x) � sup|θ�θ0 |<ɛ
|p(θ, x)| and ωɛ(x) � sup|θ�θ0 |<ɛ

|p′(θ, x)=p(θ, x)|. For (I), note that Eθ0υq
ɛ(Z1) �

Eθ0 sup
|θ�θ0 |<ɛ

pq(θ, Z1) → 1 as ɛ→ 0 and P(T ≥ n) ≤ γnEθ0
x γ
�T. Therefore, one can choose ɛ small enough, so that 

(Eθ0υq
ɛ(Z1))

n=δ
(Pθ0(T ≥ n))(δ�1)=δ decreases at a geometric rate w.r.t. n. For such ɛ,

Eθ0
x

YT

i�1
υq=δ
ɛ (Zi) �

X∞

n�1
Eθ0

x

�
Yn

i�1
υq=δ
ɛ (Zi); T � n

�

≤
X∞

n�1

�

Eθ0
x

Yn

i�1
υq
ɛ(Zi)

�1=δ
(Pθ0

x (T � n))
δ�1
δ

≤
X∞

n�1
(Eθ0

x υ
q
ɛ(Z1))

n=δ
(Pθ0

x (T ≥ n))
δ�1
δ <∞:
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For (II), from Wald’s inequality

Eθ0
x

�
XT

i�1
ωɛ(Zi)

�r=δ
≤ Eθ0

x

�
XT

i�1

�

maxT

i�1
ωɛ(Zi)

��r=δ
≤ Ex

�

TmaxT

i�1
ωɛ(Zi)

�r=δ

≤ (Eθ0
x T

r
(δ�1))

δ�1
δ

�

Eθ0
x maxT

i�1
ωr
ɛ(Zi)

�1
δ

≤ (Eθ0
x T

r
(δ�1))

δ�1
δ

�

Eθ0
x

XT

i�1
ωr
ɛ(Zi)

�1
δ

≤ (Eθ0
x T

r
(δ�1))

δ�1
δ (Eθ0

x T · Eωr
ɛ(Z1))

1
δ < ∞:

The argument for (III) comes from (5.9) in the same way as in Theorem 5.1, and the rest of the argument is identi
cal as well.

It should be noted that the conditions (5.1), (5.2), (5.3), (5.4) are much stronger conditions than the Lyapunov 
conditions in Sections 3 and 4. The expectations in Sections 3 and 4 that arise as “solutions of linear systems” 
have the special structure that allows one to fully leverage the fact that the underlying process is a Markov chain. 
As a consequence, we can establish Lyapunov criteria that come close to allowing one to obtain minimal condi
tions for smoothness in the setting of such expectations. On the other hand, for general expectations, it seems to 
be difficult to fully utilize the Markov structure.

Appendix A. The G/G/1 Queue Example
In this section, we prove the following statement: if Pθ(V0 > v) � (1+θv)�r�1, then α(θ) � π(θ) fp is differentiable for 
1 ≤ p < r, and the derivative is

α′(θ0) � Eθ0
π(θ0)

p′(θ0, V0)Γfp(W1): (A.1) 

It turns out to be handy to have the following bound. The proof of the claim will be provided at the end of this section.

Claim A.1. Let fp;m¢m ∧ fp. There is a constant d > 0 and h0 > 0 such that
|(P(θ0 + h)Γfp;m � P(θ0)Γfp;m)(x)| ≤ hd(xp + 1), (A.2) 

for h < h0 and m ∈ [0,∞].

First note that (4.6) can be established as in Section 4 with v0(x) � xp+1 and q(x) � xp for any p < r, and hence, |Γfp(x)| ≤
c(xp+1 + 1) for p < r by Glynn and Meyn [4], and fp is π(θ)-integrable for p < r by Glynn and Zeevi [5]. Because Γfp;m is 
π(θ0 + h)-integrable (because it is bounded by an affine function), if we let αm(θ)¢π(θ) fp;m, then αm(θ0 + h)� αm(θ0) �

π(θ0 + h)(P(θ0 + h)� P(θ0))Γfp;m. Monotone convergence theorem guarantees that αm(θ0 + h)� αm(θ0) converges to α(θ0 +

h)� α(θ0) as m→∞; on the other hand, applying monotone convergence and then bounded convergence twice along with 
Glynn and Zeevi [5] and (A.2), one can check that π(θ0 + h)(P(θ0 + h)� P(θ0))Γfp;m→ π(θ0 + h)(P(θ0 + h)� P(θ0))Γfp. There
fore, (4.4) is valid. Now, set s(x) � xp + 1 and put Im(x) � I(x ≥m) and Ic

m � I(x <m). Then,
Z

R+
π(θ0 + h, dx)Im(x)

P(θ0 + h)� P(θ0)

h Γfp(x) ≤ d
Z

π(θ0 + h, dx)Im(x)s(x)

≤ d
Z

π(θ0 + h, dx)x
p+ɛ + 1
s(x) s(x) mp + 1

mp+ɛ + 1

� cd mp + 1
mp+ɛ + 1 (A.3) 

for 0 < ɛ < r� p and some constant c > 0: On the other hand, let
Z

R+
π(θ0 + h, dx)Ic

m(x)
P(θ0 + h)� P(θ0)

h
Γfp(x)¢π(θ0 + h)sm

h , 

then, sm
h is bounded by c(mp + 1) for some c, and hence Γsm

h ≤ a(mp + 1)(x+ 1) for some a > 0.
Therefore, by the same argument as in (4.4),

|π(θ0 + h)sm
h � π(θ0)sm

h | � |π(θ0 + h)(P(θ0 + h) � P(θ0))(Γsm
h )|

�

Z

π(θ0 + h, dx)ExΓsm
h ([x + V0 � χ1]

+
)(p(θ0 + h, V0) � 1)

≤ hd′(mp + 1) (A.4) 

for some d′ > 0. Finally,

π(θ0)sm
h �

Z

R+
π(θ0, dx)Ic

m(x)E
θ0
x

p(θ0 + h, V0)� 1
h

Γfp(W1):

For each x, sm
h (x) → Ic

m(x)E
θ0
x p′(θ0 + h, V0)Γfp(W1) as h→ 0 by bounded convergence. Also, due to the definition of Ic

m(x)
and boundedness of p′, sm

h itself is bounded w.r.t. h and x. Therefore, applying the bounded convergence theorem, we 
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conclude that

π(θ0)sm
h →

Z

R+
π(θ0, dx)Ic

m(x)E
θ0
x p′(θ0, V0)Γfp(W1), (A.5) 

as h→ 0. Therefore, if we let h→ 0 and then let m→∞, (A.3), (A.4), and (A.5) imply (A.1).

Proof of the Claim. First note that

P(θ0 + h)Γfp;m(x) � P(θ0)Γfp;m(x) � Eθ0
Xτx(0)�1

j�1
[m ∧ (x + Sj)

p
� π(θ0) fp;m](p(θ0 + h, V0) � 1):

Set σx(0) � inf {n ≥ 1 : x+ Sn � V0 ≤ 0}, then obviously σx(0) ≤ τx(0). Considering the Taylor expansion of fp up to ⌊p⌋ th 
term, (x+ Sj)

p
� (x+ Sj � V0)

p
+R(x, Sj, V0), where

R(x, Sj, V0) �
X⌊p⌋�1

n�1
cn(x+ Sj � V0)

p�nVn
0 + c⌊p⌋(x+ Sj � V0 +V∗0,j)

p�⌊p⌋V⌊p⌋0

≤
X⌊p⌋

n�1
cn(x+ Sj � V0)

p�nVn
0 + c⌊p⌋V

p
0, 

where cn �
p(p�1)⋯(p�n)

n!
and 0 ≤ V∗0,j ≤ V0: Note that because σx(0) and (x+ Sj � V0) are independent of V0, and p(θ0 + h, V0)�

1 is a mean zero rv, Eθ0
Pσx(0)�1

j�1 m ∧ (x+ Sj � V0)
p
(p(θ0 + h), V0)� 1) � 0 and Eθ0

Pσx(0)�1
j�1 (π(θ0) fp,m)(p(θ0 + h), V0)� 1) � 0. 

Applying the generic inequality
(a ∧ b)d� c|d| ≤ {a ∧ (b+ c)}d ≤ (a ∧ b)d+ c|d|, ∀a, b, c > 0, 

with a � m, b � (x+ Sj � V0)
p, c � R(x, Sj, V0), and d � p(θ0 + h, V0)� 1,

Eθ0
Xσx(0)�1

j�1
[m ∧ (x+ Sj)

p
� π(θ0) fp;m](p(θ0 + h, V0)� 1)

�
�
�
�
�
�

�
�
�
�
�
�
≤
Xσx(0)�1

j�1
R(x+ Sj � V0)|p(θ0 + h, V0)� 1|

≤
X⌊p⌋

n�1
cnEθ0 Vn

0 |p(θ0 + h, V0)� 1| ·Eθ0
Xσx(0)�1

j�1
(x+ Sj � V0)

p�n
+ c⌊p⌋Eθ0 (σx(0)� 1)Eθ0 Vp

0 |p(θ0 + h, V0)� 1|:

Note that for s ≤ p,

0 ≤ Eθ0
Xσx(0)�1

j�1
(x+ Sj � V0)

s
≤ Eθ0

Xτx(0)�1

j�1
(x+ Sj)

s
� Γfs +π(θ0) fsEθ0τx(0) ≤ cs+1(xs+1 + 1): (A.6) 

Therefore, Eθ0
Pσx 0( )�1

j�1 m ∧ x+ Sj
� �p

� π θ0( )fp;m
� �

p θ0 + h, V0( )� 1
� �

�O hxp( ). On the other hand,

E
Xτx(0)�1

j�σx(0)
(x+ Sj)

p

�
�
�
�
�
�

�
�
�
�
�
�
≤ E

XτV(0)�1

j�0
(V+ Sj)

p

�
�
�
�
�
�

�
�
�
�
�
�
≤ E

XτV(0)�1

j�0
(V+ Sj)

p
� π(θ0) fp

�
�
�
�
�
�

�
�
�
�
�
�
+ E

XτV(0)�1

j�0
π(θ0) fp

�
�
�
�
�
�

�
�
�
�
�
�

≤ |EΓfp(V)| + |π(θ0) fpEγ(V)| <∞

, 

where γ(x)¢Eτx(0). Likewise, E
Pτx(0)�1

j�σx(0) π(θ0) fp can be bounded by a constant, and the conclusion of the claim 
follows. w
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