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Abstract

Let X be a Lévy process with regularly varying Lévy measure ν. We
obtain sample-path large deviations for scaled processes X̄n(t) , X(nt)/n
and obtain a similar result for random walks. Our results yield detailed
asymptotic estimates in scenarios where multiple big jumps in the incre-
ment are required to make a rare event happen; we illustrate this through
detailed conditional limit theorems. In addition, we investigate connec-
tions with the classical large deviations framework. In that setting, we
show that a weak large deviation principle (with logarithmic speed) holds,
but a full large deviation principle does not hold.
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1 Introduction

In this paper, we develop sample-path large deviations for one-dimensional Lévy
processes and random walks, assuming the jump sizes are heavy-tailed. Specif-
ically, let X(t), t ≥ 0, be a centered Lévy process with regularly varying Lévy
measure ν. Assume that P(X(1) > x) is regularly varying of index −α, and
that P(X(1) < −x) is regularly varying of index −β; i.e. there exist slowly
varying functions L+ and L− such that

P(X(1) > x) = L+(x)x−α, P(X(1) < −x) = L−(x)x−β . (1.1)

Throughout the paper, we assume α, β > 1. We also consider spectrally one-
sided processes; in that case only α plays a role. Define X̄n = {X̄n(t), t ∈ [0, 1]},
with X̄n(t) = X(nt)/n, t ≥ 0. We are interested in large deviations of X̄n.
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This topic fits well in a branch of limit theory that has a long history, has
intimate connections to point processes and extreme value theory, and is still
a subject of intense activity. The investigation of tail estimates of the one-
dimensional distributions of X̄n (or random walks with heavy-tailed step size
distribution) was initiated in Nagaev (1969, 1977). The state of the art of such
results is well summarized in Borovkov and Borovkov (2008); Denisov et al.
(2008); Embrechts et al. (1997); Foss et al. (2011). In particular, Denisov et al.
(2008) describe in detail how fast x needs to grow with n for the asymptotic
relation

P(X(n) > x) = nP(X(1) > x)(1 + o(1)) (1.2)

to hold, as n → ∞, in settings that go beyond (1.1). If (1.2) is valid, the so-
called principle of one big jump is said to hold. A functional version of this
insight has been derived in Hult et al. (2005). A significant number of stud-
ies investigate the question of if and how the principle of a single big jump is
affected by the impact of (various forms of) dependence, and cover stable pro-
cesses, autoregressive processes, modulated processes, and stochastic differential
equations; see Buraczewski et al. (2013); Foss et al. (2007); Hult and Lindskog
(2007); Konstantinides and Mikosch (2005); Mikosch and Wintenberger (2013,
2016); Mikosch and Samorodnitsky (2000); Samorodnitsky (2004).

The problem we investigate in this paper is markedly different from all of
these works. Our aim is to develop asymptotic estimates of P(X̄n ∈ A) for a
sufficiently general collection of sets A, so that it is possible to study continuous
functionals of X̄n in a systematic manner. For many such functionals, and
many sets A, the associated rare event will not be caused by a single big jump,
but multiple jumps. The results in this domain (e.g. Blanchet and Shi (2012);
Foss and Korshunov (2012); Zwart et al. (2004)) are few, each with an ad-hoc
approach. As in large deviations theory for light tails, it is desirable to have
more general tools available.

Another aspect of heavy-tailed large deviations we aim to clarify in this
paper is the connection with the standard large-deviations approach, which has
not been touched upon in any of the above-mentioned references. In our setting,
the goal would be to obtain a function I such that

− inf
ξ∈A◦

I(ξ) ≤ lim inf
n→∞

log P(X̄n ∈ A)

log n
≤ lim sup

n→∞

log P(X̄n ∈ A)

log n
≤ − inf

ξ∈Ā
I(ξ),

(1.3)
where A◦ and Ā are the interior and closure of A; all our large deviations
results are derived in the Skorokhod J1 topology. Equation (1.3) is a classical
large deviations principle (LDP) with sub-linear speed (cf. Dembo and Zeitouni
(2009)). Using existing results in the literature (e.g. Denisov et al. (2008)), it is
not difficult to show that X(n)/n = X̄n(1) satisfies an LDP with rate function
I1 = I1(x) which is 0 at 0, equal to (α−1) if x > 0, and (β−1) if x < 0. This is
a lower-semicontinuous function of which the level sets are not compact. Thus,
in large-deviations terminology, I1 is a rate function, but is not a good one.
This implies that techniques such as the projective limit approach cannot be
applied. In fact, in Section 4.4, we show that there does not exist an LDP of the
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form (1.3) for general sets A, by giving a counterexample. A version of (1.3) for
compact sets is derived in Section 4.3, as a corollary of our main results. A result
similar to (1.3) for random walks with semi-exponential (Weibullian) tails has
been derived in Gantert (1998) (see also Gantert (2000); Gantert et al. (2014)
for related results). Though an LDP for finite-dimensional distributions can be
derived, lack of exponential tightness also persists at the sample-path level. To
make the rate function good (i.e., to have compact level sets), a topology chosen
in Gantert (1998) is considerably weaker than any of the Skorokhod topologies
(but sufficient for the application that is central in that work).

The approach followed in the present paper is based on the recent develop-
ments in the theory of regular variation. In particular, in Lindskog et al. (2014),
the classical notion of regular variation is re-defined through a new convergence
concept called M-convergence (this is in itself a refinement of other reformu-
lations of regular variation in function spaces; see de Haan and Lin (2001);
Hult and Lindskog (2005, 2006)). In Section 2, we further investigate the M-
convergence framework by deriving a number of general results that facilitate
the development of our proofs.

This paves the way towards our main large deviations results, which are
presented in Section 3. We actually obtain estimates that are sharper than
(1.3), though we impose a condition on A. For one-sided Lévy processes, our
result takes the form

CJ (A)(A
◦) ≤ lim inf

n→∞

P(X̄n ∈ A)

(nν[n,∞))J (A)
≤ lim sup

n→∞

P(X̄n ∈ A)

(nν[n,∞))J (A)
≤ CJ (A)(Ā).

(1.4)
Precise definitions can be found in Section 3.1; for now we just mention that Cj
is a measure on the Skorokhod space, and J (·) is an integer valued set function
defined as J (A) = infξ∈A∩D↑s D+(ξ), where D+(ξ) is the number of discontinu-

ites of ξ, and D↑s is the set of all non-increasing step functions vanishing at the
origin. Throughout the paper, we adopt the convention that the infimum over
an empty set is∞. Letting Dj and D<j be the sets of step functions vanishing at
the origin with precisely j and at most j−1 steps respectively, we note that the
measure Cj , defined on D\D<j has its support on Dj . A crucial assumption for
(1.4) to hold is that the Skorokhod J1 distance between the sets A and D<J (A)

is strictly positive. For A such that J (A) = 1 this result corresponds to the
one shown in Hult et al. (2005). (Note that Hult et al. (2005) deals with multi-
variate regular variation whereas we focus on 1-dimensional regular variation in
this paper.) The interpretation of the “rate function” J (A) is that it provides
the number of jumps in the Lévy process that are necessary to make the event
A happen. This can be seen as an extension of the principle of a single big jump
to multiple jumps. A rigorous statement on when (1.4) holds can be found in
Theorem 3.2, which is the first main result of the paper.

The result that comes closest to (1.4) is Theorem 5.1 in Lindskog et al. (2014)
which considers the M-convergence of ν[n,∞)−jP(X/n ∈ A). This result could
be used as a starting point to investigate rare events that happen on a time-scale
of O(1). However, in the large-deviations scaling we consider, rare events that
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happen on a time-scale of O(n). Controlling the Lévy process on this larger
time-scale requires more delicate estimates, eventually leading to an additional
factor nj in the asymptotic results. We further show that the choice j = J (A)
is the only choice that leads to a non-trivial limit. One useful notion that we
develop and rely on in our setting is a form of asymptotic equivalence, which
can best be compared with exponential equivalence in classical large deviations
theory.

In Section 3.2 we present sample-path large deviations for two-sided Lévy
processes. Our main results in this case are Theorems 3.3–3.5. In the two-sided
case, determining the most likely path requires resolving significant combinato-
rial issues which do not appear in the one sided case. The polynomial rate of
decay for P(X̄n ∈ A), which was described by the function J (A) in the one-
sided case, has a more complicated description; the corresponding polynomial
rate in the two-sided case is

inf
ξ,ζ∈D↑s ; ξ−ζ∈A

(α− 1)D+(ξ) + (β − 1)D+(ζ). (1.5)

Note that this is a result that one could expect from the result for one-sided
Lévy processes and a heuristic application of the contraction principle. A rigor-
ous treatment of the two-sided case requires a more delicate argument compared
to the one-sided case: in the one-sided case, the argument simplifies since if one
takes j largest jumps away from X̄n, then the probability that the residual pro-
cess is of significant size is o

(
(nν[n,∞))j

)
so that it does not contribute in (1.4),

while in two-sided case, taking j largest upward jumps and k largest downward
jumps from X̄n doesn’t guarantee that the residual process remains small with
high enough probability—i.e., the probability that the residual process is of sig-
nificant size cannot be bounded by o

(
(nν[n,∞))j(nν(−∞,−n])k

)
. In addition,

it may be the case that multiple pairs (j, k) of jumps lead to optimal solutions of
(1.5). To overcome such difficulties, we first develop general tools—Lemma 2.2
and 2.3—that establish a suitable notion of M-convergence on product spaces.
Using these results, we prove in Theorem 5.1 the suitable M-convergence for
multiple Lévy processes in the associated product space. Viewing the two-sided
Lévy process as a superposition of one-sided Lévy processes, we then apply the
continuous mapping principle for M-convergence to Theorem 5.1 to establish our
main results. Although no further implications are discussed in this paper, we
believe that Theorem 5.1 itself is of independent interest as well because it can
be applied to generate large deviations results for a general class of functionals
of multiple Lévy processes.

We derive analogous results for random walks in Section 4.1. Random walks
cannot be decomposed into independent components with small jumps and large
jumps as easily as Lévy processes, making the analysis of random walks more
technical if done directly. However, it is possible to follow an indirect approach.
Given a random walk Sk, k ≥ 0, one can study a subordinated version SN(t), t ≥
0 with N(t), t ≥ 0 an independent unit rate Poisson process. The Skorokhod
J1 distance between rescaled versions of Sk, k ≥ 0 and SN(t), t ≥ 0 can then
be bounded in terms of the deviations of N(t) from t, which have been studied
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thoroughly.
In Section 4.2, we provide conditional limit theorems which give a precise

description of the limit behavior of X̄n given that X̄n ∈ A as n→∞. An early
result of this type is given in Durrett (1980), which focuses on regularly varying
random walks with finite variance conditioned on the event A = {X̄n(1) > a}.
Using the recent results that we have discussed (e.g. Hult et al. (2005)) more
general conditional limit theorems can be derived for single-jump events.

We prove an LDP of the form (1.3) in Section 4.3, where the upper bound
requires a compactness assumption. We construct a counterexample showing
that the compactness assumption cannot be totally removed, and thus, a full
LDP does not hold. Essentially, if a rare event is caused by j big jumps, then the
framework developed in this paper applies if each of these jumps is bounded away
from below by a strictly positive constant. Our counterexample in Section 4.4
indicates that it is not trivial to remove this condition.

As one may expect, it is not possible to apply classical variational methods
to derive an expression for the exponent J (A), as is often the case in large
deviations for light tails. Nevertheless, there seems to be a generic connection
with a class of control problems called impulse control problems. Equation (1.5)
is a specific deterministic impulse-control problem, which is related to Barles
(1985). We expect that techniques similar to those in Barles (1985) will be
useful to characterize optimality of solutions for problems like (1.5). The latter
challenge is not taken up in the present study and will be addressed elsewhere.
Instead, in Section 6, we analyse (1.5) directly in several examples; see also
Chen et al. (2017). In each case, a condition needs to be checked to see whether
our framework is applicable. We provide a general result that essentially states
that we only need to check this condition for step functions in A, which makes
this check rather straightforward.

In summary, this paper is organized as follows. After developing some pre-
liminary results in Section 2, we present our main results in Section 3. Appli-
cations to random walks and connections with classical large deviations theory
are investigated in Section 4. Section 5 is devoted to proofs. We collect some
useful bounds in Appendix A.

2 M-convergence

This section reviews and develops general concepts and tools that are useful in
deriving our large deviations results. The proofs of the lemmas and corollaries
stated throughout this section are provided in Section 5.1. We start with briefly
reviewing the notion of M-convergence, introduced in Lindskog et al. (2014).

Let (S, d) be a complete separable metric space, and S be the Borel σ-
algebra on S. Given a closed subset C of S, let S \ C be equipped with the
relative topology as a subspace of S, and consider the associated sub σ-algebra
SS\C , {A : A ⊆ S \ C, A ∈ S } on it. Define Cr , {x ∈ S : d(x,C) < r}
for r > 0, and let M(S \ C) be the class of measures defined on SS\C whose
restrictions to S \ Cr are finite for all r > 0. Topologize M(S \ C) with a sub-
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basis
{
{ν ∈ M(S \ C) : ν(f) ∈ G}: f ∈ CS\C, G open in R+

}
where CS\C is the

set of real-valued, non-negative, bounded, continuous functions whose support
is bounded away from C (i.e., f(Cr) = {0} for some r > 0). A sequence of
measures µn ∈ M(S \ C) converges to µ ∈ M(S \ C) if µn(f) → µ(f) for each
f ∈ CS\C. Note that this notion of convergence in M(S \ C) coincides with the
classical notion of weak convergence of measures (Billingsley, 2013) if C is an
empty set. We say that a set A ⊆ S is bounded away from another set B ⊆ S if
infx∈A,y∈B d(x, y) > 0. An important characterization of M(S \C)-convergence
is as follows:

Theorem 2.1 (Theorem 2.1 of Lindskog et al., 2014). Let µ, µn ∈ M(S \ C).
Then µn → µ in M(S \ C) as n→∞ if and only if

lim sup
n→∞

µn(F ) ≤ µ(F ) (2.1)

for all closed F ∈ SS\C bounded away from C and

lim inf
n→∞

µn(G) ≥ µ(G) (2.2)

for all open G ∈ SS\C bounded away from C.

We now introduce a new notion of equivalence between two families of ran-
dom objects, which will prove to be useful in Section 3.1, and Section 4.1. Let
Fδ , {x ∈ S : d(x, F ) ≤ δ} and G−δ , ((Gc)δ)

c. (Compare these notations
to Cr; note that we are using the convention that superscript implies open sets
and subscript implies closed sets.)

Definition 1. Suppose that Xn and Yn are random elements taking values in
a complete separable metric space (S, d), and εn is a sequence of positive real
numbers. Yn is said to be asymptotically equivalent to Xn with respect to εn if
for each δ > 0,

lim sup
n→∞

ε−1
n P(d(Xn, Yn) ≥ δ) = 0.

The usefulness of this notion of equivalence comes from the following lemma,
which states that if Yn is asymptotically equivalent to Xn, and Xn satisfies a
limit theorem, then Yn satisfies the same limit theorem. Moreover, it also allows
one to extend the lower and upper bounds to more general sets in case there are
asymptotically equivalent distributions that are supported on a subspace S0 of
S:

Lemma 2.1. Suppose that ε−1
n P(Xn ∈ ·)→ µ(·) in M(S\C) for some sequence

εn and a closed set C. In addition, suppose that µ(S \ S0) = 0 and P(Xn ∈
S0) = 1 for each n. If Yn is asymptotically equivalent to Xn with respect to εn,
then

lim inf
n→∞

ε−1
n P(Yn ∈ G) ≥ µ(G)

if G is open and G ∩ S0 is bounded away from C;

lim sup
n→∞

ε−1
n P(Yn ∈ F ) ≤ µ(F )

if F is closed and there is a δ > 0 such that Fδ ∩ S0 is bounded away from C.
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This lemma is particularly useful when we work in Skorokhod space, and S0

is the class of step functions. Taking S0 = S, a simpler version of Lemma 2.1
follows immediately:

Corollary 2.1. Suppose that ε−1
n P(Xn ∈ ·) → µ(·) in M(S \ C) for some

sequence εn. If Yn is asymptotically equivalent to Xn with respect to εn, then
the law of Yn has the same (normalized) limit, i.e., ε−1

n P(Yn ∈ ·) → µ(·) in
M(S \ C).

Next, we discuss the M-convergence in a product space as a result of the
M-convergences on each space.

Lemma 2.2. Suppose that S1, . . . ,Sd are separable metric spaces, C1, . . . ,Cd
are closed subsets of S1, . . . ,Sd, respectively. If µ

(i)
n (·) → µ(i)(·) in M(Si \ Ci)

for each i = 1, . . . , d then,

µ(1)
n × · · · × µ(d)

n (·)→ µ(1) × · · · × µ(d)(·) (2.3)

in M
((∏d

i=1 Si
)
\
⋃d
i=1

((∏i−1
j=1 Sj

)
× Ci ×

(∏d
j=i+1 Sj

)))
.

It should be noted that Lemma 2.2 itself is not exactly “right” in the sense
that the set we take away is unnecessarily large, and hence, has limited applica-
bility. More specifically, the M-convergence in (2.3) applies only to the sets that

are contained in a “rectangular” domain
∏d
i=1(Si \ Ci). Our next observation

allows one to combine multiple instances of M-convergences to establish a more
refined one so that (2.3) applies to a class of sets that are not confined to a
rectangular domain. In particular, we will see later in Theorem 3.3 and The-
orem 5.1 that in combination with Lemma 2.2, the following lemma produces
the “right” M-convergence for two-sided Lévy processes and random walks.

Lemma 2.3. Consider a family of measures {µ(i)}i=0,1,...,m and a family of
closed subsets {C(i)}i=0,1,...,m of S such that 1

εn(i)P(Xn ∈ ·) → µ(i)(·) in

M(S \ C(i)) for i = 0, . . . ,m where
{
{εn(i) : n ≥ 1}

}
i=0,1,...,m

is the family

of associated normalizing sequences. Suppose that µ(0) ∈ M
(
S \

⋂m
i=0 C(i)

)
;

lim supn→∞
εn(i)
εn(0) = 0 for i = 1, . . . ,m; and for each r > 0, there exist positive

numbers r0, . . . , rm such that
⋂m
i=0 C(i)ri ⊆

(⋂m
i=0 C(i)

)r
. Then

1

εn(0)
P(Xn ∈ ·)→ µ(0)

in M
(
S \
⋂m
i=0 C(i)

)
.

A version of the continuous mapping principle is satisfied by M-convergence.
Let (S′, d′) be a complete separable metric space, and let C′ be a closed subset
of S′.

Theorem 2.2 (Mapping theorem; Theorem 2.3 of Lindskog et al. (2014)). Let
h : (S \C,SS\C)→ (S′ \C′,SS′\C′) be a measurable mapping such that h−1(A′)
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is bounded away from C for any A′ ∈ SS′\C′ bounded away from C′. Then

ĥ : M(S \ C)→M(S′ \ C′) defined by ĥ(ν) = ν ◦h−1 is continuous at µ provided
µ(Dh) = 0, where Dh is the set of discontinuity points of h.

For our purpose, the following slight extension will prove to be useful in
developing rigorous arguments.

Lemma 2.4. Let S0 be a measurable subset of S, and h : (S0,SS0) → (S′ \
C′,S ′S′\C′) be a measurable mapping such that h−1(A′) is bounded away from C
for any A′ ∈ SS′\C′ bounded away from C′. Then ĥ : M(S \ C) → M(S′ \ C′)
defined by ĥ(ν) = ν ◦ h−1 is continuous at µ provided that µ(∂S0 \Cr) = 0 and
µ(Dh \ Cr) = 0 for all r > 0, where Dh is the set of discontinuity points of h.

When we focus on Lévy processes, we are specifically interested in the
case where S is R∞↓+ × [0, 1]∞, where R∞↓+ , {x ∈ R∞+ : x1 ≥ x2 ≥ . . .},
and S′ is the Skorokhod space D = D([0, 1],R) — the space of real-valued
RCLL functions on [0, 1]. We use the usual product metrics dR∞↓+

(x, y) =∑∞
i=1

|xi−yi|∧1
2i and d[0,1]∞(x, y) =

∑∞
i=1

|xi−yi|
2i for R∞↓+ and [0, 1]∞, respec-

tively. For the finite product of metric spaces, we use the maximum metric;
i.e., we use dS1×···×Sd((x1, . . . , xd), (y1, . . . , yd)) , maxi=1,...,d dSi(xi, yi) for the
product S1 × · · · × Sd of metric spaces (Si, dSi). For D, we use the usual Sko-
rokhod J1 metric d(x, y) , infλ∈Λ ‖λ − e‖ ∨ ‖x ◦ λ − y‖, where Λ denotes the
set of all non-decreasing homeomorphisms from [0, 1] onto itself, e denotes the
identity, and ‖ · ‖ denotes the supremum norm. Let

Sj , {(x, u) ∈ R∞↓+ × [0, 1]∞ : 0, 1, u1, . . . , uj are all distinct}.

This set will play the role of S0 of Lemma 2.4. Define Tj : Sj → D to be

Tj(x, u) =
∑j
i=1 xi1[ui,1]. Let Dj be the subspaces of the Skorokhod space

consisting of nondecreasing step functions, vanishing at the origin, with exactly
j jumps, and D6j ,

⋃
0≤i≤j Di—i.e., nondecreasing step functions vanishing

at the origin with at most j jumps. Similarly, let D<j ,
⋃

0≤i< j Di. Define

Hj , {x ∈ R∞↓+ : xj > 0, xj+1 = 0}, and H<j , {x ∈ R∞↓+ : xj = 0}. The
continuous mapping principle applies to Tj , as we can see in the following result.

Lemma 2.5 (Lemma 5.3 and Lemma 5.4 of Lindskog et al., 2014). Suppose
A ⊂ D is bounded away from D<j. Then, T−1

j (A) is bounded away from H<j ×
[0, 1]∞. Moreover, Tj : Sj → D is continuous.

A consequence of Result 2.5 and Lemma 2.4 along with the observation that
Sj is open is that one can derive a limit theorem in a path space from a limit
theorem for jump sizes.

Corollary 2.2. If µn → µ in M
(
(R∞↓+ × [0, 1]∞)\ (H<j × [0, 1]∞)

)
, and µ

(
Scj \

(H<j × [0, 1]∞)r
)

= 0 for all r > 0, then µn ◦ T−1
j → µ ◦ T−1

j in M(D \ D<j).
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To obtain the large deviations for two-sided Lévy measures, we will first
establish the large deviations for independent spectrally positive Lévy processes,
and then apply Lemma 2.4 with h(ξ, ζ) = ξ − ζ. The next lemma verifies two
important conditions of Lemma 2.4 for such h. Let Dl,m denote the subspace
of the Skorokhod space consisting of step functions vanishing at the origin with
exactly l upward jumps and m downward jumps. Given α, β > 1, let D<j,k ,⋃

(l,m)∈I<j,k Dl,m and D<(j,k) ,
⋃

(l,m)∈I<j,k Dl × Dm, where I<j,k ,
{

(l,m) ∈
Z2

+ \ {(j, k)} : (α− 1)l + (β − 1)m ≤ (α− 1)j + (β − 1)k
}

and Z+ denotes the
set of non-negative integers. Note that in the definition of I<j,k, the inequality
is not strict; however, we choose to use the strict inequality in our notation to
emphasize that (j, k) is not included in I<j,k.

Lemma 2.6. Let h : D × D → D be defined as h(ξ, ζ) , ξ − ζ. Then, h is
continuous at (ξ, ζ) ∈ D × D such that (ξ(t) − ξ(t−))(ζ(t) − ζ(t−)) = 0 for all
t ∈ (0, 1]. Moreover, h−1(A) ⊆ D × D is bounded away from D<(j,k) for any
A ⊆ D bounded away from D<j,k.

We next characterize convergence-determining classes for the convergence in
M(S \ C).

Lemma 2.7. Suppose that (i) Ap is a π-system; (ii) each open set G ⊆ S
bounded away from C is a countable union of sets in Ap; and (iii) for each
closed set F ⊆ S bounded away from C, there is a set A ∈ Ap bounded away
from C such that F ⊆ A◦ and µ(A \ A◦) = 0. If, in addition, µ ∈ M(S \ C)
and µn(A)→ µ(A) for every A ∈ Ap such that A is bounded away from C, then
µn → µ in M(S \ C).

Remark 1. Since S is a separable metric space, the Lindelöf property holds.
Therefore, a sufficient condition for assumption (ii) of Lemma 2.7 is that for
every x ∈ S \ C and ε > 0, there is A ∈ Ap such that x ∈ A◦ ⊆ B(x, ε). To see
that this implies assumption (ii), note that for any given open set G, one can
construct a cover {(Ax)◦ : x ∈ G} of G by choosing Ax so that x ∈ (Ax)◦ ⊆ G
and then extract a countable subcover (due to the Lindelöf property) whose union
is equal to G. Note also that if A in assumption (iii) is open, then µ(A \A◦) =
µ(∅) = 0 automatically.

3 Sample-Path Large Deviations

In this section, we present large-deviations results for scaled Lévy processes with
heavy-tailed Lévy measures. Section 3.1 studies a special case, where the Lévy
measure is concentrated on the positive part of the real line, and Section 3.2
extends this result to Lévy processes with two-sided Lévy measures. In both
cases, let Xn(t) , X(nt) be a scaled process of X, where X is a Lévy process
with a Lévy measure ν. Recall that Xn has Itô representation (see, for example,
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Section 2 of Kyprianou, 2014):

Xn(s) = nsa+B(ns)

+

∫
|x|≤1

x[N([0, ns]× dx)− nsν(dx)] +

∫
|x|>1

xN([0, ns]× dx),

with a a drift parameter, B a Brownian motion, and N a Poisson random
measure with mean measure Leb×ν on [0, n]×(0,∞); Leb denotes the Lebesgue
measure.

3.1 One-sided Large Deviations

Let X be a Lévy process with Lévy measure ν. In this section, we assume
that ν is a regularly varying (at infinity, with index −α < −1) Lévy measure
concentrated on (0,∞). Consider a centered and scaled process

X̄n(s) ,
1

n
Xn(s)− sa− µ+

1 ν
+
1 s, (3.1)

where µ+
1 , 1

ν+
1

∫
[1,∞)

xν(dx), and ν+
1 , ν[1,∞). For each constant γ > 1, let

νγ(x,∞) , x−γ , and let νjγ denote the restriction (to Rj↓+ ) of the j-fold product

measure of νγ . Let C0(·) , δ0(·) be the Dirac measure concentrated on the
zero function. Additionally, for each j ≥ 1, define a measure Cj ∈ M(D \ D<j)
concentrated on Dj as Cj(·) , E

[
νjα{y ∈ (0,∞)j :

∑j
i=1 yi1[Ui,1] ∈ ·}

]
, where

the random variables Ui, i ≥ 1 are i.i.d. uniform on [0, 1].
The proof of the main result of this section hinges critically on the following

limit theorem.

Theorem 3.1. For each j ≥ 0,

(nν[n,∞))−jP(X̄n ∈ ·)→ Cj(·), (3.2)

in M(D \ D<j), as n → ∞. Moreover, X̄n is asymptotically equivalent to a
process that assumes values in D6J (A) almost surely.

Proof Sketch. The proof of Theorem 3.1 is based on establishing the asymptotic
equivalence of X̄n and the process obtained by just keeping its j biggest jumps,
which we will denote by Ĵ6j

n in Section 5. Such an equivalence is established via
Proposition 5.1, and Proposition 5.2. Then, Proposition 5.3 identifies the limit
of Ĵ6j

n , which coincides with the limit in (3.2). The full proof of Theorem 3.1
is provided in Section 5.2.

Recall that D↑s denotes the subset of D consisting of non-decreasing step
functions vanishing at the origin, and D+(ξ) denotes the number of upward
jumps of an element ξ in D. Finally, set

J (A) , inf
ξ∈D↑s∩A

D+(ξ). (3.3)
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Now we are ready to present the main result of this section, which is the following
large-deviations theorem for X̄n.

Theorem 3.2. Suppose that A is a measurable set. If J (A) < ∞, and if
Aδ ∩ D6J (A) is bounded away from D<J (A) for some δ > 0, then

CJ (A)(A
◦) ≤ lim inf

n→∞

P(X̄n ∈ A)

(nν[n,∞))J (A)

≤ lim sup
n→∞

P(X̄n ∈ A)

(nν[n,∞))J (A)
≤ CJ (A)(Ā).

(3.4)

If J (A) = ∞, and Aδ ∩ D6i+1 is bounded away from D6i for some δ > 0 and
i ≥ 0, then

lim
n→∞

P(X̄n ∈ A)

(nν[n,∞))i
= 0. (3.5)

In particular, in case J (A) <∞, (3.4) holds if A is bounded away from D<J (A);
in case J (A) =∞, (3.5) holds if A is bounded away from D6i.

Proof. We first consider the case J (A) <∞. Note that J (A◦) > J (A) implies
that A◦ doesn’t contain any element of D6J (A). Since CJ (A) is supported on
D6J (A), A

◦ is a CJ (A)-null set. Therefore, the lower bound holds trivially if
J (A◦) > J (A). On the other hand, J (A) = J (Ā). To see this, suppose
not—i.e., J (Ā) < J (A). Then, there exists ζ ∈ D↑s ∩ Ā such that ζ ∈ D<J (A).
This implies that ζ ∈ Aδ ∩ D6J(A) for any δ > 0, which is contradictory to the
assumption that Aδ ∩ D6J(A) is bounded away from D<J (A) for some δ > 0.
In view of these observations, we can assume w.l.o.g. that J (A◦) = J (A) =
J (Ā). Now, from Theorem 3.1 with j = J (A◦) along with the lower bound of
Lemma 2.1,

CJ (A)(A
◦) = CJ (A◦)(A

◦) ≤ lim inf
n→∞

P(X̄n ∈ A◦)
(nν[n,∞))J (A◦)

≤ lim inf
n→∞

P(X̄n ∈ A)

(nν[n,∞))J (A)
.

Similarly, from Theorem 3.1 with j = J (Ā) along with the upper bound of
Lemma 2.1,

lim sup
n→∞

P(X̄n ∈ A)

(nν[n,∞))J (A)
≤ lim sup

n→∞

P(X̄n ∈ Ā)

(nν[n,∞))J (Ā)

≤ CJ (Ā)(Ā) = CJ (A)(Ā).

In case J (A) =∞, we reach the conclusion by applying Theorem 3.1 with j = i
along with noting that Ci(Ā) = 0.

Theorem 3.2 dictates the “right” choice of j in Theorem 3.1 for which (3.2)
can lead to a limit in (0,∞). We conclude this section with an investigation of
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a sufficient condition for Cj-continuity; i.e., we provide a sufficient condition on
A which guarantees Cj(∂A) = 0. The latter property implies

Cj(A
◦) = Cj(A) = Cj(Ā), (3.6)

implying that the liminf and limsup in our asymptotic estimates yield the
same result. Assume that A is a subset of Dj bounded away from D<j ; i.e.,
d(A,D<j) > γ for some γ > 0. Consider a path ξ ∈ A. Note that ev-
ery ξ ∈ Dj is determined by the pair of jump sizes and jump times (x, u) ∈
(0,∞)j × [0, 1]j ; i.e., ξ(t) =

∑j
i=1 xi1[ui,1](t). Formally, we define a map-

ping T̂j : Ŝj → Dj by T̂j(x, u) =
∑j
i=1 xi1[ui,1], where Ŝj , {(x, u) ∈ Rj↓+ ×

[0, 1]j : 0, 1, u1, . . . , uj are all distinct}. Since d(A,D<j) > γ, we know that

T̂j(x, u) ∈ A implies x ∈ (γ,∞)j ; see Lemma 5.4 (b). In view of this, we can

see that (3.6) holds if the Lebesgue measure of T̂−1
j (∂A) is 0 since Cj(A) =∫

(x,u)∈T̂−1
j (A)

dudνjα(x). One of the typical settings that arises in applications is

that the set A can be written as a finite combination of unions and intersections
of φ−1

1 (A1), . . . , φ−1
m (Am), where each φi : D→ Si is a continuous function, and

all sets Ai are subsets of general topological space Si. If we denote this operation
of taking unions and intersections by Ψ (i.e., A = Ψ(φ−1

1 (A1), . . . , φ−1
m (Am))),

then

Ψ(φ−1
1 (A◦1), . . . , φ−1

m (A◦m)) ⊆ A◦ ⊆ A ⊆ Ā ⊆ Ψ(φ−1
1 (Ā1), . . . , φ−1

m (Ām)).

Therefore, (3.6) holds if T̂−1
j (Ψ(φ−1

1 (Ā1), . . . , φ−1
m (Ām))) \ T̂−1

j (Ψ(φ−1
1 (A◦1), . . . ,

φ−1
m (A◦m))) has Lebesgue measure zero. A similar principle holds for the limit

measures Cj,k, defined in the next section where we deal with two-sided Lévy
processes.

3.2 Two-sided Large Deviations

Consider a two-sided Lévy measure ν for which ν[x,∞) is regularly varying with
index −α and ν(−∞,−x] is regularly varying with index −β. Let

X̄n(s) ,
1

n
Xn(s)− sa− (µ+

1 ν
+
1 − µ

−
1 ν
−
1 )s,

where

µ+
1 ,

1

ν+
1

∫
[1,∞)

xν(dx), ν+
1 , ν[1,∞),

µ−1 ,
−1

ν−1

∫
(−∞,−1]

xν(dx), ν−1 , ν(−∞,−1].

Recall the definition of Dj,k given below Corollary 2.2, and the definition of νjα
and νkβ as given below (3.1). Let C0,0(·) , δ0(·) be the Dirac measure concen-

trated on the zero function. For each (j, k) ∈ Z2
+ \ {(0, 0)}, define a measure
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Cj,k ∈ M(D \ D<j,k) concentrated on Dj,k as Cj,k(·) , E
[
νjα × νkβ{(x, y) ∈

(0,∞)j × (0,∞)k :
∑j
i=1 xi1[Ui,1] −

∑k
i=1 yi1[Vi,1] ∈ ·}

]
, where Ui’s and Vi’s

are i.i.d. uniform on [0, 1]. Recall that D<j,k =
⋃

(l,m)∈I<j,k Dl,m and I< j, k ={
(l,m) ∈ Z2

+ \ {(j, k)} : (α− 1)l + (β − 1)m ≤ (α− 1)j + (β − 1)k
}

.
As in the one-sided case, the proof of the main theorem of this section hinges

on the following limit theorem.

Theorem 3.3. For each (j, k) ∈ Z2
+,

(nν[n,∞))−j(nν(−∞,−n])−kP(X̄n ∈ ·)→ Cj,k(·) (3.7)

in M(D \ D<j,k) as n→∞.

The proof of Theorem 3.3 builds on Theorem 3.1, using Lemma 2.2, Lemma 2.3,
and Lemma 2.6 and Theorem 5.1. We provide the full proof in Section 5.2.

Let I(j, k) , (α−1)j+(β−1)k, and consider a pair of integers (J (A),K(A))
such that

(J (A),K(A)) ∈ arg min
(j,k)∈Z2

+

Dj,k∩A6=∅

I(j, k). (3.8)

The next theorem is the first main result of this section.

Theorem 3.4. Suppose that A is a measurable set. If the argument minimum in
(3.8) is non-empty and A is bounded away from D<J (A),K(A), then the argument
minimum is unique and

lim inf
n→∞

P(X̄n ∈ A)

(nν[n,∞))J (A)(nν(−∞,−n])K(A)
≥ CJ (A),K(A)(A

◦),

lim sup
n→∞

P(X̄n ∈ A)

(nν[n,∞))J (A)(nν(−∞,−n])K(A)
≤ CJ (A),K(A)( Ā ).

(3.9)

Moreover, if the argument minimum in (3.8) is empty and A is bounded away
from D<l,m ∪ Dl,m for some (l,m) ∈ Z2

+ \ {(0, 0)}, then

lim
n→∞

P(X̄n ∈ A)

(nν[n,∞))l(nν(−∞,−n])m
= 0. (3.10)

The proof of the theorem is provided below as a consequence of the following
lemma.

Lemma 3.1. Suppose that a sequence of D-valued random elements Yn satisfies
(3.7) (with X̄n replaced with Yn) for each (j, k) ∈ Z2

+. Then (3.9) (with X̄n

replaced with Yn) holds if A is a measurable set for which the argument minimum
in (3.8) is non-empty, and A is bounded away from D<J (A),K(A). Moreover,
(3.10) (with X̄n replaced with Yn) holds if the argument minimum in (3.8) is
empty and A is bounded away from D<l,m∪Dl,m for some (l,m) ∈ Z2

+ \{(0, 0)}.

The proof of this lemma is provided in Section 5.2.
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Proof of Theorem 3.4. The uniqueness of the argument minimum is immediate
from the assumption that A is bounded-away from D<J (A),K(A). Since X̄n sat-
isfies (3.7) by Theorem 3.3, the conclusion of the theorem follows from applying
Lemma 3.1 with Yn = X̄n.

In case one is interested in a set for which the arg min of I in (3.8) is not
unique, a natural approach is to partition A into smaller sets and analyze each
element separately. In the next theorem, we show that this strategy can be
successfully employed with a minimal requirement on A. However, due to the
presence of two different slowly varying functions nαν[n,∞) and nβν(−∞,−n],
the limit behavior may not be dominated by a single Dl,m.

To deal with this case, let I=j,k , {(l,m) : (α− 1)l+ (β − 1)m = (α− 1)j +

(β− 1)k}, I�j,k , {(l,m) : (α− 1)l+ (β− 1)m < (α− 1)j + (β− 1)k}, D=j,k ,⋃
(l,m)∈I=j,k Dl,m, and D�j,k ,

⋃
(l,m)∈I�j,k Dl,m. Denote the slowly varying

functions nαν[n,∞) and nβν(−∞,−n] with L+(n) and L−(n), respectively.

Theorem 3.5. Let A be a measurable set and suppose that the argument min-
imum in (3.8) is non-empty and contains a pair of integers (J (A),K(A)). If
Aδ ∩ D=J (A),K(A) is bounded away from D�J (A),K(A) for some δ > 0, then for
any given ε > 0, there exists N ∈ N such that

P(X̄n ∈ A) ≥
∑

(l,m)

(
Cl,m(A◦)− ε

)
Ll+(n)Lm− (n)

n(α−1)J (A)+(β−1)K(A)
,

P(X̄n ∈ A) ≤
∑

(l,m)

(
Cl,m(Ā) + ε

)
Ll+(n)Lm− (n)

n(α−1)J (A)+(β−1)K(A)
,

(3.11)

for all n ≥ N , where the summations are over the pairs (l,m) ∈ I=J (A),K(A).
In particular, (3.11) holds if A is bounded away from D�J (A),K(A).

Proof. Note first that from Lemma 5.5 (i), there exists a δ′ > 0 such that
D�J (A),K(A) is bounded away from A ∩ (Dl,m)δ′ for all (l,m) ∈ I=J (A),K(A).
Moreover, applying Lemma 5.5 (ii) to each A∩ (Dl,m)δ′ , we conclude that there
exists ρ > 0 such that A ∩ (Dl,m)ρ is bounded away from (Dj,k)ρ for any two
distinct pairs (l,m), (j, k) ∈ I=J (A),K(A). This means that A ∩ (Dl,m)ρ’s are all
disjoint and bounded away from D<l,m.

To derive the lower bound, we apply Theorem 3.4 to A◦ ∩ (Dl,m)ρ to obtain

Cl,m(A◦) = Cl,m(A◦ ∩ Dl,m) = Cl,m(A◦ ∩ Dl,m ∩ (Dl,m)ρ)

= Cl,m(A◦ ∩ (Dl,m)ρ) ≤ lim inf
n→∞

P(X̄n ∈ A◦ ∩ (Dl,m)ρ)

(nν[n,∞))l(nν(−∞,−n])m

≤ lim inf
n→∞

P(X̄n ∈ A ∩ (Dl,m)ρ)

(nν[n,∞))l(nν(−∞,−n])m
,

for each (l,m) ∈ I=J (A),K(A). That is, for any given ε > 0, there exists an
Nl,m ∈ N such that(

Cl,m(A◦)− ε
)
Ll+(n)Lm− (n)

n(α−1)l+(β−1)m
≤ P

(
X̄n ∈ A ∩ (Dl,m)ρ

)
, (3.12)
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for all n ≥ Nl,m. Meanwhile, an obvious bound holds for A \
⋃

(l,m)∈I=J (A),K(A)

(Dl,m)ρ; i.e.,

0 ≤ P
(
X̄n ∈ A \

⋃
(l,m)∈I=J (A),K(A)

(Dl,m)ρ
)
. (3.13)

Since (α−1)l+ (β−1)m = (α−1)J (A) + (β−1)K(A) for (l,m) ∈ I=J (A),K(A),
summing (3.12) over (l,m) ∈ I=J (A),K(A) together with (3.13), we arrive at the
lower bound of the theorem, with N = max(l,m)∈I=J (A),K(A)

Nl,m.

Turning to the upper bound, we apply Theorem 3.4 to Ā ∩ (Dl,m)ρ to get

lim sup
n→∞

P(X̄n ∈ Ā ∩ (Dl,m)ρ)

(nν[n,∞))l(nν(−∞,−n])m
≤ Cl,m(Ā ∩ (Dl,m)ρ) = Cl,m(Ā).

for each (l,m) ∈ I=J (A),K(A). That is, for any given ε > 0, there exists N ′l,m ∈ N
such that

P(X̄n ∈ A ∩ (Dl,m)ρ) ≤
(
Cl,m(Ā) + ε/2

)
Ll+(n)Lm− (n)

n(α−1)l+(β−1)m
, (3.14)

for all n ≥ N ′l,m. On the other hand, since Ā\
⋃

(l,m)∈I=J (A),K(A)
(Dl,m)ρ is closed

and bounded away from D<J (A),K(A),

lim sup
n→∞

P
(
X̄n ∈ A \

⋃
(l,m)(Dl,m)ρ

)
(nν[n,∞))J (A)(nν(−∞,−n])K(A)

≤ CJ (A),K(A)

(
Ā \

⋃
(l,m)(Dl,m)ρ

)
,

where the union is over the pairs (l,m) ∈ I=J (A),K(A). Therefore, there exists
N ′ such that

P
(
X̄n ∈ A \

⋃
(l,m)(Dl,m)ρ

)
≤

(
CJ (A),K(A)

(
Ā \

⋃
(l,m)(Dl,m)ρ

)
+ ε/2

)
L
J (A)
+ (n)L

K(A)
− (n)

n(α−1)J (A)+(β−1)K(A)

=
(ε/2)L

J (A)
+ (n)L

K(A)
− (n)

n(α−1)J (A)+(β−1)K(A)
,

(3.15)

for n ≥ N ′ since Ā \
⋃

(l,m)(Dl,m)ρ is disjoint from the support of CJ (A),K(A).

Summing (3.14) over (l,m) ∈ I=J (A),K(A) and (3.15),

P(X̄n ∈ A) ≤
∑

(l,m)

(
Cl,m

(
Ā
)

+ ε
)
Ll+(n)Lm− (n)

n(α−1)J (A)+(β−1)K(A)
, (3.16)

for n ≥ N , where N = N ′ ∨max(l,m)∈I=J (A),K(A)
N ′l,m.

4 Implications

This section explores the implications of the large-deviations results in Section 3,
and is organized as follows. Section 4.1 proves a result similar to Theorem 3.4,
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now focusing on random walks with regularly varying increments. Section 4.2
illustrates that conditional limit theorems can easily be studied by means of
the limit theorems established in Section 3. Section 4.3 develops a weak large
deviation priciple (LDP) of the form (1.3) for the scaled Lévy processes. Finally,
Section 4.4 shows that the weak LDP proved in Section 4.3 is the best one can
hope for in the presence of regularly varying tails, by showing that a full LDP
of the form (1.3) does not exist.

4.1 Random Walks

Let Sk, k ≥ 0, be a random walk, set S̄n(t) = S[nt]/n, t ≥ 0, and define S̄n =
{S̄n(t), t ∈ [0, 1]}. Let N(t), t ≥ 0, be an independent unit rate Poisson process.
Define the Lévy process X(t) , SN(t), t ≥ 0, and set X̄n(t) , X(nt)/n, t ≥ 0.
The goal is to prove an analogue of Theorem 3.4 for the scaled random walk
S̄n. Let J (·), K(·), and Cj,k(·) be defined as in Section 3.2.

Theorem 4.1. Suppose that P(S1 ≥ x) is regularly varying with index −α and
P(S1 ≤ −x) is regularly varying with index −β. Let A be a measurable set
bounded away from D<J (A),K(A). Then

lim inf
n→∞

P(S̄n ∈ A)

(nP(S1 ≥ n))J (A)(nP(S1 ≤ −n))K(A)
≥ CJ (A),K(A)(A

◦),

lim sup
n→∞

P(S̄n ∈ A)

(nP(S1 ≥ n))J (A)(nP(S1 ≤ −n))K(A)
≤ CJ (A),K(A)(Ā).

(4.1)

Proof. The idea is to combine our notion of asymptotic equivalence with Theo-
rem 3.4. First, we need to derive the asymptotic behavior of the Lévy mea-
sure of the constructed Lévy process. From Example A3.17 in Embrechts
et al. (1997), we obtain P(X(1) ≥ x) ∼ P(S1 ≥ x). Moreover, Embrechts
et al. (1979) implies that ν(x,∞) ∼ P(X(1) ≥ x). Similarly, it follows that
ν(−∞,−x) ∼ P(S1 ≤ −x).

Now, from Lemma 3.1, (4.1) is proved if (3.7) holds for S̄n. In view of
Corollary 2.1, (3.7) holds—and hence, the proof is completed—if we prove the
asymptotic equivalence between X̄n and S̄n (w.r.t. a geometrically decaying se-
quence). To prove the asymptotic equivalence, we first argue that the Skorokhod
distance between S̄n and X̄n is bounded by supt∈[0,1] |N(tn)/n− t|. To see this,
define the homeomorphism λn(t) as the linear interpolation of the jump points
of N(nt)/n, and observe that X̄n(t) = S̄n(λn(t)). Thus, the distance between
S̄n and X̄n is bounded by supt∈[0,1] |λn(t) − t| which, in itself, is bounded by
supt∈[0,1] |N(tn)/n− t|. From Lemma A.4,

P( sup
t∈[0,1]

|N(tn)/n− t|) > δ) ≤ 3 sup
t∈[0,1]

P(|N(tn)/n− t|) > δ/3),

where P(|N(tn)/n− t|) > δ/3) vanishes at a geometric rate w.r.t. n uniform in
t ∈ [0, 1], from which the asymptotic equivalence follows.
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4.2 Conditional Limit Theorems

As before, X̄n denotes the scaled Lévy process defined as in Section 3.1 for
the one-sided case and Section 3.2 for the two-sided case, respectively. In this
section, we present conditional limit theorems which give a precise description
of the limit law of X̄n conditional on X̄n ∈ A.

The next result, for the one-sided case, follows immediately from the defini-
tion of weak convergence and Theorem 3.2.

Corollary 4.1. Suppose that a subset B of D satisfies the conditions in The-

orem 3.2 and that CJ (B)(B
◦) = CJ (B)(B) = CJ (B)(B̄) > 0. Let X̄

|B
n be a

process having the conditional law of X̄n given that X̄n ∈ B, then there exists a

process X̄
|B
∞ such that

X̄ |Bn ⇒ X̄ |B∞ ,

in D. Moreover, if P|B (·) is the law of X̄
|B
∞ , then

P|B
(
X̄ |B∞ ∈ ·

)
:=

CJ (B)(· ∩B)

CJ (B)(B)
.

Let us provide a more direct probabilistic description of the process X̄
|B
∞ .

Directly from the definition of P|B we have that

X̄ |B∞ (t) =

J (B)∑
n=1

χn1[Un,1] (t) ,

where U1, ..., UJ (B) are i.i.d. uniform random variables on [0, 1] and

P|B
(
χ1 ∈ dx1, ..., χJ (B) ∈ dxJ (B)

)
=

Π
J (B)
i=1

(
αxi
−α−1dxi

)
I
(
xJ (B) > ... > x1 > 0

)
P
(∑J (B)

n=1 xn1[Un,1] (·) ∈ B
)

CJ (B)(B)
.

An easier to interpret description of P|B can be obtained by using the fact
that δB := d

(
B,D6J (B)−1

)
> 0. Define an auxiliary probability measure,

P
|B
# , under which, not only U1, ..., UJ (B) are i.i.d. Uniform(0, 1), but also

χ1, ..., χJ (B) are i.i.d. distributed Pareto(α, δB) and independent of the Ui’s;
that is,

P
|B
#

(
χ1 ∈ dx1, ..., χJ (B) ∈ dxJ (B)

)
= (α/δB)J (B)Π

J (B)
i=1 (xi/δB)−α−1dxi I (xi ≥ δB) .

Then, we have that

P|B
(
X̄ |B∞ ∈ ·

)
= P

|B
#

(
X̄ |B∞ ∈ · | X̄ |B∞ ∈ B

)
. (4.2)
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Moreover, note that

P
|B
#

(
X̄ |B∞ ∈ B

)
= δ
−J (B)(α+2)
B CJ (B)(B) > 0. (4.3)

In view of (4.2) and (4.3) one can say, at least qualitatively, that the most
likely way in which the event X̄n ∈ B is seen to occur is by means of J (B) i.i.d.
jumps which are suitably Pareto distributed and occurring uniformly throughout
the time interval [0, 1].

We now are ready to provide the corresponding conditional limit theorem
for the two-sided case, building on Theorem 3.4. The proof is again immediate,
using the definition of weak convergence.

Corollary 4.2. Suppose that a subset B of D satisfies the conditions in Theo-
rem 3.4 and that

CJ (B),K(B)(B
◦) = CJ (B),K(B)(B) = CJ (B),K(B)(B̄) > 0.

Let X̄
|B
n be a process having the conditional law of X̄n given that X̄n ∈ B, then

X̄ |Bn ⇒ X̄ |B∞ ,

in D. Moreover, if P|B (·) is the law of X̄
|B
∞ , then

P|B
(
X̄ |B∞ ∈ ·

)
:=

CJ (B),K(B)(· ∩B)

CJ (B),K(B)(B)
.

A probabilistic description, completely analogous to that given for the one-
sided case, can also be provided in this case. Define δB = d

(
B,D<J (B),K(B)

)
>

0 and introduce a probability measure P
|B
# under which we have the following:

First, U1, ..., UJ (B), V1, ..., VK(B) are i.i.d. U (0, 1); second, χ1, ..., χJ (B) are i.i.d.
Pareto(α, δB), and, finally %1, ..., %K(B) are i.i.d. Pareto(β, δB) random variables
(all of these random variables are mutually independent). Then, write

X̄ |B∞ (t) =

J (B)∑
n=1

χn1[Un,1] (t)−
K(B)∑
n=1

%n1[Vn,1] (t) .

Applying the same reasoning as in the one sided case we have that

P|B
(
X̄ |B∞ ∈ ·

)
= P

|B
#

(
X̄ |B∞ ∈ · | X̄ |B∞ ∈ B

)
and

P
|B
#

(
X̄ |B∞ ∈ B

)
= δ
−J (B)(α+2)−K(B)(β+2)
B CJ (B),K(B)(B) > 0.

We note that these results also hold for random walks, and thus is a sig-
nificant extension of Theorem 3.1 in Durrett (1980), where it is assumed that
α > 2 and B = {X̄n (1) ≥ a}.
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4.3 Large Deviation Principle

In this section, we show that X̄n satisfies a weak large deviation principle with
speed log n, and a rate function which is piece-wise linear in the number of
discontinuities. More specifically, define

I(ξ) ,

{
(α− 1)D+(ξ) + (β − 1)D−(ξ), if ξ is a step function & ξ(0) = 0;
∞, otherwise.

(4.4)
where D−(ξ) denotes the number of downward jumps in ξ.

Theorem 4.2. The scaled process X̄n satisfies the weak large deviation principle
with rate function I and speed log n, i.e.,

− inf
x∈G

I(x) ≤ lim inf
n→∞

log P(X̄n ∈ G)

log n
(4.5)

for every open set G, and

lim sup
n→∞

log P(X̄n ∈ K)

log n
≤ − inf

x∈K
I(x) (4.6)

for every compact set K.

The proof of Theorem 4.2 is provided in Section 5.3. It is based on The-
orem 3.4, and a reduction of the case of general A to open neighborhoods;
reminiscent of arguments made in the proof of Cramérs theorem Dembo and
Zeitouni (2009).

4.4 Nonexistence of Strong Large Deviation Principle

We conclude the current section by showing that the weak LDP presented in
the previous section is the best one can hope for in our setting, in the sense
that for any Lévy process X with a regularly varying Lévy measure, X̄n cannot
satisfy a strong LDP; i.e., (4.6) in Theorem 4.2 cannot be extended to all closed
sets.

Consider a mapping π : D→ R2
+ that maps paths in D to their largest jump

sizes, i.e.,

π(ξ) ,
(

sup
t∈(0,1]

(
ξ(t)− ξ(t−)

)
, sup
t∈(0,1]

(
ξ(t−)− ξ(t)

))
.

Note that π is continuous, since each coordinate is continuous: for example, if
the first coordinate (the largest upward jump sizes) of π(ξ) and π(ζ) differ by ε
then d(ξ, ζ) ≥ ε/2, which implies that the first coordinate is continuous. Now,
to derive a contradiction, suppose that X̄n satisfies a strong LDP. In particular,
suppose (4.6) in Theorem 4.2 is true for all closed sets rather than just compact
sets. Since π is continuous w.r.t. the J1 metric, π(X̄n) has to satisfy a strong
LDP with rate function I ′(y) = inf{I(ξ) : ξ ∈ D, y = π(x)} by the contraction
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principle, in case I ′ is a rate function. (Since I is not a good rate function, I ′

is not automatically guaranteed to be a rate function per se; see, for example,
Theorem 4.2.1 and the subsequent remarks of Dembo and Zeitouni, 2009.) From
the exact form of I ′, given by

I ′(y1, y2) = (α− 1)I(y1 > 0) + (β − 1)I(y2 > 0),

one can check that I ′ indeed happens to be a rate function. For the sake of
simplicity, suppose that α = β = 2, and ν[x,∞) = ν(−∞,−x] = x−2. Let
Ĵ61
n , 1

nQ
←
n (Γ1)1[U1,1] and K̂61

n , 1
nR
←
n (∆1)1[V1,1] where Q←n (y) , inf{s >

0 : nν[s,∞) < y} = (n/y)
1/2

and R←n (y) , inf{s > 0 : nν(−∞,−s] < y} =

(n/y)
1/2

. The random variables Γ1 and ∆1 are standard exponential, and U1, V1

uniform [0, 1] (see also Section 5 for similar and more general notational conven-
tions). Note that Ȳn , (Ĵ61

n , K̂61
n ) is exponentially equivalent to π(X̄n) if we

couple π(X̄n) and (Ĵ61
n , K̂61

n ), using the representation of X̄n as in (5.4): for any
δ > 0, P

(
|Ȳn − π(X̄n)| > δ

)
≤ P

(
Ȳn 6= π(X̄n)

)
= P

(
Q←n (Γ1) ≤ 1 or R←n (∆1) ≤

1
)
, which decays at an exponential rate. Hence,

log P
(
|Ȳn − π(X̄n)| > δ

)
log n

→ −∞,

as n → ∞, where | · | is the Euclidean distance. As a result, Ȳn should satisfy
the same (strong) LDP as π(X̄n). Now, consider the set A ,

⋃∞
k=2[log k,∞)×

[k−1/2,∞). Then, since [log k,∞)× [k−1/2,∞) ⊆ A for k ≥ 2,

P(Ȳn ∈ A) ≥ P
(
(Ĵ61
n , K̂61

n ) ∈ [log n,∞)× [n−1/2,∞)
)

= P
(
Q←n (Γ1) > n log n,R←n (∆1) > n1/2

)
= P

((
n

Γ1

)1/2

> n log n,

(
n

∆1

)1/2

> n1/2

)

= P

(
Γ1 <

1

n(log n)2

)
P(∆1 < 1)

= (1− e−
1

n(logn)2 )(1− e−1).

Thus,

lim sup
n→∞

P(Ȳn ∈ A) ≥ lim sup
n→∞

log(1− e−
1

n(logn)2 )(1− e−1)

log n

≥ lim sup
n→∞

log 1
n(logn)2 (1− 1

2n(logn)2 )(1− e−1)

log n

= −1.

(4.7)

On the other hand, since A ⊆ (0,∞)× (0,∞),

− inf
(y1,y2)∈A

I ′(y1, y2) = −2. (4.8)
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Noting that A is a closed (but not compact) set, we arrive at a contradiction to
the large deviation upper bound for Ȳn. This, in turn, proves that X̄n cannot
satisfy a full LDP.

5 Proofs

Section 5.1, Section 5.2, and Section 5.3 provide proofs of the results in Section 2,
Section 3, and Section 4, respectively.

5.1 Proofs of Section 2

Recall that Fδ = {x ∈ S : d(x, F ) ≤ δ} and G−δ = ((Gc)δ)
c.

Proof of Lemma 2.1. Let G be an open set such that G ∩ S0 is bounded away
from C. For a given δ > 0, due to the assumed asymptotic equivalence, P(Xn ∈
G−δ, d(Xn, Yn) ≥ δ) = o(εn). Therefore,

lim inf
n→∞

ε−1
n P(Yn ∈ G)

≥ lim inf
n→∞

ε−1
n P

(
Xn ∈ G−δ, d(Xn, Yn) < δ

)
= lim inf

n→∞
ε−1
n

{
P
(
Xn ∈ G−δ

)
−P

(
Xn ∈ G−δ, d(Xn, Yn) ≥ δ

)}
= lim inf

n→∞
ε−1
n P

(
Xn ∈ G−δ

)
(5.1)

Pick r > 0 such that G−δ ∩ S0 ∩Cr = 0 and note that G−δ ∩Crc is an open set
bounded away from C. Then,

lim inf
n→∞

ε−1
n P(Xn ∈ G−δ) = lim inf

n→∞
ε−1
n P(Xn ∈ G−δ ∩ S0)

= lim inf
n→∞

ε−1
n P(Xn ∈ G−δ ∩ S0 ∩ Crc)

= lim inf
n→∞

ε−1
n P(Xn ∈ G−δ ∩ Crc) ≥ µ(G−δ ∩ Crc)

= µ(G−δ ∩ Crc ∩ S0) = µ(G−δ ∩ S0) = µ(G−δ).

Since G is an open set, G =
⋃
δ>0G

−δ. Due to the continuity of measures,

limδ→0 µ(G−δ) = µ(G), and hence, we arrive at the lower bound

lim inf
n→∞

ε−1
n P(Yn ∈ G) ≥ µ(G)

by taking δ → 0.
Now, turning to the upper bound, consider a closed set F such that Fδ ∩ S0

is bounded away from C. Given a δ > 0, by the equivalence assumption, P(Yn ∈
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F, d(Xn, Yn) ≥ δ) = o(εn). Therefore,

lim sup
n→∞

ε−1
n P(Yn ∈ F )

= lim sup
n→∞

ε−1
n

{
P (Yn ∈ F, d(Xn, Yn) < δ)

+ P (Yn ∈ F, d(Xn, Yn) ≥ δ)
}

= lim sup
n→∞

ε−1
n P (Xn ∈ Fδ) = lim sup

n→∞
ε−1
n P(Xn ∈ Fδ ∩ S0)

≤ lim sup
n→∞

ε−1
n P(Xn ∈ Fδ ∩ S0 ) ≤ µ

(
Fδ ∩ S0

)
= µ

(
Fδ ∩ S0 ∩ S0

)
≤ µ

(
F̄δ ∩ S0

)
= µ(F̄δ) = µ(Fδ).

(5.2)

Note that {Fδ} is a decreasing sequence of sets, F =
⋂
δ>0 Fδ (since F is closed),

and µ ∈M(S\C) (and hence µ is a finite measure on S\Cr for some r > 0 such
that Fδ ⊆ S \ Cr for some δ > 0). Due to the continuity (from above) of finite
measures, limδ→0 µ(Fδ) = µ(F ). Therefore, we arrive at the upper bound

lim sup
n→∞

ε−1
n P(Xn ∈ F ) ≤ µ(F )

by taking δ → 0.

For a measure µ on a measurable space S, denote the restriction of µ to a
subspace O ⊆ S with µ|O.

Proof of Lemma 2.2. We provide a proof for d = 2 which suffices for the appli-
cation in this article. The extension to general d is straightforward, and hence,
omitted. In view of the Portmanteau theorem for M-convergence—in particular
item (v) of Theorem 2.1 of Lindskog et al. (2014)—it is enough to show that

for all but countably many r > 0, (µ
(1)
n × µ(2)

n )|(S1×S2)\((C1×S2)∪(S1×C2))r (·) con-

verges to (µ(1) × µ(2))|(S1×S2)\((C1×S2)∪(S1×C2))r (·) weakly on (S1 × S2) \
(
(C1 ×

S2)∪ (S1×C2)
)r

, which is equipped with the relative topology as a subspace of
S1 × S2. From the assumptions of the lemma and again by Portmanteau the-

orem for M-convergence, we note that µ
(1)
n |S1\Cr1 converges to µ(1)

|S1\Cr1 weakly

in S1 \ Cr1, and µ
(2)
n |S2\Cr2 converges to µ(2)

|S2\Cr2 weakly in S2 \ Cr2 for all but

countably many r > 0. For such r’s, µ
(1)
n |S1\Cr1 × µ

(2)
n |S2\Cr2 converges weakly to

µ(1)
|S1\Cr1×µ

(2)
|S2\Cr2 in

(
S1\Cr1

)
×
(
S2\Cr2

)
. Noting that (S1×S2)\

(
(C1×S2)∪

(S1×C2)
)r

coincides with
(
S1 \Cr1

)
×
(
S2 \Cr2

)
, and µ(1)

|S1\Cr1 ×µ
(2)
|S2\Cr2 and

µ
(1)
n |S1\C1

× µ(2)
n |S2\C2

coincide with (µ(1) × µ(2))|(S1×S2)\((C1×S2)∪(S1×C2))r and

(µ
(1)
n ×µ(2)

n )|(S1×S2)\((C1×S2)∪(S1×C2))r , respectively, we reach the conclusion.

Proof of Lemma 2.3. Starting with the upper bound, suppose that F is a closed
set bounded away from

⋂m
i=0 C(i). From the assumption, there exist r0, . . . , rm
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such that F ⊆
⋃m
i=0(S \ C(i)ri), and hence,

lim sup
n→∞

P(Xn ∈ F )

εn(0)
≤ lim sup

n→∞

m∑
i=0

P
(
Xn ∈ F ∩ (S \ C(i)ri)

)
εn(i)

εn(i)

εn(0)

≤ lim sup
n→∞

m∑
i=0

P(Xn ∈ F \ C(i)ri)

εn(i)

εn(i)

εn(0)

= lim sup
n→∞

P(Xn ∈ F \ C(0)r0)

εn(0)

≤ µ(0)(F \ C(0)r0) ≤ µ(0)(F )

Turning to the lower bound, if G is an open set bounded away from
⋂m
i=0 C(i),

lim inf
n→∞

P(Xn ∈ G)

εn(0)
≥ lim inf

n→∞

P(Xn ∈ G \ C(0)r)

εn(0)
≥ µ(0)(G \ C(0)r).

Taking r → 0 yields the lower bound.

Proof of Lemma 2.4. Suppose that µn → µ in M(S \ C), and µ(Dh \ Cr) = 0
and µ(∂S0 \ Cr) = 0 for each r > 0. Note that ∂h−1(A′) ⊆ S \ Cr for some
r > 0 due to the assumption, and ∂h−1(A′) ⊆ h−1(∂A′)∪Dh ∪ ∂S0. Therefore,
µ(∂h−1(A′)) ≤ µ◦h−1(∂A′)+µ(Dh \Cr)+µ(∂S0 \Cr) = 0. Applying Theorem
2.1 (iv) of Lindskog et al. (2014) for h−1(A′), we conclude that µn(h−1(A′))→
µ(h−1(A′)). Again, by Theorem 2.1 (iv) of Lindskog et al. (2014), this means

that µn ◦ h−1 → µ ◦ h−1 in M(S′ \ C′), and hence, ĥ is continuous at µ.

Proof of Lemma 2.6. The continuity of h is well known; see, for example, Whitt
(1980). For the second claim, it is enough to prove that for each j and k,
h−1(A) ⊆ D × D is bounded away from Dj × Dk whenever A ⊆ D is bounded
away from Dj,k. Given j and k, let A ⊆ D be bounded away from Dj,k. To
prove that h−1(A) is bounded away from Dj × Dk by contradiction, suppose
that it is not. Then, for any given ε > 0, one can find ξ ∈ D and ζ ∈ D such
that d(ξ,Dj) < ε/2, d(ζ,Dk) < ε/2, and ξ − ζ ∈ A. Since a time-change of a
step function doesn’t change the number of jumps and jump-sizes, there exist
ξ′ ∈ Dj and ζ ′ ∈ Dk such that ‖ξ− ξ′‖∞ < ε/2 and ‖ζ− ζ ′‖∞ < ε/2. Therefore,
d(ξ− ζ, ξ′− ζ ′) ≤ ‖(ξ− ζ)− (ξ′− ζ ′)‖∞ ≤ ‖ξ− ξ′‖∞+ ‖ζ − ζ ′‖∞ < ε. From this
along with the property d(ξ′− ζ ′,Dj,k) = 0, we conclude that d(ξ− ζ,Dj,k) < ε.
Taking ε → 0, we arrive at d(A,Dj × Dk) = 0 which is contradictory to the
assumption.
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Proof of Lemma 2.7. From (i) and the inclusion-exclusion formula, µn(
⋃m
i=1Ai)→

µ(
⋃m
i=1Ai) as n → ∞ for any finite m if Ai ∈ Ap is bounded away from C for

i = 1, . . . ,m. If G is open and bounded away from C, there is a sequence of sets
Ai, i ≥ 1 in Ap such that G =

⋃∞
i=1Ai; note that since G is bounded away from

C, Ai’s are also bounded away from C. For any ε > 0, one can find Mε such
that µ(

⋃Mε

i=1Ai) ≥ µ(G)− ε, and hence,

lim inf
n→∞

µn(G) ≥ lim inf
n→∞

µn(

Mε⋃
i=1

Ai) = µ(

Mε⋃
i=1

Ai) ≥ µ(G)− ε.

Taking ε→ 0, we arrive at the lower bound (2.2). Turning to the upper bound,
given a closed set F , we pick A ∈ Ap bounded away from C such that F ⊆ A◦.
Then,

µ(A)− lim sup
n→∞

µn(F ) = lim
n→∞

µn(A) + lim inf
n→∞

(−µn(F ))

= lim inf
n→∞

(µn(A)− µn(F )) = lim inf
n→∞

µn(A \ F )

≥ lim inf
n→∞

µn(A◦ \ F ) ≥ µ(A◦ \ F )

= µ(A)− µ(F ).

Note that µ(A) <∞ since A is bounded away from C, which together with the
above inequality establishes the upper bound (2.2).

5.2 Proofs of Section 3

This section provides the proofs for the limit theorems (Theorem 3.1, Theo-
rem 3.3) presented in Section 3. The proof of Theorem 3.1 is based on

1. The asymptotic equivalence between the target object X̄n and the process
obtained by keeping its j largest jumps, which will be denoted as J6j

n :
Proposition 5.1 and Proposition 5.2 prove such asymptotic equivalences.
Two technical lemmas (Lemma 5.1 and Lemma 5.2) play key roles in
Proposition 5.2.

2. M-convergence of J6j
n : Lemma 5.3 identifies the convergence of jump size

sequences, and Proposition 5.3 deduces the convergence of J6j
n from the

convergence of the jump size sequences via the mapping theorem estab-
lished in Section 2.

For Theorem 3.3, we first establish a general result (Theorem 5.1) for the M-
convergence of multiple Lévy processes in the associated product space using
Lemma 2.2 and 2.3. We then apply Lemma 2.6 to prove Theorem 3.3.

Recall that Xn(t) , X(nt) is a scaled process of X, where X is a Lévy
process with a Lévy measure ν supported on (0,∞). Also recall that Xn has
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Itô representation

Xn(s) = nsa+B(ns) +

∫
|x|≤1

x[N([0, ns]× dx)− nsν(dx)] (5.3)

+

∫
|x|>1

xN([0, ns]× dx),

where N is the Poisson random measure with mean measure Leb×ν on [0, n]×
(0,∞) and Leb denotes the Lebesgue measure. It is easy to see that

Jn(s) ,
Ñn∑
l=1

Q←n (Γl)1[Ul,1](s)
D
=

∫
|x|>1

xN([0, ns]× dx),

where Γl = E1 +E2 + ...+El; Ei’s are i.i.d. and standard exponential random
variables; Ul’s are i.i.d. and uniform variables in [0, 1]; Ñn = Nn

(
[0, 1]× [1,∞)

)
;

Nn =
∑∞
l=1 δ(Ul,Q←n (Γl)), where δ(x,y) is the Dirac measure concentrated on

(x, y); Qn(x) , nν[x,∞), Q←n (y) , inf{s > 0 : nν[s,∞) < y}. Note that
Ñn is the number of Γl’s such that Γl ≤ nν+

1 , where ν+
1 , ν[1,∞), and hence,

Ñn ∼ Poisson(nν+
1 ). Throughout the rest of this section, we use the following

representation for the centered and scaled process X̄n , 1
nXn:

X̄n(s)
D
=

1

n
Jn(s) +

1

n
B(ns) (5.4)

+
1

n

∫
|x|≤1

x[N([0, ns]× dx)− nsν(dx)]− (µ+
1 ν

+
1 )s.

Proof of Theorem 3.1. We decompose X̄n into a centered compound Poisson
process J̄n, a centered Lévy process with small jumps and continuous increments
Ȳn, and a residual process that arises due to centering Z̄n. After that, we will
show that the compound Poisson process determines the limit. More specifically,
consider the following decomposition:

X̄n(s)
D
= Ȳn(s) + J̄n(s) + Z̄n(s),

Ȳn(s) ,
1

n
B(ns) +

1

n

∫
|x|≤1

x[N([0, ns]× dx)− nsν(dx)],

J̄n(s) ,
1

n

Ñn∑
l=1

(Q←n (Γl)− µ+
1 )1[Ul,1](s),

Z̄n(s) ,
1

n

Ñn∑
l=1

µ+
1 1[Ul,1](s)− µ+

1 ν
+
1 s,

(5.5)

where µ+
1 , 1

ν+
1

∫
[1,∞)

xν(dx). Let Ĵ6j
n , 1

n

∑j
l=1Q

←
n (Γl)1[Ul,1] be, roughly

speaking, the process obtained by just keeping the j largest (un-centered) jumps
of J̄n. In view of Corollary 2.1 and Proposition 5.3, it suffices to show that
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X̄n and Ĵ6j
n are asymptotically equivalent. Proposition 5.1 along with Propo-

sition 5.2 prove the desired asymptotic equivalence, and hence, conclude the
proof of the Theorem 3.1.

Proposition 5.1. Let X̄n and J̄n be as in the proof of Theorem 3.1. Then, X̄n

and J̄n are asymptotically equivalent w.r.t.
(
nν[n,∞)

)j
for any j ≥ 0.

Proof. In view of the decomposition (5.5), we are done if we show that P(‖Ȳn‖ >
δ) = o

(
(nν[n,∞))−j

)
and P(‖Z̄n‖ > δ) = o

(
(nν[n,∞))−j

)
. For the tail prob-

ability of ‖Ȳn‖,

P

[
sup
t∈[0,1]

|Ȳn(t)| > δ

]
≤ P

[
sup
t∈[0,n]

∣∣B(t)
∣∣ > nδ/2

]

+ P

[
sup
t∈[0,n]

∣∣∣∣∣
∫
|x|≤1

x[N((0, t]× dx)− tν(dx)]

∣∣∣∣∣ > nδ/2

]
.

We have an explicit expression for the first term by the reflection principle,
and in particular, it decays at a geometric rate w.r.t. n. For the second term,
let Y ′(t) ,

∫
|x|≤1

x[N((0, t] × dx) − tν(dx)]. Using Etemadi’s bound for Lévy

processes (see Lemma A.4), we obtain

P

[
sup
t∈[0,n]

∣∣∣∣∣
∫
|x|≤1

x[N([0, t]× dx)− tν(dx)]

∣∣∣∣∣ > nδ/2

]
≤ 3 sup

t∈[0,n]

P

[
|Y ′(t)| > nδ/6

]
≤ 3 sup

t∈[0,n]

{
P

[
|Y ′(btc)| > nδ/12

]
+ P

[
|Y ′(t)− Y ′(btc)| > nδ/12

]}
≤ 3 sup

t∈[0,n]

P

[
|Y ′(btc)| > nδ/12

]
+ 3 sup

t∈[0,n]

P

[
|Y ′(t)− Y ′(btc)| > nδ/12

]
= 3 sup

1≤k≤n
P

[
|Y ′(k)| > nδ/12

]
+ 3 sup

t∈[0,1]

P

[
|Y ′(t)| > nδ/12

]

≤ 3 sup
1≤k≤n

P

[∣∣∣∣ k∑
i=1

{Y ′(i)− Y ′(i− 1)}
∣∣∣∣ > nδ/12

]
+ 3P

[
sup
t∈[0,1]

|Y ′(t)|m > (nδ/12)m
]
.

Since Y ′(i)−Y ′(i−1) are i.i.d. with Y ′(i)−Y ′(i−1)
D
= Y ′(1) =

∫
|x|≤1

x[N((0, 1]×
dx)− ν(dx)] and Y ′(1) has exponential moments, the first term decreases at a
geometric rate w.r.t. n due to the Chernoff bound; on the other hand, since Y ′(t)

is a martingale, the second term is bounded by 3 E|Y ′(1)|m
nm(δ/12)m for any m by Doob’s

submartingale maximal inequality. Therefore, by choosing m large enough, this
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term can be made negligible. For the tail probability of ‖Z̄n‖, note that Z̄n is a
mean zero Lévy process with the same distribution as µ+

1 (N(ns)/n−ν+
1 s), where

N is the Poisson process with rate ν+
1 . Therefore, again from the continuous-

time version of Etemadi’s bound, we see that P(‖Z̄n‖ > δ) decays at a geometric
rate w.r.t. n for any δ > 0.

Proposition 5.2. For each j ≥ 0, let J̄n and Ĵ6j
n be defined as in the proof of

Theorem 3.1. Then, J̄n and Ĵ6j
n are asymptotically equivalent w.r.t.

(
nν[n,∞)

)j
.

Proof. With the convention that the summation is 0 in case the superscript is
strictly smaller than the subscript, consider the following decomposition of J̄n:

Ĵ6j
n ,

1

n

j∑
l=1

Q←n (Γl)1[Ul,1], J̄>jn ,
1

n

Ñn∑
l=j+1

(Q←n (Γl)− µ+
1 )1[Ul,1],

J̌6j
n ,

1

n

j∑
l=1

−µ+
1 1[Ul,1], R̄n ,

1

n
I(Ñn < j)

j∑
l=Ñn+1

(Q←n (Γl)− µ+
1 )1[Ul,1],

so that
J̄n = Ĵ6j

n + J̌6j
n + J̄>jn − R̄n.

Note that P(‖J̌6j
n ‖ ≥ δ) = 0 for sufficiently large n since ‖J̌6j

n ‖ = jµ1/n. On
the other hand, P(‖R̄n‖ ≥ δ) decays at a geometric rate since {‖R̄n‖ ≥ δ} ⊆
{Ñn < j} and P(Ñn < j) decays at a geometric rate. Since P(‖J̄>jn ‖ ≥ δ) ≤
P(‖J̄>jn ‖ ≥ δ,Q←n (Γj) ≥ nγ) + P(‖J̄>jn ‖ ≥ δ,Q←n (Γj) ≤ nγ), Lemma 5.1 and
Lemma 5.2 given below imply P(‖J̄>jn ‖ ≥ δ) = o

(
(nν[n,∞))j

)
by choosing

γ small enough. Therefore, Ĵ6j
n and J̄n are asymptotically equivalent w.r.t.

(nν[n,∞))j .

Define a measure µ
(j)
α on R∞↓+ by

µ(j)
α (dx1, dx2, · · · ) ,

j∏
i=1

να(dxi)I[x1≥x2≥···≥xj>0]

∞∏
i=j+1

δ0(dxi),

where να(x,∞) = x−α, and δ0 is the Dirac measure concentrated at 0.

Proposition 5.3. For each j ≥ 0,(
nν[n,∞)

)−j
P(Ĵ6j

n ∈ ·)→ Cj(·)

in M
(
D \ D<j

)
as n→∞.

Proof. Noting that (µ
(j)
α ×Leb)◦T−1

j = Cj and P(Ĵ6j
n ∈ ·) = P

((
(Q←n (Γl)/n, l ≥

1), (Ul, l ≥ 1)
)
∈ T−1

j (·)
)
, Lemma 5.3 and Corollary 2.2 prove the proposition.
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Lemma 5.1. For any fixed γ > 0, δ > 0,and j ≥ 0,

P
{
‖J̄>jn ‖ ≥ δ,Q←n (Γj) ≥ nγ

}
= o

(
(nν[n,∞))j

)
. (5.6)

Proof. (Throughout the proof of this lemma, we use µ1 and ν1 in place of µ+
1

and ν+
1 respectively.) We start with the following decomposition of J̄>jn : for

any fixed λ ∈
(

0, δ
3ν1µ1

)
,

J̄>jn =
1

n

Ñn∑
l=j+1

(Q←n (Γl)− µ1)1[U1,1]

= J̃ [j+1,nν1(1+λ)]
n − J̃ [Ñn+1,nν1(1+λ)]

n I(Ñn < nν1(1 + λ))

+ J̃ [nν1(1+λ)+1,Ñn]
n I(Ñn > nν1(1 + λ)),

where

J̃ [a,b]
n ,

1

n

bbc∑
l=dae

(Q←n (Γl)− µ1)1[Ul,1].

Therefore,

P
{
‖J̄>jn ‖ ≥ δ,Q←n (Γj) ≥ nγ

}
≤ P

(∥∥∥J̃ [j+1,nν1(1+λ)]
n

∥∥∥ ≥ δ/3, Q←n (Γj) ≥ nγ
)

+ P
(∥∥∥J̃ [Ñn+1,nν1(1+λ)]

n

∥∥∥ ≥ δ/3)+ P
(
Ñn > nν1(1 + λ)

)
= (i) + (ii) + (iii).

Noting that
∥∥∥J̃ [Ñn+1,nν1(1+λ)]

n

∥∥∥ ≤ (ν1(1 + λ) − Ñn/n)µ1 — recall that Ñn is

defined to be the number of l’s such that Q←n (Γl) ≥ 1, and hence, 0 ≤ Q←n (Γl) <
1 for l > Ñn — we see that (ii) is bounded by

P((ν1(1 + λ)− Ñn/n)µ1 ≥ δ/3) = P

(
Ñn
nν1
≤ 1 + λ− δ

3ν1µ1

)
,

which decays at a geometric rate w.r.t. n since Ñn is Poisson with rate nν1. For
the same reason, (iii) decays at a geometric rate w.r.t. n. We are done if we
prove that (i) is o

(
(nν[n,∞))j

)
. Note that Q←n (Γj) ≥ nγ implies Qn(nγ) ≥ Γj ,

and hence,

(1+λ)nν1∑
l=j+1

(
Q←n (Γl − Γj +Qn(nγ))− µ1

)
1[Ul,1]

≤
(1+λ)nν1∑
l=j+1

(
Q←n (Γl)− µ1

)
1[Ul,1]

≤
(1+λ)nν1∑
l=j+1

(
Q←n (Γl − Γj)− µ1

)
1[Ul,1].
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Therefore, if we define

An , {Q←n (Γj) ≥ nγ} ,

B′n ,

 sup
t∈[0,1]

(1+λ)nν1∑
l=j+1

(
Q←n (Γl − Γj)− µ1

)
1[Ul,1](t) ≥ nδ

 ,

B′′n ,

 inf
t∈[0,1]

(1+λ)nν1∑
l=j+1

(
Q←n (Γl − Γj +Qn(nγ))− µ1

)
1[Ul,1](t) ≤ −nδ

 ,

then we have that

(i) ≤ P(An∩(B′n∪B′′n)) ≤ P(An∩B′n)+P(An∩B′′n) = P(An)(P(B′n)+P(B′′n))

where the last equality is from the independence of An and B′n as well as of
An and B′′n (which is, in turn, due to the independence of Γj and Γl − Γj).

From Lemma 5.4 (c) and Proposition 5.3, P(An) = P(Ĵ6j
n ∈ (D \D<j)−γ/2) =

O
(
(nν[n,∞))j

)
, and hence, it suffices to show that the probabilities of the

complements of B′n and B′′n converge to 1—i.e., for any fixed γ > 0,

P

 sup
t∈[0,1]

(1+λ)nν1∑
l=j+1

(
Q←n (Γl − Γj)− µ1

)
1[Ul,1](t) < nδ

→ 1, (5.7)

and

P

 inf
t∈[0,1]

(1+λ)nν1∑
l=j+1

(
Q←n (Γl − Γj +Qn(nγ))− µ1

)
1[Ul,1](t) > −nδ

→ 1. (5.8)

Starting with (5.7)

P

 sup
t∈[0,1]

(1+λ)nν1∑
l=j+1

(
Q←n (Γl − Γj)− µ1

)
1[Ul,1](t) < nδ


= P

 sup
t∈[0,1]

(1+λ)nν1−j∑
l=1

(
Q←n (Γl)− µ1

)
1[Ul,1](t) < nδ


≥ P

 sup
t∈[0,1]

(1+λ)nν1−j∑
l=1

(
Q←n (Γl)− µ1

)
1[Ul,1](t) < nδ, Ñn ≤ (1 + λ)nν1 − j


≥ P

 sup
t∈[0,1]

Ñn∑
l=1

(
Q←n (Γl)− µ1

)
1[Ul,1](t) < nδ, Ñn ≤ (1 + λ)nν1 − j


≥ P

 sup
t∈[0,1]

Ñn∑
l=1

(
Q←n (Γl)− µ1

)
1[Ul,1](t) < nδ)

−P
{
Ñn > (1 + λ)nν1 − j

}
.
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The second inequality is due to the definition of Q←n and that µ1 ≥ 1 (and hence
Q←n (Γl) − µ1 ≤ 0 on l ≥ Ñn), while the last inequality comes from the generic
inequality P(A ∩ B) ≥ P(A) − P(Bc). The second probability converges to 0
since Ñ is Poisson with rate nν1. Moving on to the first probability in the last

expression, observe that
∑Ñn
l=1

(
Q←n (Γl)−µ1

)
1[Ul,1](·) has the same distribution

as the compound Poisson process
∑J(n·)
i=1 (Di−µ1), where J is a Poisson process

with rate ν1 and Di’s are i.i.d. random variables with the distribution ν con-
ditioned (and normalized) on [1,∞), i.e., P{Di ≥ s} = 1 ∧

(
ν[s,∞)/ν[1,∞)

)
.

Using this, we obtain

P

 sup
t∈[0,1]

Ñn∑
l=1

(
Q←n (Γl)− µ1

)
1[Ul,1](t) < nδ


= P

{
sup

1≤m≤J(n)

m∑
l=1

(Dl − µ1) < nδ

}
(5.9)

≥ P

{
sup

1≤m≤2nν1

m∑
l=1

(Dl − µ1) < nδ, J(n) ≤ 2nν1

}

≥ P

{
sup

1≤m≤2nν1

m∑
l=1

(Dl − µ1) < nδ

}
−P

{
J(n) > 2nν1

}
The second probability vanishes at a geometric rate w.r.t. n because J(n) is
Poisson with rate nν1. The first term can be investigated by the generalized
Kolmogorov inequality, cf. Shneer and Wachtel (2009) (given as Result A.1 in
Appendix A):

P

(
max

1≤m≤2nν1

m∑
l=1

(Dl − µ1) ≥ nδ/2

)
≤ C 2nν1V (nδ/2)

(nδ/2)2
,

where V (x) = E[(Dl − µ1)2;µ1 − x ≤ Dl ≤ µ1 + x] ≤ µ2
1 + E[D2

l ;Dl ≤ µ1 + x].
Note that

E[D2
l ;Dl ≤ µ1 + x] =

∫ 1

0

2sds+

∫ µ1+x

1

2s
ν[s,∞)

ν[1,∞)
ds

= 1 +
2

ν1
(µ1 + x)2−αL(µ1 + x),

for some slowly varying L. Hence,

P

(
max

1≤m≤2nν1

m∑
l=1

(Dl − µ1) < nδ

)
≥ 1−P

(
max

1≤m≤2nν1

m∑
l=1

(Dl − µ1) ≥ nδ/2

)
→ 1,

as n→∞.
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Now, turning to (5.8), let γn , Qn(nγ).

P

 inf
t∈[0,1]

(1+λ)nν1∑
l=j+1

(
Q←n (Γl − Γj +Qn(nγ))− µ1

)
1[Ul,1](t) > −nδ


= P

 inf
t∈[0,1]

(1+λ)nν1−j∑
l=1

(
Q←n (Γl + γn)− µ1

)
1[Ul,1](t) > −nδ


≥ P

 inf
t∈[0,1]

(1+λ)nν1−j∑
l=1

(
Q←n (Γl + γn)− µ1

)
1[Ul,1](t) > −nδ,E0 ≥ γn


≥ P

 inf
t∈[0,1]

(1+λ)nν1−j∑
l=1

(
Q←n (Γl + E0)− µ1

)
1[Ul,1](t) > −nδ,E0 ≥ γn


= P

 inf
t∈[0,1]

(1+λ)nν1−j+1∑
l=2

(
Q←n (Γl)− µ1

)
1[Ul,1](t) > −nδ,Γ1 ≥ γn


≥ P

 inf
t∈[0,1]

(1+λ)nν1−j+1∑
l=2

(
Q←n (Γl)− µ1

)
1[Ul,1](t) > −nδ

−P {Γ1 < γn}

= (A)− (B),

where E0 is a standard exponential random variable. (Recall that Γl , E1 +

E2 + · · · + El, and hence (Γl + E0, Ul)
D
= (Γl+1, Ul)

D
= (Γl+1, Ul+1).) Since

(B) = P {Γ1 < γn} → 0 (recall that γn = nν[nγ,∞) and ν is regularly varying
with index −α < −1), we focus on proving that the first term (A) converges to
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1:

(A) = P

{
inf

t∈[0,1]

(1+λ)nν1−j+1∑
l=2

(
Q←n (Γl)− µ1

)
1[Ul,1](t) > −nδ

}

≥ P

{
inf

t∈[0,1]

(1+λ)nν1−j+1∑
l=2

(
Q←n (Γl)− µ1

)
1[Ul,1](t) > −nδ,

Ñn ≤ (1 + λ)nν1 − j + 1

}

≥ P

{
inf

t∈[0,1]

Ñn∑
l=1

(
Q←n (Γl)− µ1

)
1[Ul,1](t) ≥ −nδ/3,

inf
t∈[0,1]

−
(
Q←n (Γ1)− µ1

)
1[U1,1](t) > −nδ/3,

inf
t∈[0,1]

(1+λ)nν1−j+1∑
l=Ñn+1

(
Q←n (Γl)− µ1

)
1[Ul,1](t) ≥ −nδ/3,

Ñn ≤ (1 + λ)nν1 − j + 1

}

≥ P

{
inf

t∈[0,1]

Ñn∑
l=1

(
Q←n (Γl)− µ1

)
1[Ul,1](t) ≥ −nδ/3,

}
+ P

{
Q←n (Γ1)− µ1 < nδ/3

}
+ P

{
inf

t∈[0,1]

(1+λ)nν1−j+1∑
l=Ñn+1

(
Q←n (Γl)− µ1

)
1[Ul,1](t) ≥ −nδ/3

}

+ P
{
Ñn ≤ (1 + λ)nν1 − j + 1

}
− 3

= (AI) + (AII) + (AIII) + (AIV)− 3.

The third inequality comes from applying the generic inequality P(A ∩ B) ≥
P(A) + P(B)− 1 three times. Since Ñn is Poisson with rate nν1,

(AIV) = P
{
Ñn ≤ (1 + λ)nν1 − j + 1

}
= P

{
Ñn
nν1
≤ 1 + λ− j − 1

nν1

}
→ 1.
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For the first term (AI),

(AI) = P

{
inf

t∈[0,1]

Ñn∑
l=1

(
Q←n (Γl)− µ1

)
1[Ul,1](t) ≥ −nδ/3

}

= P

{
sup
t∈[0,1]

Ñn∑
l=1

(
µ1 −Q←n (Γl)

)
1[Ul,1](t) ≤ nδ/3

}

= P

{
sup

1≤m≤J(n)

m∑
l=1

(µ1 −Dl) ≤ nδ/3

}
,

where Di is defined as before. Note that this is of exactly same form as (5.9)
except for the sign of Dl, and hence, we can proceed exactly the same way using
the generalized Kolmogorov inequality to prove that this quantity converges to
1 — recall that the formula only involves the square of the increments, and
hence, the change of the sign has no effect. For the second term (AII),

(AII) ≥ P
{
Q←n (Γ1) ≤ nδ/3

}
≥ P

{
Γ1 > Qn(nδ/3)

}
→ 1,

since Qn(nδ/3)→ 0. For the third term (AIII),

(AIII) = P

{
inf

t∈[0,1]

(1+λ)nν1−j+1∑
l=Ñn+1

(
Q←n (Γl)− µ1

)
1[Ul,1](t) ≥ −nδ/3

}

≥ P

{
inf

t∈[0,1]

(1+λ)nν1−j+1∑
l=Ñn+1

(1− µ1)1[Ul,1](t) ≥ −nδ/3

}

≥ P

{
(1+λ)nν1−j+1∑

l=Ñn+1

(µ1 − 1) ≤ nδ/3

}

≥ P

{
(µ1 − 1)

(
(1 + λ)nν1 − j − Ñn + 1

)
≤ nδ/3

}

≥ P

{
1 + λ− δ

3ν1(µ1 − 1)
≤ Ñn
nν1

+
j − 1

nν1

}
→ 1,

since λ < δ
3ν1(µ1−1) . This concludes the proof of the lemma.

Lemma 5.2. For any j ≥ 0, δ > 0, and m <∞, there is γ0 > 0 such that

P
{∥∥J̄>jn ∥∥ > δ,Q←n (Γj) ≤ nγ0

}
= o(n−m).

Proof. (Throughout the proof of this lemma, we use µ1 and ν1 in place of
µ+

1 and ν+
1 respectively, for the sake of notational simplicity.) Note first that
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Q←n (Γj) = ∞ if j = 0 and hence the claim of the lemma is trivial. Therefore,
we assume j ≥ 1 throughout the rest of the proof. Since for any λ > 0

P
{∥∥J̄>jn ∥∥ > δ,Q←n (Γj) ≤ nγ

}
≤ P

{∥∥∥∥∥
Ñn∑

l=j+1

(Q←n (Γl)− µ1)1[Ul,1]

∥∥∥∥∥ > nδ,Q←n (Γj) ≤ nγ, (5.10)

Ñn
nν1
∈
[
j

nν1
, 1 + λ

]}

+ P

{
Ñn
nν1

/∈
[
j

nν1
, 1 + λ

]}
,

and P
{
Ñn
nν1

/∈
[
j
nν1

, 1 + λ
]}

decays at a geometric rate w.r.t. n, it suffices to

show that (5.10) is o(n−m) for small enough γ > 0. First, recall that by the
definition of Q←n (·),

Q←n (x) ≥ s ⇐⇒ x ≤ Qn(s),

and
nν(Q←n (x),∞) ≤ x ≤ nν[Q←n (x),∞).

Let L be a random variable conditionally (on Ñn) independent of everything else
and uniformly sampled on {j + 1, j + 2, . . . , Ñn}. Recall that given Ñn and Γj ,
the distribution of {Γj+1,Γj+2, . . . ,ΓÑn} is same as that of the order statistics

of Ñn − j uniform random variables on [Γj , nν[1,∞)]. Let Dl, l ≥ 1, be i.i.d.
random variables whose conditional distribution is the same as the conditional
distribution of Q←n (ΓL) given Ñn and Γj . Then the conditional distribution of∑Ñn
l=j+1(Qn(Γl)−µ1)1[Ul,1] is the same as that of

∑Ñn−j
l=1 (Dl−µ1)1[Ul,1]. There-

fore, the conditional distribution of
∥∥∥∑Ñn

l=j+1(Qn(Γl)− µ1)1[Ul,1]

∥∥∥
∞

is the same

as the corresponding conditional distribution of sup1≤m≤Ñn−j

∣∣∣∑m
l=1(Dl−µ1)

∣∣∣.
To make use of this in the analysis what follows, we make a few observations
on the conditional distribution of Q←n (ΓL) given Γj and Ñn.

(a) The conditional distribution of Q←n (ΓL):
Let q , Q←n (Γj). Since ΓL is uniformly distributed on [Γj , Qn(1)] =
[Γj , nν[1,∞)], the tail probability is

P{Q←n (ΓL) ≥ s|Γj , Ñn} = P{ΓL ≤ Qn(s)|Γj , Ñn}
= P{ΓL ≤ nν[s,∞)|Γj , Ñn}

= P

{
ΓL − Γj

nν[1,∞)− Γj
≤ nν[s,∞)− Γj
nν[1,∞)− Γj

∣∣∣∣Γj , Ñn}
=
nν[s,∞)− Γj
nν[1,∞)− Γj
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for s ∈ [1, q]; since this is non-increasing w.r.t. Γj and nν(q,∞) ≤ Γj ≤
nν[q,∞), we have that

ν[s, q)

ν[1, q)
≤ P{Q←n (ΓL) ≥ s|Γj , Ñn} ≤

ν[s, q]

ν[1, q]
.

(b) Difference in mean between conditional and unconditional distribution:
From (a), we obtain

µ̃n , E[Q←n (ΓL)|Γj , Ñn] ∈
[
1 +

∫ q

1

ν[s, q)

ν[1, q)
ds, 1 +

∫ q

1

ν[s, q]

ν[1, q]
ds

]
,

and hence,

|µ1 − µ̃n| ≤

∣∣∣∣∣ν[1, q)
∫∞

1
ν[s,∞)ds− ν[1,∞)

∫ q
1
ν[s, q)ds

ν[1,∞)ν[1, q)

∣∣∣∣∣
∨

∣∣∣∣∣ν[1, q]
∫∞

1
ν[s,∞)ds− ν[1,∞)

∫ q
1
ν[s, q]ds

ν[1,∞)ν[1, q]

∣∣∣∣∣ .
Since

ν[1, q)
∫∞

1
ν[s,∞)ds− ν[1,∞)

∫ q
1
ν[s, q)ds

ν[1,∞)ν[1, q)

=
ν[q,∞)

ν[1, q)
(q − 1) +

∫∞
q
ν[s,∞)ds

ν[1,∞)
−
ν[q,∞)

∫ q
1
ν[s,∞)ds

ν[1,∞)ν[1, q)
,

and

ν[1, q)
∫∞

1
ν[s,∞)ds− ν[1,∞)

∫ q
1
ν[s, q)ds

ν[1,∞)ν[1, q)

−
ν[1, q]

∫∞
1
ν[s,∞)ds− ν[1,∞)

∫ q
1
ν[s, q]ds

ν[1,∞)ν[1, q]

=
ν{q}

(
(q − 1)ν[1,∞) +

∫∞
q
ν[s,∞)ds+

∫ q
1
ν[s,∞)ds

)
ν[1,∞)(ν[1, q) + ν{q})

,

we see that |µ1−µ̃n| is bounded by a regularly varying function with index
1− α (w.r.t. q) from Karamata’s theorem.

(c) Variance of Q←n (ΓL): Turning to the variance, we observe that, if α ≤ 2,

E[Q←n (ΓL)2|Γj , Ñn]

≤
∫ 1

0

2sds+ 2

∫ q

1

s
ν[s, q]

ν[1, q]
ds

≤ 1 +
2

ν[1, q]

∫ q

1

sν[s,∞)ds = 1 + q2−αL(q)

(5.11)

for some slowly varying function L(·). If α > 2, the variance is bounded
w.r.t. q.
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Now, with (b) and (c) in hand, we can proceed with an explicit bound since all
the randomness is contained in q. Namely, we infer

P

(∥∥∥∥∥
Ñn∑

l=j+1

(Q←n (Γl)− µ1)1[Ul,1]

∥∥∥∥∥
∞

> nδ,Q←n (Γj) ≤ nγ,
Ñn
nν1
∈
[
j

nν1
, 1 + λ

])

= P

(∥∥∥∥∥
Ñn∑

l=j+1

(Q←n (Γl)− µ1)1[Ul,1]

∥∥∥∥∥
∞

> nδ,Γj ≥ Qn(nγ),
Ñn
nν1
∈
[
j

nν1
, 1 + λ

])

= E

P

(∥∥∥∥∥
Ñn∑

l=j+1

(Q←n (Γl)− µ1)1[Ul,1]

∥∥∥∥∥
∞

> nδ

∣∣∣∣∣∣Γj , Ñn
)

; Γj ≥ Qn(nγ),

Ñn
nν1
∈
[
j

nν1
, 1 + λ

] ]

= E

[
P

(
max

1≤m≤Ñn−j

∣∣∣∣∣
m∑
l=1

(Dl − µ1)

∣∣∣∣∣ > nδ

∣∣∣∣∣Γj , Ñn
)

; Γj ≥ Qn(nγ),

Ñn
nν1
∈
[
j

nν1
, 1 + λ

] ]
.

By Etemadi’s bound (Result A.2 in Appendix),

P

(
max

1≤m≤Ñn−j

∣∣∣∣∣
m∑
l=1

(Dl − µ1)

∣∣∣∣∣ ≥ nδ
∣∣∣∣∣Γj , Ñn

)

≤ 3 max
1≤m≤Ñn

P

(∣∣∣∣∣
m∑
l=1

(Dl − µ1)

∣∣∣∣∣ ≥ nδ
∣∣∣∣∣Γj , Ñn

)

≤ 3 max
1≤m≤Ñn

{
P

(
m∑
l=1

(Dl − µ1) ≥ nδ

∣∣∣∣∣Γj , Ñn
)

+ P

(
m∑
l=1

(µ1 −Dl) ≥ nδ

∣∣∣∣∣Γj , Ñn
)}

(5.12)
and as |Dl− µ̃n| is bounded by q, we can apply Prokhorov’s bound (Result A.3
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in Appendix) to get

P

(
m∑
l=1

(µ1 −Dl) ≥ nδ

∣∣∣∣∣Γj , Ñn
)

= P

(
m∑
l=1

(µ̃n −Dl) ≥ nδ −m(µ1 − µ̃n)

∣∣∣∣∣Γj , Ñn
)

≤ P

(
m∑
l=1

(µ̃n −Dl) ≥ nδ − nν1(1 + λ)(µ1 − µ̃n)

∣∣∣∣∣Γj , Ñn
)

≤
(
qn(δ − ν1(1 + λ)(µ1 − µ̃n))

mvar (Q←n (ΓL))

)−n(δ−ν1(1+λ)(µ1−µ̃n))
2q

≤
(

nν1(1 + λ)var (Q←n (ΓL))

qn(δ − ν1(1 + λ)(µ1 − µ̃n))

)n(δ−ν1(1+λ)(µ1−µ̃n))
2q

=


(
ν1(1+λ)(1+q2−αL1(q))
q(δ−ν1(1+λ)q1−αL2(q))

)n(δ−ν1(1+λ)q1−αL2(q))
2q

if α ≤ 2,(
ν1(1+λ)C

q(δ−ν1(1+λ)q1−αL2(q))

)n(δ−ν1(1+λ)q1−αL2(q))
2q

otherwise,

for some C > 0 if m ≤ (1 + λ)nν1. Therefore, there exist constants M and c
such that q ≥M (i.e., Γj ≤ Qn(M)) implies

P

(
m∑
l=1

(µ1 −Dl) ≥ nδ

∣∣∣∣∣Γj
)
≤ c(q1−α∧2)

nδ
8q ,

and since we are conditioning on q = Q←n (Γj) ≤ nγ,

c(q1−α∧2)
nδ
8q ≤ c(q1−α∧2)

δ
8γ .

Hence,

P

(
m∑
l=1

(µ1 −Dl) ≥ nδ

∣∣∣∣∣Γj
)
≤ c

(
Q←n (Γj)

1−α∧2
) δ

8γ .

With the same argument, we also get

P

(
m∑
l=1

(Dl − µ1) ≥ nδ

∣∣∣∣∣Γj
)
≤ c

(
Q←n (Γj)

1−α∧2
) δ

8γ .

Combining (5.12) with the two previous estimates, we obtain

P

(
max

1≤m≤Ñn−j

∣∣∣∣∣
m∑
l=1

(Dl − µ1)

∣∣∣∣∣ ≥ nδ
∣∣∣∣∣Γj , Ñn

)
≤ 6c

(
Q←n (Γj)

1−α∧2
) δ

8γ ,
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on Γj ≥ Qn(nγ), Ñn − j ≤ nν1(1 + λ), and Γj ≤ Qn(M). Now,

E

[
P

(
max

1≤m≤Ñn−j

∣∣∣∣∣
m∑
l=1

(Dl − µ1)

∣∣∣∣∣ > nδ

∣∣∣∣∣Γj , Ñn
)

; Γj ≥ Qn(nγ)

&
Ñn
nν1
∈
[
j

nν1
, 1 + λ

] ]
≤ E

[
P

(
max

1≤m≤Ñn−j

∣∣∣∣∣
m∑
l=1

(Dl − µ1)

∣∣∣∣∣ > nδ

∣∣∣∣∣Γj , Ñn
)

; Γj ≥ Qn(nγ);

Ñn
nν1
∈
[
j

nν1
, 1 + λ

]
; Γj ≤ Qn(M)

]
+ P(Γj > Qn(M))

≤ E
[
6c
(
Q←n (Γj)

1−α∧2
) δ

8γ

]
+ P(Γj > Qn(M))

≤ E
[
6c
(
Q←n (Γj)

1−α∧2
) δ

8γ ;Q←n (Γj) ≥ nβ
]

+ P
(
Q←n (Γj) < nβ

)
+ P

(
Γj > Qn(M)

)
≤ 6c

(
nβ(1−α∧2)

) δ
8γ

+ P
(
Γj > Qn(nβ)

)
+ P

(
Γj > Qn(M)

)
≤ 6c

(
nβ(1−α∧2)

) δ
8γ

+ P
(
Γj > (n1−αβL(n))

)
+ P

(
Γj > Qn(M)

)
,

for any β > 0. If one chooses β so that 1− αβ > 0 (for example, β = 1
2α ), the

second and third terms vanish at a geometric rate w.r.t. n. On the other hand,
we can pick γ small enough compared to δ, so that the first term is decreasing at
an arbitrarily fast polynomial rate. This concludes the proof of the lemma.

Recall that we denote the Lebesgue measure on [0, 1]∞ with Leb and defined

measures µ
(j)
α and µ

(j)
β on R∞↓+ as

µ(j)
α (dx1, dx2, . . .) ,

j∏
i=1

να(dxi)I[x1≥x2≥···≥xj>0]

∞∏
i=j+1

δ0(dxi),

and να(x,∞) = x−α, where δ0 is the Dirac measure concentrated at 0.

Lemma 5.3. For each j ≥ 0,(
nν[n,∞))−jP[((Q←n (Γl)/n, l ≥ 1), (Ul, l ≥ 1)) ∈ ·]→ (µ(j)

α × Leb)(·)

in M
(
(R∞↓+ × [0, 1]∞) \ (H<j × [0, 1]∞)

)
as n→∞.

Proof. We first prove that(
nν[n,∞))−jP[(Q←n (Γl)/n, l ≥ 1) ∈ ·]→ µ(j)

α (·) (5.13)
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in M(R∞↓+ \H<j) as n→∞. To show this, we only need to check that(
nν[n,∞))−jP[(Q←n (Γl)/n, l ≥ 1) ∈ A]→ µ(j)

α (A) (5.14)

for A’s that belong to the convergence-determining classAj ,
{
{z ∈ R∞↓+ : x1 ≤

z1, . . . , xl ≤ zl} : l ≥ j, x1 ≥ . . . ≥ xl > 0
}

. To see that Aj is a convergence-

determining class for M(R∞↓+ \H<j)-convergence, note that A′j ,
{
{z ∈ R∞↓+ :

x1 ≤ z1 < y1, . . . , xl ≤ zl < yl} : l ≥ j, x1, . . . , xl ∈ (0,∞), y1, . . . , yl ∈ (0,∞]
}

satisfies conditions (i), (ii), and (iii) of Lemma 2.7, and hence, is a convergence-
determining class. Now define Aj(i)’s recursively as Aj(i+1) , {B \A : A,B ∈
Aj(i), A ⊆ B} for i ≥ 0, and Aj(0) = A′′j ,

{
{z ∈ R∞↓+ : x1 ≤ z1, . . . , xl ≤ zl} :

l ≥ j, x1, . . . , xl > 0
}

. Since we restrict the set-difference operation between
nested sets, the limit associated with the sets in Aj(i+ 1) is determined by the
sets in Aj(i), and eventually, A′′j . Noting that A′j ⊆

⋃∞
i=0Aj(i), we see that

A′′j is a convergence-determining class. Now, since both P[(Q←n (Γl)/n, l ≥ 1) ∈
·] and µ

(j)
α (·) are supported on R∞↓+ , one can further reduce the convergence

determining class from A′′j to Aj .
To check the desired convergence for the sets in Aj , we first characterize the

limit measure. Let l ≥ j and x1 ≥ · · · ≥ xl > 0. By the change of variables
vi = xαi y

−α
i for i = 1, . . . , j,

µ(j)
α ({z ∈ R∞↓+ : x1 ≤ z1, . . . , xl ≤ zl})

= I(j = l) ·
∫ ∞
xj

· · ·
∫ ∞
x1

I(y1 ≥ · · · ≥ yj)dνα(y1) · · · dνα(yj)

= I(j = l) ·

(
j∏
i=1

xi

)−α
·
∫ 1

0

· · ·
∫ 1

0

I(x−α1 v1 ≤ · · · ≤ x−αj vj)dv1 · · · dvj .

Next, we find a similar representation for the distribution of Γ1, . . . ,Γl. Let
U(1), . . . , U(l−1) be the order statistics of l − 1 iid uniform random variables on
[0, 1]. Recall first that the conditional distribution of (Γ1/Γl, . . . ,Γl−1/Γl) given
Γj does not depend on Γj and coincides with the distribution of (U(1), . . . , U(l−1));
see, for example, Pyke (1965). Suppose that l ≥ j and 0 ≤ y1 ≤ · · · ≤ yl. By
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the change of variables ui = γ−1yivi for i = 1, . . . , l − 1, and γ = ylvl,

P
(
Γ1 ≤ y1, . . . ,Γl ≤ yl

)
= E

[
P
(
Γ1/Γl ≤ y1/Γl, . . . , Γl−1/Γl ≤ yl−1/Γl

∣∣Γl) · I(Γl ≤ yl)]
=

∫ yl

0

P
(
U(1) ≤ y1/γ, . . . , U(l−1) ≤ yl−1/γ

)e−γγl−1

(l − 1)!
dγ

=

∫ yl

0

e−γγl−1

∫ yl−1/γ

0

· · ·
∫ y1/γ

0

I(u1 ≤ · · · ≤ ul−1 ≤ 1)du1 · · · dul−1dγ

=

(
l−1∏
i=1

yi

)∫ yl

0

e−γ
∫ 1

0

· · ·
∫ 1

0

I(y1v1 ≤ · · · ≤ yl−1vl−1 ≤ γ)dv1 · · · dvl−1dγ

=

(
l∏
i=1

yi

)
·
∫ 1

0

· · ·
∫ 1

0

e−ylvlI(y1v1 ≤ · · · ≤ ylvl)dv1 · · · dvl.

Since 0 ≤ Qn(nx1) ≤ . . . ≤ Qn(nxl) for x1 ≥ · · · ≥ xl > 0,

(nν[n,∞))−jP[Q←n (Γ1)/n ≥ x1, . . . , Q
←
n (Γl) ≥ xl]

= (nν[n,∞))−jP[Γ1 ≤ Qn(nx1), . . . ,Γl ≤ Qn(nxl)]

= (nν[n,∞))−j ·

(
l∏
i=1

Qn(nxi)

)

·
∫ 1

0

· · ·
∫ 1

0

e−Qn(nxl)vlI(Qn(nx1)v1 ≤ · · · ≤ Qn(nxl)vl)dv1 · · · dvl

=

(
j∏
i=1

Qn(nxi)

nν[n,∞)

)
·

(
l∏

i=j+1

Qn(nxi)

)

·
∫ 1

0

· · ·
∫ 1

0

e−Qn(nxl)vlI
(
Qn(nxi)

nν[n,∞)
v1 ≤ · · · ≤

Qn(nxi)

nν[n,∞)
vl

)
dv1 · · · dvl.

Note that Qn(nxi) → 0 and Qn(nxi)
nν[n,∞) → x−αi as n → ∞ for each i = 1, . . . , l.

Therefore, by bounded convergence,

(nν[n,∞))−jP[Q←n (Γ1)/n ≥ x1, . . . , Q
←
n (Γl) ≥ xl]

→ I(j = l)

(
j∏
i=1

xi

)−α
·
∫ 1

0

· · ·
∫ 1

0

I(x−α1 v1 ≤ · · · ≤ x−αj vj)dv1 · · · dvj

= µ(j)
α ({z ∈ R∞↓+ : x1 ≤ z1, . . . , xl ≤ zl}),

which concludes the proof of (5.13). The conclusion of the lemma follows from
the independence of (Q←n (Γl)/n, l ≥ 1) and (Ul, l ≥ 1) and Lemma 2.2.

Lemma 5.4. Suppose that x1 ≥ · · · ≥ xj ≥ 0; ui ∈ (0, 1) for i = 1, . . . , j;
y1 ≥ · · · ≥ yk ≥ 0; vi ∈ (0, 1) for i = 1, . . . , k; u1, . . . , uj , v1, . . . , vk are all
distinct.
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(a) For any ε > 0,

{x ∈ G : d(x, y) < (1 + ε)δ implies y ∈ G}
⊆ G−δ

⊆ {x ∈ G : d(x, y) < δ implies y ∈ G}.

Also, (A ∩B)δ ⊆ Aδ ∩Bδ and A−δ ∪B−δ ⊆ (A ∪B)−δ for any A and B.

(b)
∑j
i=1 xi1[ui,1] ∈ (D \ D<j)−δ implies xj ≥ δ.

(c)
∑j
i=1 xi1[ui,1] /∈ (D \ D<j)−δ implies xj ≤ 2δ.

(d)
∑j
i=1 xi1[ui,1] −

∑k
i=1 yi1[vi,1] ∈ (D \ D<j,k)−δ implies xj ≥ δ and yk ≥ δ.

(e) Suppose that ξ ∈ Dj,k. If l < j or m < k, then ξ is bounded away from
Dl,m.

(f) If I(ξ) > (α− 1)j + (β − 1)k, then ξ is bounded away from D<j,k ∪ Dj,k.

Proof. (a) Immediate consequences of the definition.

(b) From (a), we see that
∑j
i=1 xi1[ui,1] ∈ (D \D<j)−δ and

∑j−1
i=1 xi1[ui,1] ∈

D<j implies d
(∑j

i=1 xi1[ui,1],
∑j−1
i=1 xi1[ui,1]

)
≥ δ, which is not possible if xj <

δ.
(c) We prove that for any ε > 0,

∑j
i=1 xi1[ui,1] /∈ (D \ D<j)−δ implies

xj ≤ (2 + ε)δ. To show this, in turn, we work with the contrapositive. Suppose

that xj > (2 + ε)δ. If d(
∑j
i=1 xi1[ui,1], ζ) < (1 + ε/2)δ, by the definition of

the Skorokhod metric, there exists a non-decreasing homeomorphism φ of [0, 1]

onto itself such that ‖
∑j
i=1 xi1[ui,1] − ζ ◦ φ‖∞ < (1 + ε/2)δ. Note that at

each discontinuity point of
∑j
i=1 xi1[yi,1], ζ ◦ φ should also be discontinuous.

Otherwise, the supremum distance between
∑j
i=1 xi1[ui,1] and ζ ◦ φ has to be

greater than (1 + ε/2)δ, since the smallest jump size of
∑j
i=1 xi1[ui,1] is greater

than (2 + ε)δ. Hence, there has to be at least j discontinuities in the path of

ζ; i.e., ζ ∈ D \ D<j . We have shown that d(
∑j
i=1 xi1[ui,1], ζ) < (1 + ε/2)δ

implies ζ ∈ D \D<j , which in turn, along with (a), shows that
∑j
i=1 xi1[ui,1] ∈

(D \ D<j)−δ.
(d) Suppose that

∑j
i=1 xi1[ui,1] −

∑k
i=1 yi1[vi,1] ∈ (D \ D<j,k)−δ. Since∑j−1

i=1 xi1[ui,1] −
∑k
i=1 yi1[vi,1] /∈ D \ D<j,k,

xj ≥ d

(
j∑
i=1

xi1[ui,1] −
k∑
i=1

yi1[vi,1],

j−1∑
i=1

xi1[ui,1] −
k∑
i=1

yi1[vi,1]

)
≥ δ.

Similarly, we get yk ≥ δ.
(e) Let ξ =

∑j
i=1 xi1[ui,1] −

∑k
i=1 yi1[vi,1]. First, we claim that d(ζ, ξ) ≥

xj/2 for any ζ ∈ Dl,m with l < j. Suppose not, i.e., d(ζ, ξ) < xj/2. Then
there exists a non-decreasing homeomorphism φ of [0, 1] onto itself such that

41



‖
∑j
i=1 xi1[ui,1] − ζ ◦ φ‖∞ < xj/2. Note that this implies that at each discon-

tinuity point s of ξ, ζ ◦ φ should also be discontinuous. Otherwise, |ζ ◦ φ(s) −
ξ(s)|+ |ζ ◦ φ(s−)− ξ(s−)| ≥ |ξ(s)− ξ(s−)| ≥ xj , and hence it is contradictory
to the bound on the supremum distance between ξ and ζ ◦ φ. However, this
implies that ζ has j upward jumps and hence, contradictory to the assumption
ζ ∈ Dl,m, proving the claim. Likewise, d(ζ, ξ) ≥ yk/2 for any ξ ∈ Dl,m with
m < k.

(f) Note that in case I(ξ) is finite, D+(ξ) > j or D−(ξ) > k. In this case,
the conclusion is immediate from (e). In case I(ξ) = ∞, either D+(ζ) = ∞,
D−(ζ) = ∞, ξ(0) 6= 0, or ξ contains a continuous non-constant piece. By
containing a continuous non-constant piece, we refer to the case that there exist
t1 and t2 such that t1 < t2, ξ(t1) 6= ξ(t2−) and ξ is continuous on (t1, t2). For
the first two cases where the number of jumps is infinite, the conclusion is an
immediate consequence of (e). The case ξ(0) 6= 0 is also obvious. Now we
are left with dealing with the last case, where ξ has a continuous non-constant
piece. To discuss this case, assume w.l.o.g. that ξ(t1) < ξ(t2−). We claim that

d(ξ,Dj,k) ≥ ξ(t2−)−ξ(t1)
2(j+1) . Note that for any step function ζ,

‖ξ − ζ‖ ≥ |ξ(t2−)− ζ(t2−)| ∨ |ξ(t1)− ζ(t1)|
≥ (ξ(t2−)− ζ(t2−)) ∨ (ζ(t1)− ξ(t1))

≥ 1

2

{
(ξ(t2−)− ξ(t1))− (ζ(t2−)− ζ(t1))

}
≥ 1

2

{
(ξ(t2−)− ξ(t1))−

∑
t∈(t1,t2)

(
ζ(t)− ζ(t−)

)}
≥ 1

2

{
(ξ(t2−)− ξ(t1))− 2D+(ζ)‖ξ − ζ‖

}
,

where the fourth inequality is due to the fact that ‖ξ − ζ‖ ≥ ζ(t)−ζ(t−)
2 for all

t ∈ (t1, t2). From this, we get

‖ξ − ζ‖ ≥ ξ(t2−)− ξ(t1)

2(D+(ζ) + 1)
≥ ξ(t2−)− ξ(t1)

2(j + 1)
,

for ζ ∈ Dj,k. Now, suppose that ζ ∈ Dj,k. Since ζ ◦ φ is again in Dj,k for any
non-decreasing homeomorphism φ of [0, 1] onto itself,

d(ξ, ζ) ≥ ξ(t2−)− ξ(t1)

2(j + 1)
,

which proves the claim.

Now we move on to the proof of Theorem 3.3. We first establish Theorem 5.1,
which plays a key role in the proof. Recall that D<j =

⋃
0≤l<j Dl and let

D<(j1,...,jd) ,
⋃

(l1,...,ld)∈I<(j1,...,jd)

∏d
i=1 Dli where I<(j1,...,jd) ,

{
(l1, . . . , ld) ∈

Zd+\{(j1, . . . , jd)} : (α1−1)l1+· · ·+(αd−1)ld ≤ (α1−1)j1+· · ·+(αd−1)jd
}

. For

42



each l ∈ Z+ and i = 1, . . . , d, let C
(i)
l (·) , E

[
νlαi{x ∈ (0,∞)l :

∑l
j=1 xj1[Uj ,1] ∈

·}
]

where U1, . . . , Ul are iid uniform on [0, 1], and νlαi is as defined right below

(3.1).

Theorem 5.1. Consider independent 1-dimensional Lévy processes X(1), . . . , X(d)

with spectrally positive Lévy measures ν1(·), . . . , νd(·), respectively. Suppose that

each νi is regularly varying (at infinity) with index −αi < −1, and let X̄
(i)
n be

centered and scaled scaled version of X(i) for each i = 1, . . . , d. Then, for each
(j1, . . . , jd) ∈ Zd+,

P((X̄
(1)
n , . . . , X̄

(d)
n ) ∈ ·)∏d

i=1

(
nνi[n,∞)

)ji → C
(1)
j1
× · · · × C(d)

jd
(·)

in M
(∏d

i=1 D \ D<(j1,...,jd)

)
.

Proof. From Theorem 3.1, we know that (nνi[n,∞))−jP(X̄
(i)
n ∈ ·) → Cj(·) in

M(D \ D<j) for i = 1, . . . , d and any j ≥ 0. This along with Lemma 2.2, for
each (l1, . . . , ld) ∈ Zd+ we obtain

d∏
i=1

(
nνi[n,∞)

)−li
P((X̄(1)

n , . . . , X̄(d)
n ) ∈ ·)→ C

(1)
l1
× · · · × C(d)

ld
(·)

in M
(∏d

i=1 D \ C(l1,...,ld)

)
where C(l1,...,ld) ,

⋃d
i=1(Di−1 × D<li × Dd−i). Since

D<(j1,...,jd) =
⋂

(l1,...,ld)/∈I<(j1,...,jd)
C(l1,...,ld), our strategy is to proceed with

Lemma 2.3 to obtain the desired M
(∏d

i=1 D\D<(j1,...,jd)

)
-convergence by com-

bining the M
(∏d

i=1 D\C(l1,...,ld)

)
-convergences for (l1, . . . , ld) /∈ I<(j1,...,jd). We

first rewrite the infinite intersection over Zd+ \ I<(j1,...,jd) as a finite one to fa-

cilitate the application of the lemma. Consider a partial order ≺ on Zd+ such
that (l1, . . . , ld) ≺ (m1, . . . ,md) if and only if C(l1,...,ld) ( C(m1,...,md). Note
that this is equivalent to li ≤ mi for i = 1, . . . , d and li < mi for at least
one i = 1, . . . , d. Let Jj1,...,jd be the subset of Zd+ consisting of the minimal

elements of Zd+ \ I<(j1,...,jd), i.e., Jj1,...,jd , {(l1, . . . , ld) ∈ Zd+ \ I<(j1,...,jd) :
(m1, . . . ,md) ≺ (l1, . . . , ld) implies (m1, . . . ,md) ∈ I<(j1,...,jd)}. Figure 1 illus-
trates how the sets I<(j1,...,jd) and Jj1,...,jd look when d = 2, j1 = 2, j2 = 2,
α1 = 2, α2 = 3. It is straightforward to show that |Jj1,...,jd | < ∞, and that
(m1, . . . ,md) /∈ I<(j1,...,jd) implies C(l1,...,ld) ⊆ C(m1,...,md) for some (l1, . . . , ld) ∈
Jj1,...,jd ; therefore, D<(j1,...,jd) =

⋂
(l1,...,ld)∈Jj1,...,jd

C(l1,...,ld). In view of this

and the fact that lim sup
∏d
i=1

(
nνi[n,∞)

)−li
∏d
i=1

(
nνi[n,∞)

)−ji → 0 for (l1, . . . , ld) ∈ Jj1,...,jd \

{(j1, . . . , jd)}, the conclusion of the theorem follows from Lemma 2.3 if we

show that for each r > 0, ξ , (ξ1, . . . , ξd) /∈
(⋃

(l1,...,ld)∈I<j1,...,jd

∏d
i=1 Dli

)r
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l1

l2

0 2 4 6 8

2

4
(j1, j2) = (2, 2)

Figure 1: An example of I<(j1,...,jd) and Jj1,...,jd where d = 2, j1 = 2, j2 = 2,
α1 = 2, and α2 = 3. The blue dots represent the elements of I<(j1,j2), and the
red dots represent the elements of Jj1,j2 . The dashed red line represents (l1, l2)
such that (α1 − 1)l1 + (α2 − 1)l2 = (α1 − 1)j1 + (α2 − 1)j2.

implies ξ /∈ (C(l1,...,ld))
r for some (l1, . . . , ld) ∈ Jj1,...,jd . To see that this is

the case, suppose that ξ is bounded away from
⋃

(l1,...,ld)∈I<j1,...,jd

∏d
i=1 Dli by

r > 0. Let mi , inf{k ≥ 0 : ξi ∈ (D6k)r}. In case mi = ∞ for some
i, one can pick a large enough M ∈ Z+ such that Mei /∈ I<(j1,...,jd) where
ei is the unit vector with 0 entries except for the i-th coordinate. Letting
(l1, . . . , ld) ∈ Jj1,...,jd be an index such that C(l1,...,ld) ⊆ CMei , we find that
ξ /∈ (C(l1,...,lj))

r ⊆ (CMei)
r verifying the premise. If maxi=1,...,dmi < ∞,

ξ ∈ (
∏d
i=1 Dmi)r and hence, (m1, . . . ,md) /∈ I<(j1,...,jd), which, in turn, implies

that there exists (l1, . . . , ld) ∈ Jj1,...,jd such that C(l1,...,ld) ⊆ C(m1,...,md). How-
ever, due to the construction of mi’s, each ξi is bounded away from D<mi by
r, and hence, ξ is bounded away from Di−1 × D<mi × Dd−i by r for each i.
Therefore, ξ /∈ (C(l1,...,lj))

r ⊆ (C(m1,...,mj))
r, and hence, the premise is verified.

Now we can apply Lemma 2.3 to reach the conclusion of the theorem.

Proof of Theorem 3.3. Let X(+) and X(−) be Lèvy processes with spectrally
positive Lévy measures ν+ and ν− respectively, where ν+[x,∞) = ν[x,∞) and
ν−[x,∞) = ν(−∞,−x] for each x > 0, and denote the corresponding scaled pro-

cesses as X̄
(+)
n (·) , X(+)(n·)/n and X̄

(−)
n (·) , X(−)(n·)/n. More specifically,

let

X̄(+)
n (s) = sa+B(ns)/n+

1

n

∫
|x|≤1

x[N([0, ns]× dx)− nsν(dx)]

+
1

n

∫
x>1

xN([0, ns]× dx),

X̄(−)
n (s) =

1

n

∫
x<−1

xN([0, ns]× dx).

From Theorem 5.1, we know that (nν[n,∞))−j(nν(−∞,−n])−kP
(
(X̄

(+)
n , X̄

(−)
n ) ∈

·
)
→ C+

j × C
−
k (·) in M

(
(D × D) \ D<(j,k)

)
where C+

j (·) , E
[
νjα{x ∈ (0,∞)j :
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∑j
i=1 xi1[Ui,1] ∈ ·}

]
and C−k (·) , E

[
νkβ{y ∈ (0,∞)k :

∑k
i=1 yi1[Ui,1] ∈ ·}

]
. In

view of Lemma 2.6 and that C+
j × C

−
k

{
(ξ, ζ) ∈ D × D : (ξ(t) − ξ(t−))(ζ(t) −

ζ(t−)) 6= 0 for some t ∈ (0, 1]
}

= 0, we can apply Lemma 2.4 for h(ξ, ζ) = ξ−ζ.

Noting that Cj,k(·) =
(
C+
j × C−k

)
◦ h−1(·), we conclude that (nν[n,∞))−j

(nν(−∞,−n])−kP
(
X̄

(+)
n − X̄

(−)
n ∈ ·

)
→ Cj,k(·) in M(D \ D<j,k). Since X̄n

has the same distribution as X̄
(+)
n −X̄(−)

n , the desired M(D\D<j,k)-convergence
for X̄n follows.

Proof of Lemma 3.1. In general,

min
(j,k)∈Z2

+

Dj,k∩Ā6=∅

I(j, k) ≤ I(J (A),K(A)) ≤ min
(j,k)∈Z2

+

Dj,k∩A◦ 6=∅

I(j, k),

and the left inequality cannot be strict sinceA is bounded away from D<J (A),K(A).
On the other hand, in case the right inequality is strict, then DJ (A),K(A)∩A◦ = ∅,
which in turn implies CJ (A),K(A)(A

◦) = 0 since CJ (A),K(A) is supported on
DJ (A),K(A). Therefore, the lower bound is trivial if the right inequality is strict.
In view of these observations, we can assume w.l.o.g. that (J (A),K(A)) is also
in both arg min (j,k)∈Z2

+

Dj,k∩A◦ 6=∅

I(j, k) and arg min (j,k)∈Z2
+

Dj,k∩Ā 6=∅

I(j, k). Since A◦ and Ā

are also bounded-away from D<J (A),K(A), the upper bound of (3.9) is obtained
from (2.1) and Theorem 3.3 for Ā, j = J (Ā) = J (A), and k = K(Ā) = K(A);
the lower bound of (3.9) is obtained from (2.2) and Theorem 3.3 for A◦, j =
J (A◦) = J (A), and k = K(A◦) = K(A). Finally, we obtain (3.10) from Theo-
rem 3.3 and (2.1) with j = l, k = m, F = Ā along with the fact that Cl,m(Ā) = 0
since A is bounded away from Dl,m.

Lemma 5.5. Let A be a measurable set and suppose that the argument minimum
in (3.8) is non-empty and contains a pair of integers (J (A),K(A)). Let (l,m) ∈
I=J (A),K(A).

(i) If Aδ ∩ Dl,m is bounded away from D�J (A),K(A) for some δ > 0, then
A ∩ (Dl,m)γ is bounded away from D�J (A),K(A) for some γ > 0.

(ii) If A is bounded away from D�J (A),K(A), then there exists δ > 0 such
that A ∩ (Dl,m)δ is bounded away from Dj,k for any (j, k) ∈ I=J (A),K(A) \
{(l,m)}.

Proof. For (i), we prove that if d(A2δ ∩ Dl,m, D�J (A),K(A)) > 3δ then d(A ∩
(Dl,m)δ, D�J (A),K(A)) ≥ δ. Suppose that d(A ∩ (Dl,m)δ, D�J (A),K(A)) < δ.
Then, there exists ξ ∈ A ∩ (Dl,m)δ and ζ ∈ D�J (A),K(A) such that d(ξ, ζ) < δ.
Note that we can find ξ′ ∈ Dl,m such that d(ξ, ξ′) ≤ 2δ, which means that
ξ′ ∈ A2δ ∩ Dl,m. Therefore, d(A2δ ∩ Dl,m,D�J (A),K(A)) ≤ d(ξ′, ζ) ≤ d(ξ′, ξ) +
d(ξ, ζ) ≤ 2δ + δ ≤ 3δ.

For (ii), suppose that d
(
A,D�J (A),K(A)

)
> γ for some γ > 0 and (l,m) and

(j, k) are two distinct pairs that belong to I=J (A),K(A). Assume w.l.o.g. that
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j < l. (If j > l, it should be the case that k < m, and hence one can proceed in
the same way by switching the roles of upward jumps and downward jumps in the
following argument.) Let c be a positive number such that c > 8(l−j)+2 and set
δ = γ/c. We will show that A∩(Dl,m)δ and (Dj,k)δ are bounded away from each
other. Let ξ be an arbitrary element of A∩(Dl,m)δ. Then, there exists a ζ ∈ Dl,m
such that d(ζ, ξ) ≤ 2δ. Note that d

(
ζ,D�J (A),K(A)

)
≥ (c − 2)δ; in particular,

d
(
ζ,Dj,m) ≥ (c−2)δ. If we write ζ ,

∑l
i=1 xi1[ui,1]−

∑m
i=1 yi1[vi,1], this implies

that xj+1 ≥ (c−2)δ
l−j . Otherwise, (c − 2)δ >

∑l
i=j+1 xi = ‖ζ − ζ ′‖ ≥ d(ζ, ζ ′),

where ζ ′ , ζ −
∑l
i=j+1 xi1[ui,1] ∈ Dj,m. Therefore, d(ζ,Dj,k) ≥ (c−2)δ

2(l−j) , which in

turn implies d(ξ,Dj,k) ≥ (c−2)δ
2(l−j) − 2δ > 2δ. Since ξ was arbitrary, we conclude

that A ∩ (Dl,m)δ bounded away from (Dj,k)δ.

5.3 Proofs for Section 4

Recall that

I(ξ) ,

{
(α− 1)D+(ξ) + (β − 1)D−(ξ) if ξ is a step function with ξ(0) = 0
∞ otherwise

.

Proof of Theorem 4.2. Observe first that I(·) is a rate function. The level sets
{ξ : I(ξ) ≤ x} equal

⋃
(l,m)∈Z2

+

(α−1)l+(β−1)m≤bxc
Dl,m and are therefore closed—note

the level sets are not compact so I(·) is not a good rate function (see, for
example, Dembo and Zeitouni (2009) for the definition and properties of good
rate functions).

Starting with the lower bound, suppose that G is an open set. We assume
w.l.o.g. that infξ∈G I(ξ) < ∞, since the inequality is trivial otherwise. Due to
the discrete nature of I(·), there exists a ξ∗ ∈ G such that I(ξ∗) = infξ∈G I(ξ).

Set j , D+(ξ∗) and k , D−(ξ∗). Let u+
1 , . . . , u

+
j be the sorted (from the

earliest to the latest) upward jump times of ξ∗; x+
1 , . . . , x

+
j be the sorted (from

the largest to the smallest) upward jump sizes of ξ∗; u−1 , . . . , u
−
k be the sorted

downward jump times of ξ∗; x−1 , . . . , x
−
k be the sorted downward jump sizes

of ξ∗. Also, let x+
j+1 = x−k+1 = 0, u+

0 = u−0 = 0, and u+
j+1 = u−k+1 = 1.

Note that if ζ ∈ Dl,m for l < j, then d(ξ∗, ζ) ≥ x+
j /2 since at least one of

the j upward jumps of ξ∗ cannot be matched by ξ. Likewise, if ζ ∈ Dl,m for
m < k, then d(ξ∗, ζ) ≥ x−k /2. Therefore, d(D<j,k, ξ∗) ≥ (x+

j ∧ x
−
k )/2. On the

other hand, since G is an open set, we can pick δ0 > 0 so that the open ball
Bξ∗,δ0 , {ζ ∈ D : d(ζ, ξ) < δ0} centered at ξ∗ with radius δ0 is a subset of
G—i.e., Bξ∗,δ0 ⊂ G. Let δ = (δ0 ∧ x+

j ∧ x
−
k )/4. If j = k = 0, then ξ∗ ≡ 0, and

hence, {X̄n ∈ G} contains {‖X̄n‖ ≤ δ} which is a subset of Bξ∗,δ. One can apply
Lemma A.4 to show that P(Xn ∈ G) converges to 1, which, in turn, proves the
inequality. Now, suppose that either j ≥ 1 or k ≥ 1. Then, d(Bξ∗,δ,D<j,k) ≥ δ.
As d(Bξ∗,δ,D<j,k) > 0 and Bξ∗,δ is open, we see from our sharp asymptotics
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(Theorem 3.1) that

Cj,k(Bξ∗,δ) ≤ lim inf
n→∞

(nν[n,∞))−j(nν(−∞,−n])−kP (X̄n ∈ Bξ∗,δ).

From the definition of Cj,k, it follows that Cj(Bξ∗,δ) > 0. To see this, note first
that we can assume w.l.o.g. that x±i ’s are all distinct since G is open (because, if
some of the jump sizes are identical, we can pick ε such that Bξ∗,ε ⊆ G, and then
perturb those jump sizes by ε to get a new ξ∗ which still belongs toG while whose
jump sizes are all distinct.) Suppose that ξ∗ =

∑j
l=1 x

+

i+l
1[u+

i ,1]−
∑k
l=1 x

−
i−l

1[u−i ,1],

where {i±1 , . . . , i
±
j } are permutations of {1, . . . , j}. Let 2δ′ , δ ∧ ∆+

u ∧ ∆+
x ∧

∆−u ∧∆−x , where ∆+
u = mini=1,...,j+1(u+

i − u
+
i−1), ∆+

x = mini=1,...,j(x
+
i−1 − x

+
i ),

∆−u = mini=1,...,k+1(u−i − u
−
i−1), and ∆−x = mini=1,...,k(x−i−1 − x

−
i ). Consider a

subset B′ of Bξ∗,δ:

B′ ,

{ j∑
l=1

y+

i+l
1[v+l ,1] −

k∑
l=1

y−
i−l

1[v−l ,1] :

v+
i ∈ (u+

i − δ
′, u+

i + δ′), y+
i ∈ (x+

i − δ
′, x+

i + δ′), i = 1, . . . , j;

v−i ∈ (u−i − δ
′, u−i + δ′), y−i ∈ (x−i − δ

′, x−i + δ′), i = 1, . . . , k

}
.

Then,

Cj,k(Bξ∗,δ)

≥ Cj,k(B′)

=

∫
(u+

1 −δ′,u
+
1 +δ′)×···×(u+

j −δ′,u
+
j +δ′)

dLeb ·
∫

(x+
1 −δ′,x

+
1 +δ′)×···×(x+

j −δ′,x
+
j +δ′)

dνα

·
∫

(u−1 −δ′,u
−
1 +δ′)×···×(u−k −δ′,u

−
k +δ′)

dLeb ·
∫

(x−1 −δ′,x
−
1 +δ′)×···×(x−k −δ′,x

−
k +δ′)

dνβ

≥ (2δ′)j(2δ′(x+
1 )α)j(2δ′)k(2δ′(x−1 )β)k > 0.

We conclude that

lim inf
n→∞

log P(X̄n ∈ G)

log n
≥ lim inf

n→∞

log P(X̄n ∈ Bξ∗,δ)
log n

≥ lim inf
n→∞

log(Cj,k(Bξ∗,δ)(nν[n,∞))j(nν(−∞,−n])k(1 + o(1)))

log n

= −
(
(α− 1)j + (β − 1)k

)
,

(5.15)

which is the lower bound. Turning to the upper bound, suppose that K is a
compact set. We first consider the case where infξ∈K I(ξ) <∞. Pick ξ∗, j and

k as in the lower bound, i.e., I(ξ∗) , infξ∈K I(ξ), j , D+(ξ∗), and k , D−(ξ∗).
Here we can assume w.l.o.g. either j ≥ 1 or k ≥ 1 since the inequality is trivial
in case j = k = 0. For each ζ ∈ K, either I(ζ) > I(ξ∗), or I(ζ) = I(ξ∗). We
construct an open cover of K by considering these two cases separately:
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• If I(ζ) > I(ξ∗), ζ is bounded away from D<j,k∪Dj,k (Lemma 5.4 (f)). For
each such ζ’s, pick a δζ > 0 in such a way that d(ζ,D<j,k ∪ Dj,k) > δζ .

Set jζ , j and kζ , k. Note that in this case Cjζ ,kζ (B̄ζ,δζ ) = 0.

• If I(ζ) = I(ξ∗), set jζ , D+(ζ) and kζ , D−(ζ). Since they are bounded
away from D<jζ ,kζ (Lemma 5.4 (e)), we can choose δζ > 0 such that
d(ζ,D<jζ ,kζ ) > δζ and Cjζ ,kζ (B̄ζ,δζ ) <∞.

Consider an open cover {Bζ;δζ : ζ ∈ K} ofK and its finite subcover {Bζi;δζi}i=1,...,m.

For each ζi, we apply the sharp asymptotics (Theorem 3.3) to B̄ζi;δζi to get

lim sup
n→∞

log P(X̄n ∈ B̄ζi;δζi )
log n

≤ (α− 1)jζi + (β − 1)kζi = −I(ξ∗). (5.16)

Therefore,

lim sup
n→∞

log P(X̄n ∈ F̄ )

log n
≤ lim sup

n→∞

log
∑m
i=1 P(X̄n ∈ B̄ζi;δζi )

log n

= max
i=1,...,m

lim sup
n→∞

log P(X̄n ∈ B̄ζi;δζi )
log n

≤ −I(ξ∗) = − inf
ξ∈K

I(ξ), (5.17)

completing the proof of the upper bound in case the right-hand side is finite.
Now, turning to the case infξ∈K I(ξ) =∞, fix an arbitrary positive integer l.

Since D<l,l is closed and disjoint with a compact set K, it is also bounded away
from each ζ ∈ K. Now picking δζ > 0 so that B̄ζ,δζ is disjoint with K for each
ζ, one can construct an open cover {Bζ;δζ : ζ ∈ K} of K. Let {Bζi;δζi}i=1,...,m

its finite subcover, then from the same calculation as (5.16) and (5.17),

lim sup
n→∞

log P(X̄n ∈ K)

log n
≤ −(α+ β − 2)m.

Taking m→∞, we arrive at the desired upper bound.

6 Applications

In this section, we illustrate the use of our main results, established in Section 3,
in several problem contexts that arise in control, insurance, and finance. In all
examples, we assume that X̄n (t) = X (nt) /n, where X (·) is a centered Lévy
process satisfying (1.1).

6.1 Crossing High Levels with Moderate Jumps

We are interested in level crossing probabilities of Lévy processes where the
jumps are conditioned to be moderate. More precisely, we are interested in prob-
abilities of the form P

(
supt∈[0,1][X̄n(t)− ct] ≥ a; supt∈[0,1][X̄n(t)− X̄n(t−)] ≤
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b
)
. We make a technical assumption that a is not a multiple of b and focus on

the case where the Lévy process X̄n is spectrally positive.
The setting of this example is relevant in, for example, insurance, where

huge claims may be reinsured and therefore do not play a role in the ruin of an
insurance company. Asmussen and Pihlsg̊ard (2005) focus on obtaining various
estimates of infinite-time ruin probabilities using analytic methods. Here, we
provide complementary sharp asymptotics for the finite-time ruin probability,
using probabilistic techniques.

Set A , {ξ ∈ D : supt∈[0,1][ξ(t) − ct] ≥ a; supt∈[0,1][ξ(t) − ξ(t−)] ≤ b} and

define j , da/be. Intuitively, j should be the key parameter, as it takes at least
j jumps of size b to cross level a. Our goal is to make this intuition rigorous
by applying Theorem 3.2 and by showing that the upper and lower bounds are
tight.

We first check that Aδ ∩ Dj is bounded away from the closed set D6j−1 for
some δ > 0. To see this, it suffices to show that

1) supt∈[0,1][ξ(t)− ξ(t−)] ≤ b and supt∈[0,1][ζ(t)− ζ(t−)] > b′ imply d(ξ, ζ) >
b′−b

3 ; and

2) supt∈[0,1][ξ(t)− ct] < a′ and supt∈[0,1][ζ(t)− ct] ≥ a imply d(ξ, ζ) ≥ a−a′
c+1 .

It is straightforward to check 1). To see 2), note that for any ε > 0, one can
find t∗ such that ζ(t∗) − ct∗ ≥ a − ε. Of course, ξ(λ(t∗)) − cλ(t∗) < a′ for
any homeomorphism λ(·). Subtracting the latter inequality from the former
inequality, we obtain

ζ(t∗)− ξ(λ(t∗)) ≥ a− a′ − ε+ c(t∗ − λ(t∗)). (6.1)

One can choose λ so that d(ξ, ζ) + ε ≥ ‖λ − e‖ ≥ λ(t∗) − t∗ and d(ζ, ξ) + ε ≥
‖ζ − ξ ◦ λ‖ ≥ ζ(t∗)− ξ(λ(t∗)), which together with (6.1) yields

d(ξ, ζ) > a− a′ − (c+ 1)ε− cd(ξ, ζ).

This leads to d(ξ, ζ) ≥ a−a′
c+1 by taking ε → 0. With 1) and 2) in hand, it

follows that φ1(ξ) , supt∈[0,1][ξ(t)− ξ(t−)] and φ2(ξ) , supt∈[0,1][ξ(t)− ct] are

continuous functionals and Aδ ⊆ A(δ), where A(δ) , {ξ ∈ D : supt∈[0,1][ξ(t) −
ct] ≥ a− (c+ 1)δ; supt∈[0,1][ξ(t)− ξ(t−)] ≤ b+ 3δ}. Since ξ ∈ A(δ)∩Dj implies
that the jump size of ξ is bounded from below by (b+ 3δ)j− (a− (c+ 1)δ), one
can choose δ > 0 so that A(δ) ∩ Dj is bounded away from D6j−1. This implies
that Aδ ∩ Dj is also bounded away from D6j−1 for sufficiently small δ > 0.
Hence, Theorem 3.2 applies with J (A) = j.

Next, to identify the limit, recall the discussion at the end of Section 3.1.
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Note that A = φ−1
1 [a,∞) ∩ φ−1

2 (−∞, b] and

T̂−1
j (φ−1

1 [a,∞) ∩ φ−1
2 (−∞, b])

=
{

(x, u) ∈ Ŝj :
∑j
i=1 xi ≥ a+ cmaxi=1,...,j ui, maxi=1,...,j xi ≤ b

}
,

T̂−1
j (φ−1

1 (a,∞) ∩ φ−1
2 (−∞, b))

=
{

(x, u) ∈ Ŝj :
∑j
i=1 xi > a+ cmaxi=1,...,j ui, maxi=1,...,j xi < b

}
.

(6.2)

We see that T̂−1
j (φ−1

1 [a,∞) ∩ φ−1
2 (−∞, b]) \ T̂−1

j (φ−1
1 (a,∞) ∩ φ−1

2 (−∞, b)) has
Lebesgue measure 0, and hence, A is Cj-continuous. Thus, (3.6) holds with

Cj(A) = E

[
νjα{(0,∞)j :

j∑
i=1

xi1[Ui,1] ∈ A}

]
=

∫
(x,u)∈T̂−1

j (A)

j∏
i=1

[αx−α−1
i dxidui] > 0.

Therefore, we conclude that

P

(
sup
t∈[0,1]

[X̄n(t)− ct] ≥ a; sup
t∈[0,1]

[X̄n(t)− X̄n(t−)] ≤ b

)
∼ Cj

(
A
)
(nν[n,∞))j .

(6.3)
In particular, the probability of interest is regularly varying with index −(α −
1)da/be.

6.2 A Two-sided Barrier Crossing Problem

We consider a Lévy-driven Ornstein-Uhlenbeck process of the form

dȲn (t) = −κdȲn (t) + dX̄n (t) , Ȳn (0) = 0.

We apply our results to provide sharp large-deviations estimates for

b (n) = P
(
inf{Ȳn (t) : 0 ≤ t ≤ 1} ≤ −a−, Ȳn (1) ≥ a+

)
as n → ∞, where a−, a+ > 0. This probability can be interpreted as the price
of a barrier digital option (see Cont and Tankov, 2004, Section 11.3). In order
to apply our results it is useful to represent Ȳn as an explicit function of X̄n. In
particular, we have that

Ȳn (t) = exp (−κt)
(
Ȳn (0) +

∫ t

0

exp (κs) dX̄n (s)

)
(6.4)

= X̄n (t)− κ exp (−κt)
∫ t

0

exp (κs) X̄n (s) ds. (6.5)

Hence, if φ : D ([0, 1],R)→ D ([0, 1],R) is defined via

φ (ξ) (t) = ξ (t)− κ exp (−κt)
∫ t

0

exp (κs) ξ (s) ds,
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then Ȳn = φ
(
X̄n

)
. Moreover, if we let

A =

{
ξ ∈ D : inf

0≤t≤1
φ (ξ) (t) ≤ −a−, φ (ξ) (1) ≥ a+

}
,

then we obtain
b (n) = P

(
X̄n ∈ A

)
.

In order to easily verify topological properties of A, let us define m,π1 : D([0, 1],
R) → R by m (ξ) = inf0≤t≤1 ξ (t) , and π1 (ξ) = ξ (1) . Note that π1 is continu-
ous (see Billingsley, 2013, Theorem 12.5), that m is continuous as well, and so
is φ. Thus, m ◦ φ and π1 ◦ φ are continuous. We can therefore write

A = (m ◦ φ)
−1

(−∞,−a−] ∩ (π1 ◦ φ)
−1

[a+,∞),

concluding that A is a closed set. We now apply Theorem 3.4. To show that Di,0
is bounded away from (m ◦ φ)

−1
(−∞,−a−], select θ such that d (θ,Di,0) < r

with r < a−/ (1 + κ exp (κ)). There exists a ξ ∈ Di,0 such that d (θ, ξ) <

r and ξ satisfies ξ (t) =
∑i
j=1 xjI[uj ,1] (t) , with i ≥ 1. There also exists a

homeomorphism λ : [0, 1]→ [0, 1] such that

sup
t∈[0,1]

|λ (t)− t| ∨ |(ξ ◦ λ) (t)− θ (t)| < r. (6.6)

Now, define ψ = θ− (ξ ◦ λ). Due to the linearity of φ, and representations (6.4)
and (6.5), we obtain that

φ (θ) (t) = φ ((ξ ◦ λ)) (t) + φ (ψ) (t)

= exp (−κt)
i∑

j=1

exp
(
κλ−1 (uj)

)
xjI[λ−1(uj),1] (t) + ψ (t)

− κ exp (−κt)
∫ t

0

exp (κs)ψ (s) ds.

Since xj ≥ 0, applying the triangle inequality and inequality (6.6) we conclude
(by our choice of r), that

inf
0≤t≤1

φ (θ) (t) ≥ −r (1 + κ exp (κ)) > −a−.

A similar argument allows us to conclude that D0,i is bounded away from

(π1 ◦ φ)
−1

[a+,∞). Hence, in addition to being closed, A is bounded away from
D0,i ∪ Di,0 for any i ≥ 1. Moreover, let ξ ∈ A ∩ D1,1, with

ξ (t) = xI[u,1](t)− yI[v,1](t), (6.7)

where x > 0 and y > 0. Using (6.4), we obtain that ξ ∈ A ∩ D1,1, is equivalent
to

y ≥ a−, u > v, and x ≥ a+ exp (κ (1− u)) + y exp (−κ (u− v)) .
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Now, we claim that

A◦ =

{
ξ ∈ D : inf

0≤t≤1
φ (ξ) (t) < −a−, φ (ξ) (1) > a+

}
(6.8)

= (m ◦ φ)
−1

(−∞,−a−) ∩ (π1 ◦ φ)
−1

(a+,∞).

It is clear that A◦ contains the open set in the right hand side. We now ar-
gue that such a set is actually maximal, so that equality holds. Suppose that
φ (ξ) (1) = a+, while min0≤t≤1 φ (ξ) (t) < −a−. We then consider ψ = −δI{1} (t)
with δ > 0, and note that d (ξ, ξ + ψ) ≤ δ, and

φ (ξ + ψ) (t) = φ (ξ) (t) I[0,1) (t) + (a+ − δ) I{1} (t) ,

so that ξ + ψ /∈ A. Similarly, we can see that the other inequality (involving
a−) must also be strict, hence concluding that (6.8) holds.

We deduce that, if ξ ∈ A◦ ∩ D1,1 with ξ satisfying (6.7), then

y > a−, u > v, x > a+ exp (κ (1− u)) + y exp (−κ (u− v)) .

Thus, we can see that A is C1,1 (·)-continuous, either directly or by invoking
our discussion in Section 3.1 regarding continuity of sets. Therefore, applying
Theorem 3.4, we conclude that

b (n) ∼ nν[n,∞)nν(−∞,−n]C1,1 (A)

as n→∞, where

C1,1 (A) =

∫ 1

0

∫ ∞
a−

∫ 1

v

∫ ∞
a+ exp(κ(1−u))+y exp(−κ(u−v))

να(dx) du νβ(dy)dv.

In particular, the probability of interest is regularly varying with index 2−α−β.

6.3 Identifying the Optimal Number of Jumps for Sets of
the Form A = {ξ : l ≤ ξ ≤ u}

The sets that appeared in the examples in Section 6.1 and Section 6.2 lend them-
selves to a direct characterization of the optimal numbers of jumps (J (A),K(A)).
However, in more complicated problems, deciding what kind of paths the most
probable limit behaviors consist of may not be as obvious. In this section, we
show that for sets of a certain form, we can identify an optimal path. Consider
continuous real-valued functions l and u, which satisfy l(t) < u(t) for every
t ∈ [0, 1], and suppose that l(0) < 0 < u(0). Define A = {ξ : l(t) ≤ ξ(t) ≤ u(t)}.
We assume that both α, β <∞, which is the most interesting case.

The goal of this section is to construct an algorithm which yields an expres-
sion for J (A) and K(A). In fact, we can completely identify a function h that
solves the optimization problem defining (J (A),K(A)). This function will be a
step function with both positive and negative steps. We first construct such a
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function, and then verify its optimality. The first step is to identify the times
at which this function jumps. Define the sets

At , {x : l(t) ≤ x ≤ u(t)}, A∗s,t , ∩s≤r≤tAr,

and the times (tn, n ≥ 1) by

tn+1 , 1 ∧ inf{t > tn : Aτn,t = ∅} for n ≥ 2, t1 , 1 ∧ inf{t > 0 : 0 /∈ At}.

Let n∗ = inf{n ≥ 1 : tn = 1}. Assume that n∗ > 1, since the zero function is
the obvious optimal path in case n∗ = 1. Due to the construction of the times
tn, n ≥ 1, we have the following properties:

• Either l(t1) = 0 or u(t1) = 0.

• For every n = 1, . . . , n∗ − 2, supt∈[tn,tn+1] l(t) = inft∈[tn,tn+1] u(t).

• Hfin , [supt∈[tn∗−1,tn∗ ] l(t), inft∈[tn∗−1,tn∗ ] u(t)] is nonempty.

Set hn , supt∈[tn,tn+1] l(t) for n = 1, . . . , n∗ − 1, and set hn∗−1 , hfin for any
hfin ∈ Hfin. Define now h(t) as 0 on t ∈ [0, t1), h(t) = hn on t ∈ [tn, tn+1)
for n = 1, . . . , n∗ − 2, and h(t) = hn∗−1 on t ∈ [tn∗−1, 1]. We claim now that
(J (A),K(A)) = (J ({h}),K({h})). In fact, we can prove that if g ∈ A is a step
function, D+(g) ≥ D+(h) and D−(g) ≥ D−(h), which implies the optimality of
h. The proof is based on the following observation. At each tn+1, either

1) for any ε > 0 one can find t ∈ [tn+1, tn+1 + ε] such that u(t) < hn, or

2) for any ε > 0 one can find t ∈ [tn+1, tn+1 + ε] such that l(t) > hn.

Otherwise, there exists ε > 0 such that hn ∈ Atn,tn+1+ε, contradicting the
definition of tn, which requires Atn,tn+1+ε = ∅. From this observation, we can
prove that on each interval (tn, tn+1], any feasible path must jump at least
once in the same direction as that of the jump of h. To see this, first suppose
that 1) is the case at tn+1, and g ∈ A is a step function. Note that due
to its continuity, l(·) should have achieved its supremum at tsup ∈ [tn, tn+1],
i.e., l(tsup) = hn, and hence, g(tsup) ≥ hn. On the other hand, due to the right
continuity of g and 1), g has to be strictly less than hn at tn+1, i.e., g(tn+1) < hn.
Therefore, g must have a downward jump on (tsup, tn+1] ⊆ (tn, tn+1]. Note that
the direction of the jump of h in the interval (tn, tn+1] (more specifically at tn+1)
also has to be downward. Since g is an arbitrary feasible path, this means that
whenever h jumps downward on (tn, tn+1), any feasible path in A should also
jump downward. Hence, any feasible path must have either equal or a greater
number of downward jumps as h’s on [0, 1]. Case 2) leads to a similar conclusion
about the number of upward jumps of feasible paths. The number of upward
jumps of h is optimal, proving that h is indeed the optimal path.
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6.4 Multiple Optima

This section illustrates how to handle a case where we require Theorem 3.5,
and consider an illustrative example where a rare event can be caused by two
different configurations of big jumps. Suppose that the regularly varying in-
dices −α and −β for positive and negative parts of the Lévy measure ν of
X are equal, and consider the set A , {ξ ∈ D : |ξ(t)| ≥ t − 1/2}. Then,
arg min (j,k)∈Z2

+

Dj,k∩A6=∅
I(j, k) = {(1, 0), (0, 1)}, and D�1,0 = D�0,1 = D0,0. Since

|ξ(1)| ≥ 1/2 for any ξ ∈ A, d(A,D0,0) = 1/2 > 0. Theorem 3.5 therefore
applies, and for each ε > 0, there exists N such that

P(X̄n ∈ A) ≥
(
Cl,m(A◦ ∩ D1,0)− ε

)
L+(n) +

(
Cl,m(A◦ ∩ D0,1)− ε

)
L−(n)

nα−1
,

P(X̄n ∈ A) ≤
(
Cl,m(A− ∩ D1,0) + ε

)
L+(n) +

(
Cl,m(A− ∩ D0,1) + ε

)
L−(n)

nα−1
,

for all n ≥ N . Note that A is closed, since if there is ξ ∈ D and s ∈ [0, 1]

such that |ξ(s)| < s− 1/2, then B(ξ, s−1/2−ξ(s)
2 ) ⊆ Ac. Therefore, A− ∩ D1,0 =

A ∩ D1,0 = {ξ = x1[u,1] : x ≥ 1/2, 0 < u ≤ 1/2}, and hence, C1,0(A− ∩ D1,0) =
P(U1 ∈ (0, 1/2])να[1/2,∞) = (1/2)1−α. Noting that A◦ ∩ D1,0 ⊇ (A ∩ D1,0)◦ =
{ξ = x1[u,1] : x > 1/2, 0 < u < 1/2}, we deduce C1,0(A◦ ∩ D1,0) ≥ P(U1 ∈
(0, 1/2))να(1/2,∞) = (1/2)1−α. Therefore, C1,0(A◦∩D1,0) = C1,0(A−∩D1,0) =
(1/2)1−α. Similarly, we can check that C0,1(A◦ ∩ D0,1) = C0,1(A− ∩ D0,1) =
(1/2)1−β (= (1/2)1−α). Therefore, for n ≥ N ,

((1/2)1−α − ε)(L+(n) + L−(n))n1−α

≤ P(X̄n ∈ A)

≤ ((1/2)1−α + ε)(L+(n) + L−(n))n1−α.

This is equivalent to(
1

2

)1−α

≤ lim inf
n→∞

P(X̄n ∈ A)

(L+(n) + L−(n))n1−α

≤ lim sup
n→∞

P(X̄n ∈ A)

(L+(n) + L−(n))n1−α ≤
(

1

2

)1−α

.

Hence,

lim
n→∞

P(X̄n ∈ A)

(L+(n) + L−(n))n1−α =

(
1

2

)1−α

.

A Inequalities

Lemma A.1 (Generalized Kolmogorov inequality; Shneer and Wachtel (2009)).
Let Sn = X1 + · · · + Xn be a random walk with mean zero increments, i.e.,
EXi = 0. Then,

P(max
k≤n

Sk ≥ x) ≤ CnV (x)

x2
,
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where V (x) = E(X2
1 ; |X1| ≤ x), for all x > 0.

Lemma A.2 (Etemadi’s inequality). Let X1, ..., Xn be independent real-valued
random variables defined on some common probability space, and let α ≥ 0. Let
Sk denote the partial sum Sk = X1 + · · ·+Xk. Then

P
(

max
1≤k≤n

|Sk| ≥ 3x
)
≤ 3 max

1≤k≤n
P
(
|Sk| ≥ x

)
.

Lemma A.3 (Prokhorov’s inequality; Prokhorov (1959)). Suppose that ξi, i =
1, . . . , n are independent, zero-mean random variables such that there exists a
constant c for which |ξi| ≤ c for i = 1, . . . , n, and

∑n
i=1 var ξi <∞. Then

P

(
n∑
i=1

ξi > x

)
≤ exp

{
− x

2c
arcsinh

xc

2
∑n
i=1 var ξi

}
,

which, in turn, implies

P

(
n∑
i=1

ξi > x

)
≤
(

cx∑n
i=1 var ξi

)− x
2c

.

We extend the Etemadi’s inequality to Lévy processes in the following lemma.

Lemma A.4. Let Z be a Lévy process. Then,

P
(

sup
t∈[0,n]

|Z(t)| ≥ x
)
≤ 3 sup

t∈[0,n]

P
(
|Z(t)| ≥ x/3

)
.

Proof. Since Z (and hence |Z| also) is in D, sup0≤k≤2m |Z( nk2m )| converges to
supt∈[0,n] |Z(t)| almost surely as m→∞. To see this, note that one can choose

ti’s such that |Z(ti)| ≥ supt∈[0,n] |Z(t)| − i−1. Since {ti}’s are in a compact set
[0, n], there is a subsequence, say, t′i, such that t′i → t0 for some t0 ∈ [0, n]. The
supremum has to be achieved at either t−0 or t0. Either way, with large enough
m, sup0≤k≤2m |Z( nk2m )| becomes arbitrarily close to the supremum. Now, by
bounded convergence,

P

{
sup
t∈[0,n]

|Z(t)| > x

}

= lim
m→∞

P

{
sup

0≤k≤2m

∣∣∣∣Z(
nk

2m
)

∣∣∣∣ > x

}

= lim
m→∞

P

{
sup

0≤k≤2m

∣∣∣∣∣
k∑
i=0

(
Z(

ni

2m
)− Z(

n(i− 1)

2m
)

)∣∣∣∣∣ > x

}

≤ lim
m→∞

3 sup
0≤k≤2m

P

{∣∣∣∣∣
k∑
i=0

(
Z(

ni

2m
)− Z(

n(i− 1)

2m
)

)∣∣∣∣∣ > x/3

}

= lim
m→∞

3 sup
0≤k≤2m

P

{∣∣∣∣Z(
nk

2m
)

∣∣∣∣ > x/3

}
≤ 3 sup

t∈[0,n]

P {|Z(t)| > x/3} ,
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where Z(t) , 0 for t < 0.
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