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Abstract

We consider the stationary solution Z of the Markov chain {Zn}n∈N defined by Zn+1 =
�n+1(Zn), where {�n}n∈N is a sequence of independent and identically distributed
random Lipschitz functions. We estimate the probability of the event {Z > x} when x

is large, and develop a state-dependent importance sampling estimator under a set of
assumptions on �n such that, for large x, the event {Z > x} is governed by a single large
jump. Under natural conditions, we show that our estimator is strongly efficient. Special
attention is paid to a class of perpetuities with heavy tails.
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1. Introduction

We consider an R-valued Markov chain {Zn}n∈N defined by

Zn+1 = �n+1(Zn), (1)

where {�n}n∈N is a sequence of independent and identically distributed (i.i.d.) positive random
Lipschitz functions (see (14)) and Z0 ∈ R is independent of the sequence {�n}n∈N. Under mild
conditions (see Assumption B1), the stationary solution to (1) has the same distribution as the
almost-sure limit Z of the sequence {�1 ◦ · · · ◦ �n(Z0)}n∈N; see [12] for details. We assume
that �n is such that �1 ◦ · · · ◦ �n(Z0) is increasing in n. In this paper we develop efficient
simulation methods for estimating the tail probability of Z, i.e. we are interested in computing
P(Z > x) = P(T (x) <∞) for large x, where T (x) = inf{n ≥ 0 : �1 ◦ · · · ◦�n(Z0) > x}.

Two examples are of particular interest in the above setting. The first example is the so-
called stochastic perpetuity. More precisely, consider the random difference equation �n(z) =
Anz+ Bn. Then recursion (1) becomes

Zn+1 = An+1Zn + Bn+1, (2)
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where {(An, Bn)}n≥0 is a sequence of i.i.d. R-valued random vectors, independent of the initial
random variable Z0. It is well known (see, e.g. [8, Chapter 2]) that if E[log A1] < 0 and
E[log+ B1] < ∞ then the Markov chain given by (2) has a unique stationary distribution,
which has the same distribution as Z =∑∞

n=0 Bn+1eSn , where Sn =∑n
i=1 log Ai . Moreover,

noting that T (x) = inf{n ≥ 0 : ∑n
k=0 Bk+1eSk > x}, our objective is to show that P(Z > x) =

P(T (x) <∞) in the positive Bn case. Perpetuities occur, e.g. in the context of ruin problems
with investments, in the study of financial time series, such as ARCH-type processes (see,
e.g. [13]), and in tail asymptotics for exponential functionals of Lévy processes (see, e.g. [24]).
Although some particular cases exist that allow for an explicit analysis (see, e.g. [30]), it is
difficult to obtain exact results for the distribution of Z in general. Thus, Monte Carlo simulation
arises as a natural approach to deal with the analysis of stochastic perpetuities, including the
large deviations regime in which x in P(Z > x) is large, the focus of this paper.

Another example of (1) is the Lindley recursion which describes the waiting time of a
customer in a single-server queue. More precisely, we consider (1) with �n(z) = max{0, z +
Xn}, where Xn, n ∈ N, is a sequence of i.i.d. R-valued random variables. It is well known (see,
e.g. [15]) that the stationary solution of the Markov chain Zn+1 = max{0, Zn + Xn+1}, n ∈
N, represents the all-time maximum of a random walk, denoted by maxn≥0 Sn, where Sn =∑n

i=1 Xi . A similar connection holds, of course, between eZn and eZn+1 in this context. The
exponentiated form of the Lindley recursion is actually more suitable for our purposes: by
developing a connection between iterated random functions (perpetuities) and the maximum
of a random walk, we utilize rare-event simulation techniques to estimate P(maxn≥0 Sn > x)

and construct efficient simulation algorithms for computing the tail probability of the stationary
solutions to (1) and (2) under a heavy-tailed setup.

Before we state a more precise description of our results, we first mention some related
works. In the more general context of iterated random functions, Goldie [16] studied the tail
behavior of Z under sufficient conditions on �n for which P(Z > x) behaves as a power-law
distribution. We refer the reader to [25] for a more recent study. A related study to the present
work was carried out by Dyszewski [12], who showed that the tail of Z is slowly varying under
the same conditions (see Assumptions A1, A2, B1, and B2) applied in this work. Dyszewski’s
result was an extension of a classical result of Pakes [26] andVeraverbeke [29]. for the maximum
of random walks.

Turning to the special case of stochastic perpetuities, sufficient conditions for P(Z > x) to
decay at an exponential rate were established by Goldie and Grübel [17], who assumed that
|A1| is bounded by 1 and that the moment generating function of B1 exists in a neighborhood
of the origin. By assuming that E|A1|α = 1 and E|B1|α < ∞ for some α > 0, Kesten [22]
and later Goldie [16] proved that Z has a power-law distribution with exponent α. Moreover,
a result due to Grincevicius [19] and later generalized by Grey [18] states that the tail of Z is
regularly varying with some index, say −α, if B1 is regularly varying with the same index −α

and EAα
1 < 1. For a more extensive overview of the literature in this area, see, e.g. [8] and the

references therein.
A study on rare-event simulation of primary interest to this work is that of Blanchet and

Glynn [5], who designed an algorithm for estimating the tail probability of the all-time maximum
of heavy-tailed random walks. A major contribution of the present paper is the extension of
the algorithm in [5] to the more general setting of [12]. Asmussen and Nielsen [3] also studied
rare-event simulation for perpetuities and iterated random functions considering deterministic
interest rates. Blanchet and Zwart [7] estimated the tail probability of perpetuities with
deterministic premiums (Bn). Later, Blanchet et al. [6] developed simulation algorithms
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for perpetuities when the discount factor and premium are modeled by a Markov chain.
Furthermore, Collamore et al. [10] provide simulation estimators for the tail distribution of Z

as in (1) with �n(z) = An max{z, Dn} + Bn.
The contributions of the present paper are as follows. For stochastic perpetuities, we propose

a strongly efficient simulation algorithm for estimating P(Z > x). To this end, we make several
assumptions; seeAssumptionsA1–A5. We illustrate the generality of these assumptions through
examples and by providing sufficient conditions in Remarks 3, 4, 6, and 7. We construct an
upper bounding random walk for the stochastic perpetuity, which leads to an asymptotic result
for the tail probability of Z under a heavy-tailed assumption on log max{A1, B1}. Note that Z

is defined over an infinite horizon and, hence, requires an infinite amount of computational
effort to generate each sample when using a crude Monte Carlo sampling approach. A natural
approach to address such an issue is to obtain approximations by means of finite-time truncation.
We study the bias introduced by such approximations and show that our estimator has a vanishing
relative bias as x → ∞. By making a slightly stronger, but not restrictive, assumption (see
Assumption A5), we are able to identify the rate at which the bias decays with respect to the
truncation time. Applying the bias elimination technique studied in [28], we then propose
strongly efficient and unbiased estimators for P(Z > x). Finally, we extend these results to
the more general setting of (1). In Section 3.2 we make a couple of extra assumptions (see
Assumptions B0 and B1) on �n. Our setting is almost identical to that of [9], [12], and [16].
In Remark 9 we give examples that satisfy our assumptions.

The most important aspect of this work is that we connect our class of iterated random
functions to the maximum of a random walk. To illustrate this, consider (2) with Bn = 1. We
connect the stochastic perpetuity with the maximum of the random walk by observing that, for
γ ∈ (0,−ES1),

Z =
∞∑

n=0

exp(Sn) =
∞∑

n=0

exp(Sn + nγ ) exp(−nγ ) ≤ exp
(

max
n≥0

(Sn + nγ )
) 1

1− e−γ
, (3)

where Sn = ∑n
i=1 log Ai . The upper bounding random walk constructed in (3) allows us to

construct a coupling, and leverage the importance sampling algorithm designed by Blanchet and
Glynn [5]. It turns out that we can extend this idea to the general setting of (1) by constructing
a slightly more involved upper bounding random walk. Note that our extension of (3) leads to
a shorter proof of the asymptotic upper bound given in [12], which we believe to be of intrinsic
interest.

The rest of the paper is organized as follows. In Section 2 we introduce our notation and
basic background information. The main results are stated in Section 3, first in the context of
stochastic perpetuity and then in the context of the iterated functions setting. Numerical results
are presented in Section 4. All proofs can be found in Section 5.

2. Notation and preliminary results

In this section we introduce the notation use throughout the paper, and recall some prelimi-
nary results from the literature.

For (x, y) ∈ R
2, let x ∧ y � min{x, y} and x ∨ y � max{x, y}. For x ∈ R, let x+ =

x ∨ 0 denote the positive part of x and let log+ x = 0 ∨ log x = log(x ∨ 1). Let c ∈
R∪ {±∞}, and let f (x) and g(x) be nonnegative real-valued functions. We respectively write
f (x) ∼ g(x), f (x) = o(g(x)), and f (x) = O(g(x)) as x → c, if limx→c f (x)/g(x) = 1,
limx→c f (x)/g(x) = 0, and lim supx→c f (x)/g(x) <∞.
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To describe the efficiency of a rare-event simulation algorithm, we adopt a widely applied
criterion (for a discussion of efficiency in rare-event simulation, see, e.g. [2]). Suppose that we
are interested in a sequence of rare events E(x) that become more rare as x → ∞. Let L(x)

be an unbiased estimator of the rare-event probability P(E(x)). We say that L(x) is strongly
efficient if EL(x)2 = O(P(E(x))2) as x → ∞. In particular, strong efficiency implies that
the number of simulation runs required to estimate the target probability to a given relative
accuracy is bounded with respect to (w.r.t.) x.

As we mentioned in the introduction, a state-dependent importance sampling scheme will
be used in this paper. We recall the following result that will be very useful in validating our
new estimator.

Result 1. (Asmussen [1, Proposition 3.1 and Theorem 3.2].) Let Yn, n ∈ N, be a sequence
of random variables on the probability space (�, F , P). Let Mn, n ∈ N, be a nonnegative
martingale that is adapted to Yn for which EM0 = 1. Let � be a stopping time adapted to Yn.
Define a sequence of probability measures as Pn(A

′) = E1A′Mn for A′ ∈ Fn � σ(Y1, . . . , Yn),
where 1 is the indicator function. Then there exists a probability measure P̃ such that P̃(A′) =
Pn(A

′) for A′ ∈ Fn and n ∈ N. Furthermore, we have E1{�<∞} = Ẽ1{�<∞}M−1
� .

Next, we recall a simulation algorithm proposed in [5], where the authors developed an
efficient state-dependent importance sampling strategy for estimating the tail probability of
a random walk crossing a certain level. Before we go through the details of the simulation
algorithm, we introduce the following definition.

Definition 1. Let Y be a random variable on R. Let the integrated tail of Y , as a function of x,
be defined by

x �→ 1 ∧
∫ ∞

x

P(Y > t) dt.

We say that Y is long tailed if, for every c ∈ R, we have

P(Y > t + c) ∼ P(Y > t) as t →∞.

We say that Y is subexponential, if

P(Y+(1) + Y+(2) > t) ∼ 2P(Y+ > t) as t →∞,

where Y(1) and Y(2) are independent copies of Y . Moreover, we say that Y is strongly
subexponential, or Y belongs to the class S∗, if

2EY+P(Y > t) ∼
∫ t

0
P(Y > t − s)P(Y > s) ds as t →∞.

Remark 1. Note that the integrated tail function defines a probability distribution. Moreover,
if Y belongs to S∗, both the distribution of Y and its integrated tail are subexponential (see [23,
Theorem 3.2]) and, in particular, long tailed.

Consider a random walk {Sn}n∈N generated by a sequence of i.i.d. random variables {Xn}n∈N,
i.e. Sn = ∑n

i=1 Xi . Assume that EX1 < 0, and X1 belongs to S∗. Let P(y, dz) denote the
transition kernel of the random walk {Sn}n∈N. Define a nonnegative random variable W that is
independent of {Xn}n∈N with tail probability

P(W > y) � min

[
1,− 1

EX1

∫ ∞
y

P(X1 > t) dt

]
.
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Fix x > 0. To estimate P(maxn≥0 Sn > x) = P(τ (x) <∞), where

τ(x) = inf{n ≥ 0 : Sn > x},
Blanchet and Glynn [5] suggested simulating the random walk via another transition kernel

Qa∗(y, dz) � P(y, dz)
v(z+ a∗)
w(y + a∗)

for all y ∈ (−∞, x], z ∈ R, (4)

where
v(z) � P(W > −(z− x)), w(y) � P(X1 +W > −(y − x)), (5)

and a∗ is such that, for fixed δ ∈ (0, 1),

−δ ≤ v2(y)− w2(y)

P(X1 > −y)w(y)
for all y ≤ x + a∗. (6)

Let P
Qa∗ and E

Qa∗ denote respectively the probability measure and the expectation w.r.t. the
random process {Sn}n∈N having a one-step transition kernel Qa∗(y, dz) as in (4). In the
following theorem, we state the simulation estimator proposed in [5], which will prove to
be useful in our context.

Result 2. (Blanchet and Glynn [5, Theorem 3].) Suppose that EX1 < 0, and X1 belongs to
S∗. Let v and w be defined as in (5). For fixed δ ∈ (0, 1), there exists an a∗ = a∗(δ) ≤ 0 such
that (6) holds. Then

Lτ (x) = 1{τ(x)<∞}
τ(x)∏
k=1

w(Sk−1 + a∗)
v(Sk + a∗)

is an unbiased estimator of P(maxn≥0 Sn > x) under P
Qa∗ ; moreover, it is strongly efficient, i.e.

sup
x>0

E
Qa∗L2

τ (x)

P(maxn≥0 Sn > x)2 <∞.

Remark 2. The existence of such an a∗ as in Result 2 is guaranteed by the fact that (see [5,
Proposition 3] for details)

w(y)− v(y) = o(P(X1 > −y)) as y →−∞. (7)

We will extend this algorithm to the setting of (1). Unfortunately, it is not straightforward to
generate our estimator, say L, such that EL = P(Z > x) in finite computation time. However,
there exists a sequence Ln, n ∈ N, of L2 approximations (i.e. E[(Ln −L)2] → 0 as n→∞)
that can be generated exactly in finite time. Rhee and Glynn [28] considered this situation and
we recall one of their results which will prove to be crucial for our purposes.

Result 3. (Rhee and Glynn [28, Theorem 2].) Let Ln and L be such that E[(Ln−L)2] → 0 as
n→∞. Let N be a nonnegative integer-valued random variable, independent of Ln, n ∈ N,
such that P(N ≥ n) > 0 for all n ≥ 0. If

∞∑
n=1

E[(Ln − L)2]
P(N ≥ n)

<∞,
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then L̄ defined by

L̄ �
N∑

n=0

Ln − Ln−1

P(N ≥ n)

(with L−1 = 0) is an unbiased estimator of EL, and

E[L̄2] =
∞∑

n=0

E[(Ln−1 − L)2] − E[(Ln − L)2]
P(N ≥ n)

<∞.

In order to apply Result 3 in our context, we conclude this section with the following
extension of Result 2, which means that the algorithm proposed in [5] can be used to yield an
estimator with a bounded relative (2+ ε)th moment for some ε > 0. The proofs of this lemma
together with other results presented in this paper can be found in Section 5.

Lemma 1. Let Sn = ∑n
i=1 Xi be a random walk. Suppose that EX1 < 0, and X1 belongs

to S∗. Let v and w be defined as in (5). For any fixed ε > 0 and δ ∈ (0, 1), there exists an
a∗ = a∗(ε, δ) ≤ 0 such that

−δ ≤ v2+ε(y)− w2+ε(y)

P(X1 > −y + x)w1+ε(y)
for all y ≤ x + a∗.

Let

Lτ (x) � 1{τ(x)<∞}
τ(x)∏
k=1

w(Sk−1 + a∗)
v(Sk + a∗)

.

Then E
Qa∗Lτ (x) = P(maxn≥0 Sn > x) and

sup
x>0

E
Qa∗L2+ε

τ (x)

P(maxn≥0 Sn > x)2+ε
<∞.

3. Main results

This section contains our main results. In Section 3.1 we consider the stochastic perpetuity
as in (2). Recall that Zn, n ∈ N, is defined by

Zn+1 = An+1Zn + Bn+1 for n ∈ N.

Recalling that Z = ∑∞
n=0 Bn+1eSn and Sn = ∑n

i=1 log Ai , we are interested in estimat-
ing P(Z > x), where x is large. For this, we make several assumptions; see Assump
tions A1–A5. We discuss the generality of these assumptions by giving examples as well as
sufficient conditions in Remarks 3, 4, 6, and 7. To construct our simulation estimator, we
construct a stochastic upper bound that can be written as a functional of a suitable random
walk Sn(γ ). Then, using this upper bound, we define a crossing level s(x) and a stopping time
τγ (x) = inf{n ≥ 0 : Sn(γ ) > s(x)} such that {Z > x} ⊆ {τγ (x) < ∞}. Since the change
of measure proposed by Blanchet and Glynn [5] is strongly efficient for estimating the tail
probability of the maximum of heavy-tailed random walks, a natural strategy is to keep track of
the random process Sn(γ ), n ∈ N, while simulating the sequence

∑n
k=0 Bk+1eSk , n ∈ N, until

the stopping time τγ (x). In doing so, we can construct a state-dependent change of measure
using the path of the random walk until τγ (x) according to the method introduced in Section 2.
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Then we continue to simulate the path of the random walk after τγ (x) under the original measure.
Based on this idea, we propose a simulation algorithm for estimating P(Z > x) and discuss
its properties such as strong efficiency in the rest of Section 3.1. In Section 3.2 we extend the
results of Section 3.1 to the general setting, where Zn, n ∈ N, was defined in (1) as

Zn+1 = �n+1(Zn) for n ∈ N,

and {�n}n∈N is a sequence of i.i.d. random functions that is independent of Z0. Note that all
the proofs of the results in this section can be found in Section 5.

3.1. Stochastic perpetuity

We consider the Markov chain Zn, n ∈ N, as in (2). To guarantee the positive recurrence of
{Zn}n∈N, we assume the following.

Assumption A1. We have the following assumptions:

(i) A1 > 0 almost surely (a.s.), E log A1 < 0, and E log+ |B1| <∞;

(ii) E log+(A1 ∨ B1) <∞;

(iii) P(A1 > x, B1 ≤ −x) = o(P(A1 ∨ B1 > x)).

Recall that, under Assumption A1, the unique stationary distribution of this Markov chain
exists, has right-unbounded support, and has the same distribution as the random variable
Z �

∑∞
n=0 Bn+1eSn , where Sn =∑n

i=1 log Ai ; see, e.g. [8, Chapter 2] or [16] for more details.
As mentioned at the beginning of Section 3, we start by developing a connection between
perpetuities and the maximum of a random walk. More precisely, we construct an upper bound
for Z that can be written as a functional of a suitable random walk Sn(γ ). We formulate the
result in the following lemma.

Lemma 2. Let Assumption A1 hold. There exists a constant γ2 such that

E[(log+ B+1 − γ2) ∨ log A1] < 0.

Moreover, there exists a constant γ1 ∈ (0,−E[log Ai ∨ (log+ B+1 − γ2)]) such that

Z ≤ exp
(

max
n≥0

Sn(γ )
) eγ2

1− e−γ1
<∞, (8)

where Sn(γ ) = Sn(γ1, γ2) =∑n
i=1[log Ai ∨ (log+ B+i − γ2)+ γ1] and ES1(γ ) < 0.

Now from (8) we define s(x) � log x−γ2+log(1−e−γ1) and τγ (x) � inf{n ≥ 0 : Sn(γ ) >

s(x)} such that the following holds:

{Z > x} ⊆
{

max
n≥0

Sn(γ ) > s(x)
}
. (9)

As we will see in the proof of Theorem 2, the asymptotic behavior of P(Z > x) as x →∞
will be useful in establishing the strong efficiency of our estimator. Thus, we derive a tail
estimate for Z in Theorem 1 below. To be precise, we are interested in finding a function
f (x) such that P(Z > x) = O(f (x)) as x →∞. Moreover, we focus on the case where the
following assumption holds.

Assumption A2. The integrated tail (see Definition 1) of log(A1 ∨ B1), denoted by F̄I , is
subexponential.
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Remark 3. As mentioned in the introduction, the focus of this paper is to propose Monte Carlo
estimators for P(Z > x), which is slowly varying as x → ∞. Indeed, P(Z > x) is slowly
varying under Assumptions A1 and A2. A proof can be found in, e.g. [12]; in Theorem 1 (and
Theorem 5) we provide an independent proof for the asymptotic upper bound of P(Z > x)

(under a general setting; see Assumptions B1 and B2).

Theorem 1. If Assumptions A1 and A2 hold, we have

lim sup
x→∞

P(Z > x)

F̄I (log(x))
≤ − 1

E log A1
.

By constructing the upper bound as in Lemma 2, we establish a connection between perpe-
tuities and the maximum of a random walk. This connection will allow us to utilize rare-event
simulation techniques for estimating P(maxn≥0 Sn > x) in designing an efficient simulation
estimator for P(Z > x). To construct the simulation estimator of P(Z > x), define a
nonnegative random variable Wγ that is independent of {(An, Bn)}n∈N with tail probability

P(Wγ > t) � min

[
1,− 1

ES1(γ )

∫ ∞
t

P(S1(γ ) > s) ds

]
,

and define

vγ (z) � P(Wγ > −(z− s(x))) and wγ (y) � P(S1(γ )+Wγ > −(y − s(x))). (10)

Let P γ (y, dz) denote the transition kernel of the random walk {Sn(γ )}n∈N. For fixed a∗,
let E

Q
γ
a∗ denote the expectation w.r.t. the stochastic process {Sn(γ )}n∈N having a one-step

transition kernel

Q
γ
a∗(y, dz) =

⎧⎨
⎩

P γ (y, dz)vγ (z+ a∗)wγ (y + a∗)−1 for n ≤ τγ (x),

P γ (y, dz) for n > τγ (x).
(11)

We propose an estimator and show its strong efficiency in Theorem 2. We make a slightly
stronger assumption on the tail asymptotics of log(A1 ∨ B1) as follows.

Assumption A3. The distribution of log(A1 ∨ B1) belongs to the class S∗.

Remark 4. Assumption A3 is not restrictive in the sense that the class S∗ of strongly subexpo-
nential random variables includes regularly varying, lognormal, and Weibull-type distributions,
among many others. For more properties of strongly subexponential distributions, we refer the
reader to [14, Section 3.4].

Theorem 2. Let Assumptions A1 and A3 hold. Let vγ and wγ be defined as in (10). For fixed
δ ∈ (0, 1), there exists an a∗ = a∗(δ) ≤ 0 such that

−δ ≤ v2
γ (y)− w2

γ (y)

P(X1 > −y + s(x))wγ (y)
for all y ≤ s(x)+ a∗. (12)

Let

LT (x) � 1{T (x)<∞}
τγ (x)∏
k=1

wγ (Sk−1(γ )+ a∗)
vγ (Sk(γ )+ a∗)

.
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Then LT (x) is an unbiased and strongly efficient estimator of P(Z > x), i.e.

sup
x>1

E
Q

γ
a∗L2

T (x)

P(Z > x)2 <∞.

The estimator derived in Theorem 2 requires the computation of 1{Z>x} and, hence, is
unbiased only if we can generate Z in finite time. Generating a perfect sample from Z in
our current setting is not straightforward. To address this issue, we apply the bias elimination
technique introduced by Rhee and Glynn [28]. The plan for the rest of this section is as follows.
First, we propose a family of simulation algorithms by approximating the path {Zn}n>τγ (x)

with {Zn}τ(x)<n≤τγ (x)+M for a fixed and sufficiently large M; we show that the latter family
of simulation algorithms yields biased estimators with vanishing relative bias as x → ∞.
Consequently, we are able to apply the bias elimination technique and obtain an unbiased
estimator that is strongly efficient and runs in finite time. To begin with, note that

Z =
τγ (x)∑
n=0

Bn+1eSn + eSτγ (x)

∞∑
n=τγ (x)+1

Bn+1eSn−Sτγ (x)

︸ ︷︷ ︸
�Z′

,

where Z′ is independent of
∑τγ (x)

n=0 Bn+1eSn and eSτγ (x) , and has the same distribution as Z. A
natural choice for approximating the distribution of Z′ is a truncated sum. More precisely, let
M ∈ N be fixed, and our modified estimator takes the form

L�
T (x, M) = 1{τγ (x)<∞,

∑τγ (x)+M

n=0 Bn+1eSn>x}

τγ (x)∏
k=1

wγ (Sk−1(γ )+ a∗)
vγ (Sk(γ )+ a∗)

. (13)

We state a simulation algorithm for generating one sample of L�
T (x, M).

Algorithm 1. The algorithm comprises five steps.

Step 1. For fixed δ ∈ (0, 1), set a∗ ← a∗(δ) ≤ 0 satisfying (12).

Step 2. Set m← 1, n← 0, Z← 0, Sn(γ )← 0, and LT (x)← 1.

Step 3. While n < τγ (x):

(i) update Sn+1(γ )← Sn(γ )+Xn+1(γ ) by sampling the increment

Xn+1(γ ) = (log+ B+n+1 − γ2) ∨ log An+1 + γ1

conditional on Xn+1(γ )+W > s(x)− Sn(γ )− a∗;

(ii) sample (An+1, Bn+1) conditional on the value of Xn+1(γ );

(iii) update LT (x) ← LT (x)wγ (Sn(γ ) + a∗)vγ (Sn+1(γ ) + a∗)−1 and Z ← Z +
Bn+1

∏n
i=1 Ai ;

(iv) update n← n+ 1.

Step 4. While m ≤ M:

(i) sample (Aτγ (x)+m, Bτγ (x)+m) under the original measure;
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(ii) update Z← Z + Bτγ (x)+m

∏τγ (x)+m

i=1 Ai ;

(iii) update m← m+ 1.

Step 5. If Z > x then return L�
T (x, M); otherwise, return 0.

Remark 5. In step 3(ii) of Algorithm 1, sampling (An+1, Bn+1) conditional on Xn+1(γ ) under
the change of measure is equivalent to sampling it conditional on Xn+1(γ ) under the original
measure. To see this, note that for n+ 1 ≤ τγ (x) and any measurable set C ⊆ R

2,

E
Q

γ
a∗ [1(An+1, Bn+1)∈C | Si(γ ), i ≤ n, Xn+1(γ )]

= E

[(n+1∏
i=1

wγ (Si−1(γ )+ a∗)
vγ (Si(γ )+ a∗)

) ∣∣∣∣ Si(γ ), i ≤ n, Xn+1(γ )

]−1

× E

[
1(An+1, Bn+1)∈C

(n+1∏
i=1

wγ (Si−1(γ )+ a∗)
vγ (Si(γ )+ a∗)

) ∣∣∣∣ Si(γ ), i ≤ n, Xn+1(γ )

]

=
(n+1∏

i=1

wγ (Si−1(γ )+ a∗)
vγ (Si(γ )+ a∗)

)−1

×
(n+1∏

i=1

wγ (Si−1(γ )+ a∗)
vγ (Si(γ )+ a∗)

)
E[1(An+1, Bn+1)∈C | Si(γ ), i ≤ n, Xn+1(γ )]

= E[1(An+1, Bn+1)∈C | Si(γ ), i ≤ n, Xn+1(γ )]
= P((An+1, Bn+1) ∈ C | Xn+1(γ )).

Next we will analyze the performance of our modified estimator. In Theorem 3 we show
that, under the following assumption, EQ

γ
a∗L�

T (x, M)/P(T (x) <∞) converges to 1 as x →∞,
establishing that the relative bias of L�

T vanishes.

Assumption A4. We assume that B1 ≥ 0 a.s.

Remark 6. Under Assumption A4, Assumption A1(iii) is redundant.

Theorem 3. Under Assumptions A1, A3, and A4, L�
T (x, M) as in (13) is asymptotically

unbiased as x →∞, i.e. we have

lim
x→∞

E
Q

γ
a∗L�

T (x, M)

P(T (x) <∞)
= 1 uniformly in M ∈ N.

We are now ready to apply the bias elimination technique in Result 3 to the estimators
proposed in (13) as mentioned in the paragraph aboveAlgorithm 1. By analyzing the asymptotic
behavior of the relative bias as M → ∞ for fixed x (see Lemma 5), we are able to apply the
bias elimination technique and obtain an unbiased estimator for P(Z > x). We introduce the
following assumption; the unbiased estimator is then given in Theorem 4.

Assumption A5. (i) The Markov chain {Zn}n∈N given by (2) is irreducible and aperiodic.

(ii) There exists q ≥ 2 such that E| log A1|q + E| log B+1 |q <∞.

Remark 7. Assumption A5(i) is satisfied, e.g. if (A1, B1) has a Lebesgue density; see [8,
Lemma 2.2.2].
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Theorem 4. Let Assumptions A1 and A3–A5 hold. Let vγ and wγ be defined as in (10). For
fixed δ ∈ (0, 1) and β ∈ (0, 1), there exists an a∗ = a∗(δ) ≤ 0 satisfying

−δ ≤ v
(2−β)/(1−β)
γ (y)− w

(2−β)/(1−β)
γ (y)

P(X1 > −y + s(x))w
1/(1−β)
γ (y)

for all y ≤ s(x)+ a∗.

Moreover, it is possible to construct a random variable N independent of x such that

∞∑
n=0

E
Q

γ
a∗ (L�

T (x, 2n−1)− LT (x))2

P(Z > x)2P(N ≥ n)
<∞

and, hence, the estimator (see Rhee and Glynn [28])

LRG
T (x) �

N∑
n=0

L�
T (x, 2n)− L�

T (x, 2n−1)

P(N ≥ n)

with L�
T as in (13) is unbiased and strongly efficient.

Remark 8. As we will see in the proof of Theorem 4, one possible choice is to sample N with
P(N ≤ n) = 1− (1−p)n for n ≥ 1, where p < 1− 2−(q−1) and q is as in Assumption A5(ii).
In general, the bias elimination scheme of [28] is not guaranteed to produce nonnegative
estimators, which might not be ideal in the context of estimating (rare event) probabilities.
However, in our case L�

T (x, M) increases w.r.t. M and, hence, the resulting unbiased estimator
LRG

T (x) is always nonnegative.

3.2. Iterated random functions

We consider the Markov chain {Zn}n≥0 with Zn+1 = �n(Zn), where �n satisfies the
following assumption. For similar settings in which Markov chains generated by iterated
random functions are analyzed, see, e.g. [9], [12], and [16].

Assumption B0. We assume that {�n}n∈N is a sequence of i.i.d. random Lipschitz functions
with

Lip(�n) � sup
z1 �=z2

∣∣∣∣�n(z1)−�n(z2)

z1 − z2

∣∣∣∣. (14)

Moreover, there exists a sequence of i.i.d. random vectors {(An, Bn, Dn)}n∈N such that

Anz+ Bn −Dn ≤ �n(z) ≤ Anz
+ + B+n +Dn for all z ∈ R. (15)

In addition, we can sample�n from the conditional distribution, given (log+(B+n +Dn)− γ2)∨
log An for γ2 as in Lemma 3 below.

The goal of this section is to extend the results in Section 3.1 to the setting as described
above. To achieve this, we introduce a list of additional assumptions that are extensions of
Assumptions A1–A5. To begin with, we consider an extension of Assumption A1.

Assumption B1. Assume that (15) holds and (A1, B1, D1) satisfies the following conditions.

(i) A1, D1 > 0 a.s., E log A1 > −∞, and E log Lip(�1) < 0. Moreover, E log+ |B1 +
D1| <∞ and E log+ |B1 −D1| <∞.

(ii) E log+(A1 ∨ B1) <∞.
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(iii) Let the following tail behaviors hold:

P(max(A1, B1 +D1) > x) ∼ P(max(A1, B1) > x),

P(max(A1, B1 −D1) > x) ∼ P(max(A1, B1) > x),

P(A1 > x, B1 −D1 ≤ −x) = o(P(max(A1, B1) > x)).

Define �1 : n(z) � �1 ◦ �2 ◦ · · · ◦ �n(z) for each z ∈ R, and Z � limn→∞�1 : n(Z0).
Recall that (see [12, Theorem 3.1]) under Assumption B1, the unique stationary solution to (1)
exists, is finite, has the same distribution as Z, and has right-unbounded support. Moreover, the
distribution of Z does not depend on the initial condition Z0. Thus, without loss of generality
we set Z0 = 0. Note that Z can be bounded from above by a stochastic perpetuity

Z̄ �
∞∑

n=0

B̄n+1eSn,

where B̄n � max(B+n +Dn, 1) and Sn = ∑n
i=1 log Ai . Analogous to the previous section,

we construct an upper bound for Z̄ (and thus for Z) that can be written as a functional of the
maximum of a suitable random walk Sn(γ ).

Lemma 3. Under Assumption B1, there exists a constant γ2 such that

E[max(log+(B+1 +D1)− γ2, log A1)] < 0.

Moreover, there exists a constant γ1 ∈ (0,−E[log Ai ∨ (log+ B1 − γ2)]) such that

Z ≤ exp
(

max
n≥0

Sn(γ )
) eγ2

1− e−γ1
<∞, (16)

where Sn(γ ) = Sn(γ1, γ2) =∑n
i=1[log Ai ∨ (log+ (B+i +Di)− γ2)+ γ1].

Let Sn(γ ) be as in Lemma 3. Now from (16) we can define s(x) � log x − γ2 + log(1 −
e−γ1) and τγ (x) � inf{n ≥ 0 : Sn(γ ) > s(x)} such that (9) holds. Thanks to [12], under
subexponential assumptions on the random variable log(A1 ∨ B1), the tail asymptotics can be
described using the integrated tail function of log(A1∨B1). However, the upper bound derived
in Lemma 3 yields a shorter proof for the asymptotic upper bound in [12, Theorem 3.1].

Assumption B2. The integrated tail of log(A1 ∨ B1), denoted by F̄I , is subexponential.

Theorem 5. If Assumptions B1 and B2 hold, we have

lim sup
x→∞

P(Z > x)

F̄I (log(x))
≤ − 1

E log A1
.

For fixed a∗ ≤ 0, and vγ and wγ as in (10), recall that P
Q

γ
a∗ and E

Q
γ
a∗ denote respectively

the probability measure and the expectation w.r.t. the stochastic process {Sn(γ )}n∈N having
a one-step transition kernel Q

γ
a∗ as in (11). Given the asymptotic behavior of P(Z > x), in

Theorem 6 we show the strong efficiency (under P
Q

γ
a∗ ) of our estimator.

Assumption B3. The distribution of log(A1 ∨ B1) belongs to the class S∗.

https://doi.org/10.1017/apr.2018.37 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.37


Importance sampling of heavy-tailed iterated random functions 817

Theorem 6. Let Assumptions B1 and B3 hold, and vγ and wγ be as in (10). For fixed δ ∈ (0, 1),
we can choose a∗ = a∗(δ) ≤ 0 such that (12) holds. Let

LT (x) � 1{T (x)<∞}
τγ (x)∏
k=1

wγ (Sk−1(γ )+ a∗)
vγ (Sk(γ )+ a∗)

.

Then LT (x) is a strongly efficient estimator of P(Z > x) under P
Q

γ
a∗ .

Recall that �1 : n(z) � �1 ◦�2 ◦ · · · ◦�n(z) for each z ∈ R. Define

L�
T (x, M) � 1{τγ (x)<∞, �1 : τγ (x)+M(Z0)>x}

τγ (x)∏
k=1

wγ (Sk−1(γ )+ a∗)
vγ (Sk(γ )+ a∗)

. (17)

As in Section 3.1, we approximate LT (x) by L�
T (x, M). Analogous to Theorem 3, in Theorem 7

below we show that the estimator as in (17) is asymptotically unbiased.

Assumption B4. For each z, �1 : n(z) is increasing in n.

Theorem 7. Under Assumptions B1, B3, and B4, L�
T (x, M) in (17) is asymptotically unbiased

as x →∞, i.e. we have

lim
x→∞

E
Qa∗L�

T (x, M)

P(T (x) <∞)
= 1 uniformly in M ∈ N.

Applying again Result 3, in Theorem 8 below we construct an unbiased estimator for
estimating P(Z > x). To do this, we need the following assumptions.

Assumption B5. (i) The Markov chain {Zn}n∈N given by (1) is irreducible and aperiodic.

(ii) There exists q ≥ 2 such that E| log A1|q + E| log B+1 |q + E| log D1|q <∞.

Assumption B6. There exists z such that �n([z,∞)) ⊆ [z,∞) and �n is bijective on
[z,∞) a.s.

Remark 9. Assumptions B4 and B6 are satisfied if, for instance, the stochastic equation is

Zn+1 =
√

An+1Z2
n + Bn+1Zn + Cn+1.

This corresponds to a second-order random polynomial equation, [16]. Other examples are,
for instance, �n(z) = max{Anz, Bn} and �n(z) = An max{z, Bn} + Cn.

Theorem 8. Let Assumptions B1 and B3–B6 hold. Let vγ and wγ be as in (10). For fixed
δ ∈ (0, 1) and β ∈ (0, 1), there exists an a∗ = a∗(δ) ≤ 0 satisfying

−δ ≤ v
(2−β)/(1−β)
γ (y)− w

(2−β)/(1−β)
γ (y)

P(X1 > −y + s(x))w
1/(1−β)
γ (y)

for all y ≤ s(x)+ a∗.

Then it is possible to construct a random variable N independent of x such that

∞∑
n=0

E
Q

γ
a∗ (L�

T (x, 2n−1)− LT (x))2

P(Z > x)2P(N ≥ n)
<∞
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and, hence, the estimator LRG
T (x) defined by

LRG
T (x) �

N∑
n=0

L�
T (x, 2n)− L�

T (x, 2n−1)

P(N ≥ n)

with L�
T (x, M) as in (17) is unbiased and strongly efficient.

Remark 10. As in Remark 8, N can be chosen such that P(N ≤ n) = 1− (1−p)n for n ≥ 1,
where p < 1− 2−(q−1) and q is as in Assumption B5(ii).

4. Numerical results

Here we investigate our algorithm numerically, based on a stochastic perpetuity with Bn = 1.
We consider the increment log An

d=W − 3
2 , where W is a random variable with Weibull

distribution, i.e.
P(W > t) = exp(−2t1/2).

For the algorithmic parameters, we choose a∗ = −10 and γ = 1
2 . Moreover, we use a geometric

distributed random truncation index with parameter 1
2 . In Figure 1 we present the change of

the estimated probability w.r.t the different choices of M for the four different values x = 108,
x = 1016, x = 1032, and x = 1064 in each of the four plots. We see that the estimated
probability stabilizes as M grows, which confirms that our estimator is consistent as M →∞.
Comparing the four plots, we see that the initial bias for small M decreases as x increases, which
is consistent with the conclusion of Theorem 3 (vanishing relative bias). In Table 1 we present
the estimated probabilities, their 95% confidence intervals, and the estimated coefficients of
variation, i.e. the estimated standard deviation divided by the sample mean (based on 200 000

Estimates for 10x = 8

×1
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1.10
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1.06
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1.00
0.98

100 101 102 103
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Estimates for 10x = 64

100 101 102 103 100 101 102 103

100 101 102 103

×1
0−7

×1
0−5

×1
0−1

0
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3.35
3.30
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4.00
3.95
3.90
3.85
3.80
3.75
3.70

4.40

4.30

4.20

4.10
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Figure 1: Estimated probabilities for changing values of M . The y-axis values indicate the estimated
rare-event probabilities and the vertical bars indicate the 95% confidence intervals. The x-axis values

indicate the truncation index M .
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Table 1: Estimated rare-event probability (Est), 95% confidence intervals (CI), and the estimated
coefficients of variation (CV).

x = 108 x = 1016

M
Est CI CV Est CI CV

22 1.083× 10−3 ±0.009× 10−3 2.06 4.271× 10−5 ±0.041× 10−5 2.17
24 1.117× 10−3 ±0.010× 10−3 2.10 4.373× 10−5 ±0.042× 10−5 2.22
26 1.120× 10−3 ±0.010× 10−3 2.10 4.383× 10−5 ±0.043× 10−5 2.22
28 1.120× 10−3 ±0.010× 10−3 2.10 4.383× 10−5 ±0.043× 10−5 2.22

RG 1.119× 10−3 ±0.013× 10−3 2.70 4.375× 10−5 ±0.053× 10−5 2.76

x = 1032 x = 1064

M
Est CI CV Est CI CV

22 3.583× 10−7 ±0.035× 10−7 2.25 4.079× 10−10 ±0.037× 10−10 2.05
24 3.646× 10−7 ±0.037× 10−7 2.28 4.120× 10−10 ±0.037× 10−10 2.06
26 3.650× 10−7 ±0.037× 10−7 2.29 4.123× 10−10 ±0.038× 10−10 2.06
28 3.650× 10−7 ±0.037× 10−7 2.29 4.123× 10−10 ±0.038× 10−10 2.06

RG 3.663× 10−7 ±0.045× 10−7 2.81 4.115× 10−10 ±0.041× 10−10 2.27

samples) for different values of x and M . In the last column, we present the results produced
with the unbiased algorithm as introduced in Theorem 4. We can see that on the one hand, the
ratio between the estimated probability and the standard deviation stays roughly constant over
a range of x values and M values; on the other hand, the estimated probability using the fixed
truncation method tends to converge to the estimated probability produced with the unbiased
algorithm as M grows. These observations illustrate the strong efficiency (Theorems 2 and 4)
of our estimators.

5. Proofs

In this section we provide proofs of the results presented in this paper. Let

ṽ(z) � P(W > −z), w̃(z) � P(X1 +W > −z), Q̃(y, dz) � P(y, dz)ṽ(z)

w̃(y)
.

For y ≤ 0, let E
Q̃
y denote the expectation operator associated with S̃n � y + Sn having the

transition kernel Q̃, conditional on S̃0 = y. Let � = inf{n ≥ 0 : S̃n > 0}.
Lemma 4. Let ε > 0 be given. Suppose that there exist constants δ1, δ2 > 0 and a finite-valued
function h : R −→ [δ1,∞) such that

w̃1+ε(y)

∫
ṽ(z)h(z)P (y, dz) ≤ h(y)ṽ2+ε(y) for y ≤ 0. (18)

If h(z) ≥ 1 for z > 0 and ṽ(z) ≥ δ2 > 0 for z > 0, we have

E
Q′
y 1{�<∞}

�∏
k=1

w̃2+ε(S̃k−1)

ṽ2+ε(S̃k)
≤ δ−1

1 δ
−(2+ε)
2 ṽ2+ε(y)h(y) for y ≤ 0.
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Proof. Let Ey denote the expectation operator associated with {Sn}n≥0 having the transition
kernel P , conditional on S̃0 = y. Recall [5, Theorem 2(iii)], where it was proved that if there
exists a finite-valued nonnegative function h̃ such that

(Kh̃)(y) ≤ h̃(y)− η(y) for y ≤ 0,

where

(Kh̃)(y) =
∫

(−∞,0]
h̃(z)

w̃1+ε(y)

ṽ1+ε(z)
P (y, dz) and η(y) =

∫
(0,∞)

w̃1+ε(y)

ṽ1+ε(z)
P (y, dz),

then

Ey1{�<∞}
�∏

k=1

w̃1+ε(S̃k−1)

ṽ1+ε(S̃k)
≤ h̃(y) for y ≤ 0. (19)

Define h̃(·) = δ−1
1 δ
−(2+ε)
2 h(·)v2+ε(·). Note that

δ−1
1 δ
−(2+ε)
2 w̃1+ε(y)

∫
ṽ(z)h(z)P ′(y, dz)

= δ−1
1 δ
−(2+ε)
2 w̃1+ε(y)

(∫
(−∞,0]

+
∫

(0,∞)

)
ṽ(z)h(z)P (y, dz)

= (Kh̃)(y)+ δ−1
1 δ
−(2+ε)
2 w̃1+ε(y)

∫
(0,∞)

ṽ(z)h(z)P (y, dz).

Thus, (18) is equivalent to

(Kh̃)(y) ≤ h̃(y)− δ−1
1 δ
−(2+ε)
2 w̃1+ε(y)

∫
(0,∞)

ṽ(z)h(z)P (y, dz). (20)

On the other hand, we have

η(y) =
∫

(0,∞)

w̃1+ε(y)

ṽ1+ε(z)
P (y, dz)

≤ δ
−(2+ε)
2 w̃1+ε(y)

∫
(0,∞)

ṽ(z)P (y, dz)

≤ δ−1
1 δ
−(2+ε)
2 w̃1+ε(y)

∫
(0,∞)

h(z)ṽ(z)P (y, dz). (21)

Using (20) and (21), (18) implies that

(Kh̃)(y) ≤ h̃(y)− η(y).

From [5, Theorem 2(iii)], we conclude that (19) holds, as required. �

Proof of Lemma 1. We first find h that satisfies (18) in Lemma 4. Define

h(y) = 1− δ1{y>−a∗}.
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We will find a suitable a∗ ≤ 0 later. Note that (18) in this case becomes

w̃(y + a∗)−1
Eṽ(X1 + y + a∗)h(X + y) ≤ h(y)

(
ṽ(y + a∗)
w̃(y + a∗)

)2+ε

≤
(

ṽ(y + a∗)
w̃(y + a∗)

)2+ε

for y ≤ 0. (22)

Here we use the fact that h(y) = 1 for y ≤ 0. By the definition of ṽ,

Eṽ(X1 + y + a∗)h(X1 + y)

= E[E[1{W>−X1−y−a∗} | X1]] − δE[E[1{W>−X1−y−a∗} | X1]1{X1+y>−a∗}]
= P(W +X1 > −y − a∗)− δP(W +X1 > −y − a∗, X1 + y > −a∗).

Since w̃(y + a∗) = P(X1 +W > −y − a∗), (22) is equivalent to

1− δP(X1 + y > −a∗ | W +X1 > −y − a∗) ≤ ṽ2+ε(y + a∗)
w̃2+ε(y + a∗)

,

which is equivalent to

− δ ≤ ṽ2+ε(y + a∗)− w̃2+ε(y + a∗)
P(X1 > −y − a∗)w̃1+ε(y + a∗)

for all y ≤ 0,

⇐⇒ −δ ≤ v2+ε(x + y + a∗)− w2+ε(x + y + a∗)
P(X1 > −y − a∗)w1+ε(x + y + a∗)

for all y ≤ 0,

⇐⇒ −δ ≤ v2+ε(y)− w2+ε(y)

P(X1 > −y + x)w1+ε(y)
for all y ≤ x + a∗. (23)

Using the definition of w and the nonnegativity of W , (7) implies that w(y)− v(y) = o(w(y))

and, hence, v(y) ∼ w(y) as y → −∞. Therefore, there exists an a∗ satisfying (23) and,
hence, (18). Since infz≥0 ṽ(z+ a∗) = P(W > −a∗), Lemma 4 applies and we have

E1{τ̃ (0)<∞}
τ̃ (0)∏
k=1

w̃1+ε(S̃k−1 + a∗)
ṽ1+ε(S̃k + a∗)

≤ δ−1
P(W > −a∗)−(2+ε)ṽ2+ε(y) for y ≤ 0.

Recall the Pakes–Veraverbeke theorem (see [29] and [31]), i.e.

P

(
max
n≥0

S̃n > 0
)
∼ − 1

EX1

∫ ∞
−y

P(X1 > t) dt as y →−∞.

This implies that for any fixed y,

P

(
max
n≥0

S̃n > 0
)
∼ ṽ(y) as y →−∞.

Combining this with the fact that P(maxn≥0 S̃n > 0)/ṽ(y) is bounded as a function of y on
compact sets, we obtain

sup
y<0

P

(
max
n≥0

S̃n > 0
)−2

E1{τ̃ (0)<∞}
τ̃ (0)∏
k=1

w̃1+ε(S̃k−1 + a∗)
ṽ1+ε(S̃k + a∗)

<∞,
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which is equivalent to

sup
x>0

E
Qa∗L2+ε

τ (x)

P(maxn≥0 Sn > x)2+ε
<∞. �

Proof of Lemma 2. Note that max{((log+ B1 − γ ′2) ∨ log A1), 0} ≤ | log+ B1 ∨ log A1|,
and min{((log+ B1 − γ ′2) ∨ log A1), 0} is bounded from above and nonincreasing w.r.t. γ ′2.
Since (log+ B1− γ ′2)∨ log A1 = max{((log+ B1− γ ′2)∨ log A1), 0}+min{((log+ B1− γ ′2)∨
log A1), 0}, we can apply bounded convergence for the maximum and monotone convergence
for minimum to obtain

lim
γ ′2→∞

E[(log+ B1 − γ ′2) ∨ log A1] = E lim
γ ′2→∞

(log+ B1 − γ ′2) ∨ log A1 = E log A1 < 0.

Therefore, there exists γ2 such that E[(log+ B1 − γ ′2) ∨ log A1] < 0.
Now we have

Z ≤
∞∑

n=0

max(Bn+1, 1)eSn = eγ2

∞∑
n=0

e(log+ Bn+1−γ2)+Sn ≤ eγ2

∞∑
n=0

eS′n , (24)

where S′n = S′n−1 + (log+ Bn − γ2) ∨ log An. Note that the last inequality can be checked by
comparing S′n+1 with (log+ Bn+1 − γ2)+ Sn for each n, i.e.

(log+ Bn+1 − γ2)+ Sn = (log+ Bn+1 − γ2)+
n∑

k=1

log Ak

≤ (log+ Bn+1 − γ2) ∨ log An+1 +
n∑

k=1

(log+ Bk − γ2) ∨ log Ak

= S′n+1.

Now fix γ1 ∈ (0,−E[(log+ B1 − γ2) ∨ log A1]). From (24), we see that

Z ≤ eγ2

∞∑
n=0

eS′n = eγ2

∞∑
n=0

eS′n+nγ1 e−nγ1 ≤ exp
(

max
n≥0

Sn(γ )
) eγ2

1− e−γ1
,

where γ = (γ1, γ2), S
′
n = S′n−1 + (log+ Bn − γ2)∨ log An, and Sn(γ ) = S′n+ nγ1. Note that

ES1(γ ) < 0 by the choice of γ1. Hence, maxn≥0 Sn(γ ) is finite a.s. �
Proof of Theorem 1. From the upper bound constructed in Lemma 2, we know that

P(Z > x) ≤ P

(
max
n≥0

Sn(γ ) > s(x)
)
. (25)

Due to Assumption A2, the integrated tail of log+(A1 ∨ B+1 ) is also subexponential. Moreover,
it is straightforward to check that

log+(A1 ∨ B+1 )− γ2 ≤ log(max{A1, e−γ2B+1 , e−γ2}) ≤ log+(A1 ∨ B+1 ).

Therefore, the increments of the random walkSn(γ )have a subexponential integrated tail. Using
the Pakes–Veraverbeke theorem, we obtain the relationship for the right-hand side of (25), i.e.

P

(
max
n≥0

Sn(γ ) > s(x)
)
∼ − 1

E[(log+ B+1 − γ2) ∨ log A1] + γ1
F̄I (log(x)). (26)
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Thus,

lim sup
x→∞

P(Z > x)

F̄I (log x)
≤ − 1

E[(log+ B+1 − γ2) ∨ log A1] + γ1
.

Now letting γ2 →∞ and γ1 → 0, the result follows. �

Proof of Theorem 2. Let

M−1
n =

n∏
k=1

wγ (Sk−1(γ )+ a∗)
vγ (Sk(γ )+ a∗)

.

Obviously, {Mn}n∈N is a martingale and, therefore, {Mn∧τγ (x)}n∈N is also a martingale. Since
τγ (x) ≤ T (x) we can apply Lemma 1 to obtain

E
Q

γ
a∗LT (x) = P(T (x) <∞) = P(Z > x).

For the strong efficiency, we have

E
Q

γ
a∗L2

T (x)

P(Z > x)2 =
E

Q
γ
a∗1{Z>x}M−2

τγ
(x)

P(Z > x)2

≤ E
Q

γ
a∗1{maxn≥0 Sn(γ )>s(x)}M−2

τγ
(x)

P(Z > x)2

= E
Q

γ
a∗1{maxn≥0 Sn(γ )>s(x)}M−2

τγ
(x)

P(maxn≥0 Sn(γ ) > s(x))2

(
P(maxn≥0 Sn(γ ) > s(x))

P(Z > x)

)2

, (27)

where the first term in the last equation is guaranteed to be bounded over x ∈ (1,∞) due to
Result 2. Hence, only the latter term remains to be analyzed. From [12, Theorem 3.1], we have

lim inf
x→∞

P(Z > x)

F̄I (log(x))
≥ − 1

E log A1
. (28)

Since, by assumption, the integrated tail F̄I is subexponential, it is, in particular, long tailed.
Combining (26) and (28), we obtain

lim sup
x→∞

P(maxn≥0 Sn(γ ) > s(x))

P(Z > x)
≤ E log A1

E[max(B̄1 − γ2, log A1)] + γ1
. (29)

Using the fact that the left-hand side of (29) is bounded over a compact interval, we obtain
the result. �

Proof of Theorem 3. Note that the Markov chain we considered in Section 3.1 is a special
case of (1). Thus, we refer the reader to the proof of Theorem 7 for details. �

Proof of Theorem 4. We wish to apply Result 3 to the sequence {L�
T (x, 2n)}n∈N. Therefore,

we need to check the existence of a random variable N such that

∞∑
n=0

E
Q

γ
a∗ [(L�

T (x, 2n−1)− LT (x))2] − E
Q

γ
a∗ [(L�

T (x, 2n)− LT (x))2]
P(N ≥ n)P(Z > x)2 <∞. (30)
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We bound
E

Q
γ
a∗ (L�

T (x, 2n)− LT (x))2

P(Z > x)2

by a geometrically decreasing function of n that does not depend on x. For β ∈ (0, 1), using
Hölder’s inequality, we obtain

E
Q

γ
a∗ (L�

T (x, 2n)− LT (x))2

P(Z > x)2

=
E

Q
γ
a∗1{τγ (x)<∞,

∑τγ (x)+2n

k=0 Bk+1eSk≤x, Z>x}(M
−1
τγ

(x))2

P(Z > x)2

=
E

Q
γ
a∗ (1{τγ (x)<∞,

∑τγ (x)+2n

k=0 Bk+1eSk≤x, Z>x}M
−1
τγ

(x))β(1{T (x)<∞}M−1
τγ

(x))2−β

P(Z > x)2

≤
(EQ

γ
a∗1{τγ (x)<∞,

∑τγ (x)+2n

k=0 Bk+1eSk≤x, Z>x}M
−1
τγ

(x))β

P(Z > x)β

× (EQ
γ
a∗1{T (x)<∞}M−1

τγ
(x)(2−β)/(1−β))1−β

P(Z > x)2−β

=
(E

Q
γ
a∗1{τγ (x)<∞,

∑τγ (x)+2n

k=0 Bk+1eSk≤x, Z>x}M
−1
τγ

(x)

P(Z > x)

)
︸ ︷︷ ︸

I2

β(
E

Q
γ
a∗L(2−β)/(1−β)

T (x)

P(Z > x)(2−β)/(1−β)

)
︸ ︷︷ ︸

I1

1−β

.

Now we analyze terms I1 and I2. Using the same argument around (27) in the proof ofTheorem 2,
to bound I1 it is sufficient to analyze P(τγ (x) <∞)−(2+ε)

E
Q

γ
a∗L2+ε

τγ
(x). From Lemma 1, we

see that P(τγ (x) <∞)−(2+ε)
E

Q
γ
a∗L2+ε

τγ
(x) is bounded w.r.t. x; therefore, I1 is also bounded

w.r.t. x. Turning to I2, we claim that it can be bounded by κ2−n(q−1) for some constant κ > 0.
To see this, note that

I2 = P(τγ (x) <∞,
∑τγ (x)+2n

k=0 Bk+1eSk ≤ x, Z > x)

P(Z > x)

= P
(x)

( ∑τγ (x)+2n

k=0
Bk+1eSk ≤ x, Z > x

)
︸ ︷︷ ︸

I3

P(τγ (x) <∞)

P(Z > x)
,

where P
(x)(·) denotes the conditional distribution P(· | τγ (x) <∞). Hence, it is sufficient to

analyze the behavior of I3 w.r.t. M. Note that

Z =
τγ (x)∑
k=0

Bk+1eSk

︸ ︷︷ ︸
B ′x

+ eSτγ (x)︸ ︷︷ ︸
A′x

∞∑
k=1

Bτγ (x)+keSτγ (x)+k−Sτγ (x)

︸ ︷︷ ︸
Z′

(31)

τγ (x)+M∑
k=0

Bk+1eSk = B ′x + A′x
M∑

k=1

Bτγ (x)+keSτγ (x)+k−Sτγ (x)

︸ ︷︷ ︸
Z′(M)

. (32)
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Combining (31) and (32) with Assumption A4, we obtain

I3 =
∫

1{Z′(M)≤(x−B ′x)/A′x ,Z′>(x−B ′x)/A′x } dP
(x)

=
∫

P
(x)(Z′(M) ≤ y, Z′ > y) dP

(x)

(
x − B ′x

A′x
≤ y

)

=
∫
{P(x)(Z′ > y)− P

(x)(Z′(M)
> y)} dP

(x)

(
x − B ′x

A′x
≤ y

)
.

Using the strong Markov property, it follows that Z′(M) d=∑M
k=0 Bk+1eSk and Z′ d= Z under

P
(x). Hence, we have

I3 =
∫ {

P
(x)(Z > y)− P

(x)

( M∑
k=0

Bk+1eSk > y

)}
dP

(x)

(
x − B ′x

A′x
≤ y

)
.

Combining this with the fact that the backward iteration
∑M

k=0 Bk+1eSk has the same distribution
as ZM defined in (2), we obtain

I3 =
∫
{P(Z > y)− P(ZM > y)} dP

(x)

(
x − B ′x

A′x
≤ y

)
≤ dTV(ZM, Z),

where dTV denotes the total variation distance. To understand this quantity, we apply the
Lyapunov criterion from [20, Theorem 3.6], which implies a polynomial convergence rate of
the M-step transition kernel to the invariant distribution in the total variation norm. In view
of Lemma 5, there exists a constant κ such that (I3) ≤ dTV(ZM, Z) ≤ κM−(q−1) for all
M ∈ N. It should be noted that an exact expression of the constant κ can be obtained in a
few special cases; see, e.g. [11] and [21] and the references therein. By choosing N such that
P(N ≤ n) = 1 − (1 − p)n for n ≥ 1 with p < 1 − 2−(q−1), we conclude that the left-hand
side of (30) is bounded; hence, by applying Result 3, we can remove this constant and obtain
an unbiased, strongly efficient estimator. �

Lemma 5. Let Zn be a Markov chain as in (2) such that Assumption A5 holds. Then there
exists a constant κ such that dTV(Zn, Z) ≤ κn−(q−1).

Proof. We wish to apply [20, Theorem 3.6]. In order to establish the Lyapunov condition
as in (34) below, let V (x) = 1 ∨ (log x)q and PV (x) � EV (A1x + B1). Note that V (x) =
(log x)q1{x>e} + 1{x≤e} and, hence, the binomial expansion yields

PV (x) = E[log(A1x + B1)]q1{A1x+B1>e} + P(A1x + B1 ≤ e)

≤ E[log(A1x + B+1 )]q1{A1x+B1>e} + P(A1x + B1 ≤ e)

= E

[
log

A1x + B+1
x

+ log x

]q

1{A1x+B1>e} + P(A1x + B1 ≤ e)

= E

[
(log x)q1{A1x+B1>e} +

q∑
i=1

(
q

i

)
(log x)q−i

(
log

A1x + B+1
x

)i

1{A1x+B1>e}
]

+ P(A1x + B1 ≤ e)
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= V (x)+ E[log x]q(1{A1x+B1>e} − 1{x>e})+ P(A1x + B1 ≤ e)− 1{x≤e}

+ q(log x)q−1
E

[
log

A1x + B+1
x

]
1{A1x+B1>e}

+
q∑

i=2

(
q

i

)
(log x)q−i

E

[(
log

A1x + B+1
x

)i

1{A1x+B1>e}
]
.

For x > e,

PV (x) ≤ V (x)+ P(A1x + B1 ≤ e)+ q(log x)q−1
E

[
log

A1x + B+1
x

1{A1x+B1>e}
]

+
q∑

i=2

(
q

i

)
(log x)q−i

E

[(
log

A1x + B+1
x

)i

1{A1x+B1>e}
]
.

Note that

log A1 ≤ log
A1x + B+1

x

≤ log(A1 + B+1 )

≤ log(2(A1 ∨ B+1 ))

= log(A1 ∨ B+1 )+ log 2

= (log A1) ∨ (log B+1 )+ log 2

≤ | log A1| + | log B+1 | + log 2

and, hence, ∣∣∣∣ log
A1x + B+1

x

∣∣∣∣ ≤ | log A1| + | log B+1 | + log 2. (33)

Moreover, the right-hand side of (33) does not depend on x and has finite qth moment. Thus,
there are constants ci , i ≥ 1, such that

q∑
i=2

(
q

i

)
(log x)q−i

E

[(
log

A1x + B+1
x

)i

1{A1x+B1>e}
]
≤

q−2∑
i=0

ci(log x)i ≤ ε(log x)q−1

for sufficiently large x. On the other hand, note that log((A1x + B+1 )/x)1{A1x+B1>e} converges
to log A1 a.s. as x →∞ and, hence, by dominated convergence

E

[
log

A1x + B+1
x

]
1{A1x+B1>e} → E log A1 < 0.

Therefore, for any fixed ε > 0,

q(log x)q−1
E

[
log

A1x + B+1
x

1{A1x+B1>e}
]
≤ (qE log A1 + ε)(log x)q−1

for sufficiently large x. Choosing ε so that qE log A1 + 3ε < 0 and noting that

P(A1x + B1 ≤ e)→ 0 as x →∞,
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as well as (log x)q−1 = ((log x)q1{x>e} + 1{x≤e})(q−1)/q for x > e, we conclude that there
exists K such that

PV (x) ≤ V (x)+ ε(log x)q−1 + (qE log A1 + ε)(log x)q−1 + ε(log x)q−1

≤ V (x)− cV (q−1)/q(x) for x > K ,

where c = −(qE log A1+3ε) > 0. Finally, since PV (x), V (x), and V (q−1)/q(x) are bounded
on [0, K], there exists a constant b such that

PV (x) ≤ V (x)− cV (q−1)/q(x)+ b1[0,K], (34)

which is the sufficient condition of [20, Theorem 3.6] for polynomial ergodicity. Thus, we
obtain the result. �

Proof of Lemma 3. Recall that Z can be bounded by a stochastic perpetuity

Z̄ �
∞∑

n=0

B̄n+1eSn,

where B̄n � max(B+n +Dn, 1) and Sn =∑n
i=1 log Ai . Applying the same technique as in the

proof of Lemma 2 to Z̄, we obtain the result. �

Proof of Theorems 5 and 6. We omit the details here, since they can be proved analogously
as in Theorems 1 and 2. �

Proof of Theorem 7. Recall that �1:n(Z0) � �1 ◦ �2 ◦ · · · ◦ �n(Z0). Due to the fact that
{τγ (x) < ∞, �1 : τγ (x)+M(Z0) > x} ⊆ {T (x) <∞}, in order to prove the vanishing relative
bias result, it is sufficient to show that

lim inf
x→∞

P(τγ (x) <∞, �1 : τγ (x)+M(Z0) > x)

P(T (x) <∞)
≥ 1. (35)

Recall that Sn = ∑n
i=1 log Ai and Sn(γ ) = nγ1 +∑n

i=1[(log+(B+i +Di)− γ2) ∨ log Ai].
Let μ � −ES1 and μγ � −ES1(γ ). For ν, K > 0 consider the sets

E(1)
n = E(1)

n (K, ν) = {Sj ∈ (−j (μ+ ν)−K,−j (μ− ν)+K), j ≤ n},
E(2)

n = E(2)
n (K, ν) = {Sj (γ ) ∈ (−j (μγ + ν)−K,−j (μγ − ν)+K), j ≤ n},

E(3)
n = E(3)

n (K, ν) = {|Bj | ≤ eνj+K, j ≤ n},

where Bj = Bj −Dj . Define

En = E(1)
n ∩ E(2)

n ∩ E(3)
n ∩ {�n+2(Z0) > ν}

∩ {max(An+1, Bn+1) > xen(μ+ν)+L+K, Bn+1 ≥ −xen(μ−ν)−K},

where L > 0 is chosen to be large enough such that the sets {En}n≥1 are disjoint. The existence
of such an L is guaranteed by the fact that En ⊆ {τγ (x) = n+ 1} (see below). Now we show
that En ⊆ {τγ (x) = n+ 1, �1 : τγ (x)+1(Z0) > x}. To see that En ⊆ {τγ (x) = n+ 1}, note that
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{Sj (γ )}j≤n is bounded by K, μ > μγ (due to the fact that S1 ≤ S1(γ )) and

Sn+1(γ ) = Sn(γ )+ log(max(B̄n+1e−γ2 , An+1))+ γ1

> −n(μγ + ν)−K + log(max(Bn+1, An+1))− γ2 + γ1

> log x + n(μ− μγ )+ L− γ2 + γ1

> log x + L− γ2 + γ1

> s(x)

for sufficiently large L that does not depend on x. Thus, we conclude that τγ (x) = n+ 1 <∞
by taking sufficiently large x. To see that En ⊆ {τγ (x) = n + 1, �1 : τγ (x)+1(Z0) > x}, note
that �1 : n(z) ≥∑n−1

k=0 Bk+1
∏k

j=1 Aj + z
∏n

j=1 Aj from (15) and Assumption B4. Moreover,

|Bk+1|
k∏

j=1

Aj = |Bk+1|eSk ≤ eν(k+1)+Ke−k(μ−ν)+K = e−k(μ−2ν)+2K+ν on En

and, hence,

�1 : τγ (x)+1(Z0) = �1 : n+2(Z0)

= �1 : n(�n+1 : n+2(Z0))

≥
n−1∑
k=0

Bk+1

k∏
j=1

Aj + (Bn+1 +�n+2(Z0)An+1)

n∏
j=1

Aj

≥ −
n−1∑
k=0

|Bk+1|
k∏

j=1

Aj + (Bn+1 + xen(μ−ν)−K +�n+2(Z0)An+1)

n∏
j=1

Aj

− xen(μ−ν)−K
n∏

j=1

Aj

≥ − e2K+ν

1− e−μ+2ν
+ (Bn+1 + xen(μ−ν)−K + νAn+1)

n∏
j=1

Aj − x

≥ − e2K+ν

1− e−μ+2ν
+min(ν, 1) max(An+1, Bn+1 + xen(μ−ν)−K)

× e−n(μ+ν)−K − x

≥ − e2K+ν

1− e−μ+2ν
+min(ν, 1) max(An+1, Bn+1)e

−n(μ+ν)−K − x

≥ − e2K+ν

1− e−μ+2ν
+min(ν, 1)xeL − x

> x

for sufficiently large L that does not depend on x. Note that from Lemma 6 below,

P(En) = P(E(1)
n ∩ E(2)

n ∩ E(3)
n )P(�n+2(Z0) > ν)

× P(max(An+1, Bn+1) > xen(μ+ν)+L+K, Bn+1 ≥ −xen(μ−ν)−K)

= P(E(1)
n ∩ E(2)

n ∩ E(3)
n )P(�1(Z0) > ν)

× P(max(A1, B1) > xen(μ+ν)+L+K, B1 ≥ −xen(μ−ν)−K)
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≥ (1− ε)P(�1(Z0) > ν)

× {P(max(A1, B1) > xen(μ+ν)+L+K)

− P(max(A1, B1) > xen(μ+ν)+L+K, B1 < −xen(μ−ν)−K)}
≥ (1− ε)P(�1(Z0) > ν){P(max(A1, B1) > xen(μ+ν)+L+K)

− P(A1 > xen(μ+ν)+L+K, B1 < −xen(μ−ν)−K)}.
Moreover, since En ⊆ {τγ (x) < ∞, �1 : τγ (x)+M(Z0) > x} and En, n ≥ 1 are disjoint, it
follows that

P(τγ (x) <∞, �1 : τγ (x)+M(Z0) > x)

≥
∑
n≥0

P(En)

≥ (1− ε)P(�1(Z0) > ν)
∑
n≥0

{P(max(A1, B1) > xen(μ+ν)+L+K)

− P(A1 > xen(μ+ν)+L+K, B1 < −xen(μ−ν)−K)}. (36)

From Assumption B1(iii), we conclude that for any ε′ > 0 and taking sufficiently large x, the
following holds:

P(A1 > xen(μ+ν)+L+K, B1 < −xen(μ−ν)−K) ≤ P(A1 > xen(μ−ν)−K, B1 < −xen(μ−ν)−K)

≤ ε′P(max(A1, B1) > xen(μ−ν)−K).

Combining this with (36), we obtain

P(τγ (x) <∞, �1 : τγ (x)+M(Z0) > x)

≥ (1− ε)P(�1(Z0) > ν)
∑
n≥0

{P(max(A1, B1) > xen(μ+ν)+L+K)

− ε′P(max(A1, B1) > xen(μ−ν)−K)}. (37)

For a given ε′′ > 0, let x be sufficiently large so that∣∣∣∣1− P(log max(A1, B1) > y)

P(log max(A1, B1) > y)

∣∣∣∣ ≤ ε′′.

Since P(max(A1, B1) > y) is decreasing in y,
∑
n≥0

P(max(A1, B1) > xen(μ+ν)+L+K)

≥
∑
n≥0

1

μ+ ν

∫ log x+L+K+(n+1)(μ+ν)

log x+L+K+n(μ+ν)

P(log max(A1, B1) > y) dy

≥
∑
n≥0

1− ε′′

μ+ ν

∫ log x+L+K+(n+1)(μ+ν)

log x+L+K+n(μ+ν)

P(log max(A1, B1) > y) dy

= 1− ε′′

μ+ ν
F̄I (log x + L+K),
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and ∑
n≥0

P(max(A1, B1) > xen(μ−ν)−K)

≤
∑
n≥0

1+ ε′′

μ− ν

∫ log x−K+n(μ−ν)

log x−K+(n−1)(μ−ν)

P(log max(A1, B1) > y) dy

≤
∑
n≥0

1+ ε′′

μ− ν

∫ log x−K+n(μ−ν)

log x−K+(n−1)(μ−ν)

P(log max(A1, B1) > y) dy

= 1+ ε′′

μ− ν
F̄I (log x −K − μ+ ν).

Moreover, using the fact that F̄I is long tailed, we obtain, from (37),

P(τγ (x) <∞, �1 : τγ (x)(�τγ (x)+1 : τγ (x)+M(Z0)) > x)

≥ (1− ε)P(�1(Z0) > ν)

(
1− ε′′

μ+ ν
F̄I (log x + L+K)

− ε′(1+ ε′′)
μ− ν

F̄I (log x + L+K − μ+ ν)

)

∼ (1− ε)P(�1(Z0) > ν)

(
1− ε′′

μ+ ν
− ε′(1+ ε′′)

μ− ν

)
F̄I (log x)

∼ μ(1− ε)P(�1(Z0) > ν)

(
1− ε′′

μ+ ν
− ε′(1+ ε′′)

μ− ν

)
P(T (x) <∞), (38)

where we use [12, Theorem 3.1] in the final step. Recall that the distribution of the stationary
solution to (1) does not depend on the initial condition Z0 and, hence, without loss of generality
we can set Z0 = 0. Noting that �1(0) ≥ 0 and, hence, P(�1(Z0) > ν) → 1 as ν → 0, we
let ε, ε′, ε′′, ν → 0 to obtain (35). This implies that the relative bias converge to 0 since the
numerator in (35) is always smaller than the denominator. �
Lemma 6. Consider the sets E

(1)
n , E

(2)
n , and E

(3)
n as in the proof of Theorem 7. Then, for

ν, ε > 0, there exists K > 0 such that

P

(⋂
n≥1

(E(1)
n ∩ E(2)

n ∩ E(3)
n )

)
≥ 1− ε.

Proof. In the proof of [27, Theorem 1], the authors stated that for any ν > 0 and any i.i.d.
sequence {Yn}n≥0 with E[log+ |Y1|] <∞, it holds that

P(|Yj | ≤ eνj+K, j ≤ n)→ 1 as K →∞ uniformly w.r.t. n.

Using this argument, we conclude that P(E
(3)
n ) → 1 as K → ∞ uniformly w.r.t. n. Further,

combining this fact with the strong law of large numbers for {Sn}n≥0 and {Sn(γ )}n≥0 (see, e.g.
[4, Lemma 3.1]), we can always take large enough K such that

P(E(1)
n ∩ E(2)

n ∩ E(3)
n ) ≥ 1− ε for all n ∈ N.

Finally, since the sequence of sets E
(1)
n ∩ E

(2)
n ∩ E

(3)
n , n ≥ 0, is decreasing in the sense of

inclusion, we obtain the result. �
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Proof of Theorem 8. Note that this result can be proved by following similar arguments as
in the proof of Theorem 4, hence, we provide only a sketch of the proof. Recall that in the
context of iterated random functions, we have the estimator

L�
T (x, M) � 1{τγ (x)<∞, �1 : τγ (x)+M(Z0)>x}

τγ (x)∏
k=1

wγ (Sk−1(γ )+ a∗)
vγ (Sk(γ )+ a∗)

.

Analogous to the proof of Theorem 4, we wish to bound

E
Q

γ
a∗ (L�

T (x, 2n)− LT (x))2

P(Z > x)2

by a decreasing function of n independent of x. Again, by using Hölder’s inequality it is
sufficient to bound

(I′1) �
E

Q
γ
a∗1{τγ (x)<∞, �1 : τγ (x)+M(Z0)≤x, Z>x}M−1

τγ
(x)

P(Z > x)

= P
(x)(�1 : τγ (x)(�τγ (x)+1 : τγ (x)+M(Z0)) ≤ x, �1 : τγ (x)(Z

′) > x)︸ ︷︷ ︸
I′2

P(τγ (x) <∞)

P(Z > x)
,

where Z′ � limM→∞�τγ (x)+1 : τγ (x)+M(Z0)
d= Z and P

(x)(·) denotes the conditional dist-
ribution P(· | τγ (x) < ∞). Since �n is Lipschitz and bijective, �−1

1 : τγ (x) is either strictly
increasing or strictly decreasing. Without loss of generality, we assume that �−1

1 : τγ (x) is strictly
increasing, since the case of �−1

1 : τγ (x) being strictly decreasing can be dealt with similarly.
Using the strong Markov property we obtain

I′2 =
∫
{P(Z > y)− P(ZM > y)} dP

(x)(�−1
1 : τγ (x)(x) ≤ y) ≤ dTV(ZM, Z).

By Lemma 7 below we obtain the result. �
Lemma 7. Let Zn be a Markov chain as in (1) such that Assumption B5 hold. Then there exists
a constant κ such that dTV(Zn, Z) ≤ κn−(q−1).

Proof. Let V (x) = 1 ∨ (log x)q and PV (x) � EV (�1(x)). By noting that

PV (x) � E[log(�1(x))]q1{�1(x)>e} + P(�1(x) ≤ e)

≤ E[log(A1x + B+1 +D1)]q1{�1(x)>e} + P(�1(x) ≤ e),

the result follows immediately from similar arguments as in the proof of Lemma 5. �
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