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Abstract

This paper proposes a general framework that integrates the large deviations and metastability
analysis of heavy-tailed stochastic dynamical systems. Employing this framework in the context
of heavy-tailed stochastic difference/differential equations, we first establish a locally uniform
sample path large deviations, and then translate the sample path large deviations into a sharp
characterization of the joint distribution of the first exit time and exit location. As a result, we
provide the heavy-tailed counterparts of the classical Freidlin-Wentzell and Eyring-Kramers the-
orems. Our findings also address an open question from [26], unveiling intricate phase transitions
in the asymptotics of the first exit times under truncated heavy-tailed noises. Furthermore, we
develop a set of machinery that elevates the first exit time analysis to the characterization of
global dynamics of stochastic dynamical systems. With the machinery, we uncover the global
behavior of the stochastic difference/differential equations and show that, after proper scaling,
they converge to continuous-time Markov chains that only visit the widest minima of the potential
function.

1 Introduction

The analysis of large deviations and metastability in stochastic dynamical systems has a rich history
in probability theory and continues to be a vibrant field of research. For instance, the classical
Freidlin-Wentzell theorem (see [51]) analyzed sample-path large deviations of It6 diffusions. Over
the past few decades, the theory has seen numerous extensions, including the discrete-time version
of Freidlin-Wentzell theorem (see, e.g., [39, 30]), large deviations for finite dimensional processes
under relaxed assumptions (see, e.g., [13, 16, 15, 1, 17]), Freidlin-Wentzell-type bounds for infinite
dimensional processes (see, e.g., [5, 6, 29]), and large deviations for stochastic partial differential
equations (see, e.g., [50, 9, 46, 38]), to name a few. On the other hand, the exponential scaling and the
pre-exponents in the asymptotics of first exit times under Brownian perturbations were characterized
in the Eyring—Kramers law (see [19, 32]). There have been various theoretical advancements since this
seminal work, such as the asymptotic characterization of the most likely exit path and the exit times
for Brownian particles under more sophisticated gradient fields (see [35]), results for discrete-time
processes (see, e.g., [31, 8]), and applications in queueing systems (see, e.g., [49]). For an alternative
perspective on metastability based on potential theory, which diverges from the Freidlin-Wentzell
theory, we refer the readers to [4].

In sharp contrast to the classical light-tailed analyses, stochastic dynamical systems exhibit fun-
damentally different large deviations and metastability behaviors under heavy-tailed perturbations.
As shown in [24, 25, 26, 28], when the stochastic processes are driven by heavy-tailed noises, the



exit events are typically caused by large perturbations of a small number of components rather than
smooth tilting of the dynamics.

In this paper, we provide a general framework for heavy-tailed dynamical systems by develop-
ing a set of mathematical machinery that uncovers the interconnection between the large deviations,
local stability, and global dynamics of stochastic processes. Building upon this unified framework,
we characterize the sample-path large deviations and metastability of heavy-tailed stochastic differ-
ence and differential equations, thus offering the heavy-tailed counterparts of Freidlin—Wentzell and
Eyring-Kramers theorems. Specifically, the main contributions of this work can be summarized as
follows:

e For stochastic difference and differential equations with heavy-tailed increments, we establish a
version of sample-path large deviations that is uniform w.r.t. the initial values. This is accom-
plished by rigorously characterizing a uniform version of the M(S \ C)-convergence introduced
in [34]. In particular, this is the characterization of catastrophe principle, or principle of big
Jumps, which was confirmed in the special cases of Lévy processes and random walks in [45]. By
extending the catastrophe principle to heavy-tailed stochastic difference/differential equations,
we reveal a discrete hierarchy governing the causes and probabilities of rare events in a wide
variety of heavy-tailed systems.

e We develop a framework for the first exit time analysis in heavy-tailed Markov processes. Central
to the development is the concept of asymptotic atom where the process recurrently enters and
(almost) regenerates. Leveraging the uniform version of sample-path large deviations over such
asymptotic atoms, we obtain the sharp asymptotics of the joint law of (scaled) exit times and exit
locations for heavy-tailed processes. Notably, we address an open question left in [26] and reveal
intricate phase transitions in the first exit times of heavy-tailed dynamics under truncation.

e Additionally, we develop a machinery that establishes sample-path convergence to Markov jump
processes building on the sharp first exit time and exit location analysis. As a direct application,
we study the global dynamics of heavy-tailed stochastic difference and differential equations
over a multi-well potential. Our findings systematically characterize an intriguing phenomena
that, under truncation, the heavy-tailed processes closely resemble Markov jump processes that
completely avoid narrow minima of the potential.

In this paper, we focus on the heavy-tailed phenomena captured by the notion of regular variation.
Specifically, let (Z;);>1 be a sequence of iid random variables such that EZ; = 0 and P(|Z;] > ) is
regularly varying with index —a as * — oo for some o > 1. That is, there exists some slowly varying
function ¢ such that P(|Z1| > z) = ¢(x)z~%. For any n > 0 and x € R, let (Xjn(x))j o Solves the
stochastic difference equation

>

XJ(z) = x; X](x) = X] ) (2) + na(X] ) () +no(X](x))Z; V5 > 1. (1.1)
Throughout the paper, we adopt the convention that the subscript denotes time and the superscript
7 denotes the scaling parameter that tends to zero.

Another object of interest is the stochastic differential equation driven by heavy-tailed Lévy pro-
cesses. Let Ly be a one-dimensional Lévy process with Lévy measure v. Suppose that EL; = 0 and
v((—00, —z) U (z,00)) is regularly varying with index —« as  — oo for some o > 1. For any n > 0
and z € R, we define L} £ nL,/, as the scaled version of L;, and let Y;(z) be the solution of the
stochastic differential equation

Y (z) = z; Ay (z) = a(Y" (x))dt + o (Y, (x))dLy. (1.2)

At the crux of this study, there is a fundamental difference between light-tailed and heavy-tailed
stochastic dynamical systems. This difference lies in the mechanism through which system-wide rare
events arise. In light-tailed systems, the rare events exhibits the conspiracy principle where everything



goes wrong a little bit at any moment. In contrast, the catastrophe principle governs the most-likely
cause of rare events in heavy-tailed systems, where a few catastrophes (i.e., extreme perturbations)
drive the system-wide rare events, while the system’s behavior is indistinguishable from the nominal
behavior most of the time.

As a preliminary version of the catastrophe principle, the well-known principle of a single big jump
characterizes the fact that extreme values in random walks and Lévy processes with regularly varying
increments are usually caused by a single large perturbation. This line of investigation was initiated
in [40, 41] and extended in [3, 14, 18, 21]. The principle of a single big jump has been derived at
the functional level for random walks in [23] and established in a wide variety of stochastic dynamics
with dependence structures; see, e.g., [7, 20, 22, 36, 37]. In contrast, the results for regularly varying
Lévy processes and random walks developed in [45] embody the more general catastrophe principle at
the sample-path level, addressing rare events that require multiple jumps to occur. See also [2] where
similar large deviation results were obtained under different scaling.

In comparison,a the study of sample-path large deviations of stochastic dynamical systems, such
as X7 (z) and Y;"(x) defined in (1.1) and (1.2) respectively, is still at an early stage. The only result
we are aware of is [53]. Their key idea is to transfer the sample-path large deviations developed in
[45] for Lévy processes onto stochastic differential equations through continuous mapping arguments.
However, this approach does not work in general unless the diffusion coefficient o (-) is held constant.

Compared to previous works, this paper establishes the catastrophe principle at much greater
generality. In particular, we develop a uniform version of sample-path large deviations for heavy-tailed
stochastic dynamical systems, which significantly enhances the subsequent metastability analysis.

Take the stochastic difference equation X7'(x) in (1.1) for example. Let y;(x) be the solution to
the ordinary differential equation (ODE) dy;(x)/dt = a(y(x)) with the initial condition yo(z) = z.
Let X"(z) = {Xft/nj (z) : t € [0,1]} be the time-scaled path of X}(x), and note that X"(z) is
a random element in D, the space of RCLL functions over [0,1]. For a given compact set A C R
and non-negative integer k, let ]D)(f) be the subset of D containing ODE paths y.(z) with exactly k
perturbations and initial value z € A. See Section 2.2 the rigorous definition of the concepts involved.
Intuitively speaking, if B N ]fofl) = ) for some B € D, then it takes at least k perturbations for
any ODE path y.(x) with « € A to enter set B. This index k plays a major role in our sample-path

large deviations results. Indeed, for any Borel measurable B C D that is bounded away from (i.e., has

a strictly positive distance from) ]D)Ef_l) under Skorokhod J; metric, we obtain the following sharp
asymptotics that is uniform w.r.t. any initial value over A:

inf,ea P(X"(x) € B
inf C®) (Bo;x) < lim inf i ( k)
= W (2] > )

- sup,ca P (X”(:r) € B) o
< lim sup 7~ < sup C! )(B ;x) < 00.
no - (p7'P(|Z4] > 1Y) z€A

(1.3)

Here, C**)( - ;z) is a Borel measure supported on ]D)ff), and B°, B~ are the interior and closure

of B, respectively. See Theorem 2.2 for a formal statement of the results. As a manifestation of
catastrophe principle, our results show that the index k—the minimum number of jumps needed to
enter set B—dictates not only the most likely cause of events {X"(x) € B} (i.e., through at least
k large perturbations in X"(x)) but also the polynomial rate of decay (n~'P(|Z;1| > n~1))¥ of the
probability P(X"(x) € B). To establish uniform asymptotics of form (1.3), the key component is
a uniform version of the M(S \ C)-convergence introduced in [34]. In Section 2.1, we develop the
Portmanteau theorem for uniform convergence in M(S \ C), which is the backbone supporting our
proofs of the uniform sample-path large deviations of form (1.3).

Furthermore, the uniform asymptotics described in (1.3) extend to stochastic dynamical systems
beyond X7(z). For instance, let .(-) be the projection operator from R onto [~¢,c]. Let b > 0 be



the truncation threshold, and define (X;Ilb(gc))j>0 through the recursion
b b b b b .
X@) =2 XP() = X (@) + e (na(Xj"Ll(z)) + na(Xjﬁll(x))Zj) Vi > 1. (1.4)

In other words, X;"b(x) is the modulated version of X7'(z) where the distance traveled at each step is

truncated under b. Theorem 2.3 presents the uniform sample-path large deviations for X;ﬂb(x), which
admits the same form as result (1.3). Similar results can be developed for the stochastic differential
equation Y;"(z) and its truncated counterpart, We collect the results in Section 2.2.3.

Next, we investigate the metastability of heavy-tailed stochastic dynamical systems with the drift
coefficient set as a(-) = —U’(+) in (1.1) and (1.2) for some potential function U € C!(R). Specifically,
let I = (Sieft, Sright) be some open interval containing the origin. Suppose that the entire domain
falls within the attraction field of the origin in the following sense: for the ODE path dy(z)/dt =
—U’(yi(x)) with initial condition yo(z) = z, the limit lim;_, . y;(z) = 0 holds for all x € I. As a
result, when initialized in I, the deterministic dynamical system will be attracted to and trapped
at the origin. In contrast, under the presence of random perturbations, the escape from I becomes
possible. The first exit time problem examines the law of the first time a stochastic dynamical system,
such as X7 (z) or Y;"(x), exits from I due to the random perturbations. Of particular interest are the
asymptotics of the first exit time as the noise magnitude decreases.

Originally motivated by the modeling of chemical reactions, the first exit time problem finds
applications in numerous contexts, including physics [10, 11], extreme climate events [42], mathe-
matical finance [48], and queueing systems [49]. The arguably best-known result in this field is the
Eyring—Kramers law, which characterizes the exit time of Brownian particles. For references, see,

g., [35]. Concerning Lévy-driven diffusions, [28, 24] derived the asymptotics of the first exit times
under regularly varying noises, and [25] extended the results to the multi-dimensional settings. Fur-
thermore, [26] investigated the case where the Lévy measure v decays exponentially fast with speed
v((—o00, —u] U [u,0)) &~ exp(—u®). The results revealed a surprising phase transition in the asymp-
totics of first exit times based on the index a. The hierarchy of exit times of Lévy-driven Langevin
equations is summarized in [27].

Our approach to the first exit time problem relies on a general framework developed in Section 2.3.2.
This framework uplifts the sample-path large deviations to first exit time analysis for general Markov
chains. At the core of this framework lies the concept of asymptotic atoms, namely recurrent regions
at which the process (almost) regenerates upon each visit. Our uniform sample-path large deviations
then prove to be the right tool under this framework, empowering us to simultaneously characterize
the behavior of the stochastic processes under any initial values over the asymptotic atoms. As an
immediate application of the framework, we characterize the asymptotics of the joint law of first exit
time and exit locations for a variety of heavy-tailed processes. In essence, under truncation threshold
b > 0, it requires a minimum of J; = [|Sies;| V Srignt/b] jumps for the truncated dynamics X;"b(x) to
exit from I = (Sieft, Sright) When initialized at the origin. Theorem 2.6 then implies that for the first

exit time 77°(x) = min{j > 0 : X (x) ¢ I} and the exit location lel?b(m)(x), their joint law admits
the limit (for all x € T)

(G- () -7, X0, (@) = (BV) - asn Lo, (1.5)

Here, F,V;, are two independent random variables, where F is Exponential with rate 1 and V} is
generated under some probability measure Cy(-) supported on I°. C} is a normalization constant,
and the scale function A(n) =7~ - P(|Z1| > n~1!) is roughly decaying at a polynomial rate n®~! for
small  with a > 1 being the heavy-tailed index for noises Z;. See Section 2.3.1 for definitions of the
concepts involved. Notably, Theorem 2.6 presents an even stronger result where the asymptotics in
(1.5) hold uniformly for initial values x over any compact set within I. Meanwhile, the first exit time
analysis for Xy(x) is obtained by sending the truncation threshold b to co. Similar first exit time



analysis can be carried out for stochastic differential equations Y;’(x) and the truncated counterparts,
and we summarize the results in Section 2.3.3.

Compared to existing works [28, 24] in the regularly varying cases, our results allow for non-
constant diffusion coefficient o(-), analyze the impact of truncation, and eliminate the need for con-
ditions such as U € C3(R) or non-degeneracy of U”(-) at the boundary of I. Additionally, our results
address an open question that was partially explored in [26] regarding the impact of truncation on
the first exit times. While [26] primarily focused on the truncation of Weibullian noises whose tail
probability decays at rate exp(—u®) for some a € (0, 1), our work provides an important missing piece
to the puzzle and unveil the effect of truncation in the regularly varying cases. In particular, we char-
acterize an intricate phase transition in the asymptotics of T”‘b(x) that was not observed in previous
works. To be specific, by virtue of result (1.5) we find that the first exit time 77!°(z) is roughly of
order 1/n**+75(@=1) for small 7. In other words, the order of the first exit time 77/°(z) does not vary
continuously with b; rather, it exhibits a discretized dependency on b through J; = [|siett| V Sright /],
i.e., the minimum number of jumps required for the exit. This phase transition phenomenon further
exemplifies the catastrophe principle under regularly varying noises, as the “cost” function J; dic-
tates not only the most likely cause (i.e., through J; large noises) but also the rarity of the exit (i.e.,
occurring roughly once every 1/171‘”5'(0‘_1) steps).

In Section 2.4, we present a technical framework that connects the local stability and the global
dynamics of stochastic processes. Specifically, the framework allows us to uplift the first exit time
results to the sample-path convergence to jump processes. The power of this framework becomes
evident when combined with the first exit time analysis for heavy-tailed dynamical systems. Indeed,
consider a heavy-tailed stochastic process that traverses a multi-well potential U; see Figure 2.1 for
an illustration of a potential U and the attraction fields therein. As a direct consequence of the
framework, Theorem 2.9 shows the existence, under suitable conditions, of a CTMC Yt*lb only visiting
local minima in the widest attraction fields over U such that

b b *|b *|b
(Xft‘l/xz(m(x)’ XTI s (x)> = (Ytl' Yy ) asn {0 (1.6)

forallk > 1and 0 < ¢; < --- < tg, under some time scaling of A} (n). In particular, our result uncovers
an intriguing phenomenon that, under truncations, the heavy-tailed dynamics (asymptotically) avoid
any local minimum over U that is not wide enough. Regarding the concept of the widest attraction
fields and the associated local minima, we note that the width is measured by the number of jumps
(with sizes bounded by b) required to exit the attraction field, and we refer the readers to Section 2.4
for the rigorous definition.

Some of the results in Section 2.3 and Section 2.4 of this paper have been presented in a preliminary
form at a conference [52]. The main focus of [52] was the connection between the metastability analy-
sis of stochastic gradient descent (SGD) and its generalization performance in the context of machine
learning. Compared to the ad-hoc approach in [52], this paper provides a systematic framework to
study the global dynamics of significantly more general class of heavy-tailed dynamical systems. We
also note that (i) by sending the truncation threshold b to oo in (1.6), we recover the global dynamics
of Xjn () in Theorem 2.10; (ii) metastability analysis can be conducted analogously for stochastic dif-
ferential equation Y;"(x) and its corresponding truncated dynamics, which are summarized in Section
2.4.3.

The paper is structured as follows. Section 2.1 studies the uniform M(S \ C)-convergence, and
Sections 2.2-2.4 present the main results. Specifically, Section 2.2 develops the sample-path large
deviations, Section 2.3 carries out the first exit time analysis, and Section 2.4 presents the sample-
path convergence of the global dynamics. Proofs are collected in Sections 3-5.

2 Main Results

This section presents the main results of this paper and discusses the implications. All the proofs are
deferred to the later sections.



2.1 Preliminaries

We start with setting frequently used notations and reviewing the concept of M-convergence introduced
in [34]. Throughout the paper, we let [n] = {1,2,--- ,n} for any positive integer n. Let N =
{0,1,2,---} be the set of non-negative integers. Let (S, d) be a complete and separable metric space
with .%s being the corresponding Borel o-algebra. For any E C S, let E° and E~ be the interior
and closure of E, respectively. For any r > 0, let E" =2 {y € S: d(E,y) < r} be the r-enlargement
of a set E. Here for any set A C S and any z € S, we define d(A,x) £ inf{d(y,x) : y € A}.
Also, let E,. = ((E€)")¢ be the r-shrinkage of E. Note that for any E, the enlargement E” of E is
closed, and the shrinkage F, of E is open. We say that set A C S is bounded away from another set
B C S if infgeayerd(z,y) > 0. For any Borel measure p on (S,.%5), let the support of 1 (denoted
as supp(u)) be the smallest closed set C' such that pu(S\ C) = 0. For any function g : S — R, let
supp(g) = ({z €S+ g(z) #0}) .

Given any Borel measurable subset C C S, let S\ C be a subspace of S equipped with the relative
topology with c-algebra Y5\c = {4 € .%5: ACS\C}. Let

M(S\C) £ {V() is a Borel measure on S\ C: v(S\ C") < o0 Vr > 0}.

M(S\C) can be topologized by the sub-basis constructed using sets of form {v € M(S\C) : v(f) € G},
where G C [0,00) is open, f € C(S\C), and C(S\ C) is the set of all real-valued, non-negative,
bounded and continuous functions with support bounded away from C (i.e., f(z) = 0 Vz € C" for
some r > 0). Given a sequence p,, € M(S\C) and some p € M(S\C), we say that u, converges to y in
M(S\C) as n — 00 if limy, o0 |pen (f) — ()| = 0 for all f € C(S\C). See [34] for alternative definitions
in the form of a Portmanteau Theorem. When the choice of S and C is clear from the context, we
simply refer to it as M-convergence. As demonstrated in [45], the sample path large deviations
for heavy-tailed stochastic processes can be formulated as M-convergence of scaled processes in the
Skorokhod space. In this paper, we introduce a stronger version of M-convergence, which facilitates
the metastability analysis in the later sections.

Definition 2.1 (Uniform M-convergence). Let © be a set of indices. Let ), g € M(S\ C) for each
n >0 and 6 € ©. We say that p) converges to pg in M(S \ C) uniformly in 6 on © asn — 0 if

limsup |u(f) — po(f) =0 Vf €C(S\ C).
™0 geco
If {ug : 0 € O} is sequentially compact, a Portmanteau-type theorem holds. The proof of this
theorem is provided in Section 3.2.

Theorem 2.1 (Portmanteau theorem for uniform M(S \ C)-convergence). Let © be a set of indices.
Let pi), po € M(S\ C) for each >0 and § € ©. Suppose that for any sequence of measures (jig, )n>1,
there exist a sub-sequence (e, )x>1 and some 0% € © such that

o, (f) = po-(f) ¥V eC(S\C). (2.1)
—00
Then the next two statements are equivalent.

(i) pg converges to pg in M(S\ C) uniformly in 6 on © asn | 0;

(i) limsup, o supgeg tg (F) — po(F) < 0 and liminf, o infoce pg(G) — p19(Ge) > 0 for all e > 0, all
closed F' C S that is bounded away from C, and all open G C S that is bounded away from C.

Furthermore, claims (i) and (ii) both imply the following.

(i4i) limsup,, o supgee fg(F) < supgeg po(F) and liminf, o infeco p1g(G) > infgeo p1g(G) for all
closed FF C 'S that is bounded away from C and all open G C S that is bounded away from
C.



2.2 Sample-Path Large Deviations
2.2.1 The Untruncated Case

Let Z1,Z5,... be the iid copies of some random variable Z and F be the o-algebra generated by
(Z;)j>1. Let Fj be the o-algebra generated by Z1,Zs,---,Z; and Fy = {0,Q}. Let (Q,F,F,P)
be a filtered probability space with filtration F = (F;);>0. The goal of this section is to study the
sample-path large deviations for {X;’ () :j> O}, which is driven by the recursion

X (z) = x; X (x) = X7\ (x) +na(X]_ () + no(X]_,(x))Z;, Vj=>1 (2.2)

as 1 J 0. In particular, we are interested in the case where Z;’s are heavy-tailed. Heavy-tails are
typically captured with the notion of regular variation. For any measurable function ¢ : (0,00) —
(0,00), we say that ¢ is regularly varying as © — oo with index S (denoted as ¢(z) € RVgs(z) as
r — o0) if limg oo ¢(tx)/p(z) = t° for all + > 0. For details on the definition and properties of
regularly varying functions, see, for example, chapter 2 of [44]. Throughout this paper, we say that a
measurable function ¢(n) is regularly varying as 1 | 0 with index 3 if lim, 0 ¢(tn)/¢(n) = t° for any
t > 0. We denote this as ¢(n) € RVgs(n) asn ] 0. Let

HO @) 2P(Z>2), HI)@)2P(Z<—z), H@2HD (2)+H) (2)=P(Z| >2z). (2.3)
We assume the following conditions regarding the law of the random variable Z:

Assumption 1 (Regularly Varying Noises). EZ = 0. Besides, there exist o > 1 and p{), p(=) € (0,1)
with p™) + p(=) =1 such that

(+) (=)
H(z) € RV_4(x) asx —oo0; lim H@) _ o, lim LEANIC) (+),

il N/ S oA Cop RN
T—00 H(;(;) P T—00 H(m) p p

Next, we introduce the following assumptions on the drift coefficient a : R — R and diffusion
coefficient ¢ : R — R. Note that the lower bounds for C' and D in Assumption 2 and 3 are obviously
not necessary. However we assume that C' > 1 and D > 1 w.l.o.g. for the notation simplicity.

Assumption 2 (Lipschitz Continuity). There exists some D € [1,00) such that
lo(x) —o(y)| V la(x) —aly)| < Dlz —y| Vz,y €R.
Assumption 3 (Nondegeneracy). o(z) >0 Va € R.
Assumption 4 (Boundedness). There exists some C € [1,00) such that
la(z)| V]o(x)| < C Vo e R.

To present the main results, we set a few notations. Let (D[0, T, d s, [o,r]) be a metric space, where
[0, T7 is the space of all RCLL functions on [0, 7] and dj, jo,7] is the Skorodkhod J; metric

dy o) (2,y) = inf sup [A(s) = s|V [z(A(s)) — y(s)|- (2.4)
AEAT se0,T)
Here, Ar is the set of all homeomorphism on [0,7]. Given any A C R, let AT £ {(tl, cee L tg) €

AF ot <ty <o < tk} be the set of sequences of increasing real numbers with length k£ on A. For
any k € N and T' > 0, define mapping hEg)T] : R x R¥ x (0, 7% — D0, T] as follows. Given any
9 €ER, w = (wy, - ,w) € R and t = (t1,- ,tx) € (0,T]*", let £ = hfg)T](xo,w,t) € D[0,T] be

the solution to

€0 = o (2.5)



‘ff: =a(&)  Vse[0,T], s £ty ty (2.6)

§s =&— +0(&-) - wy if s = t; for some j € [k]. (2.7)

Here for any £ € D[0,T] and ¢ € (0,77, we use &_ = limgy & to denote the left limit of £ at ¢, and
we set {o— = &p. In essence, the mapping hfg,)T] (zo,w, t) produces the ODE path perturbed by jumps
wy, -+ ,wy (modulated by the drift coefficient o(-)) at times t1,--- ,t;. We adopt the convention
that £ = hfg)T] (x0) is the solution to the ODE d€s/ds = a(&s) Vs € [0,T] under the initial condition

&0 = xg. For any a > 1, let v, be the (Borel) measure on R with
Ve |2, 00) =pHg—e, Vo (—00, —z] =p Tz, Vz>0. (2.8)

where p(t), p(=) are the constants in Assumption 1. For any t > 0, let £; be the Lebesgue measure
restricted on (0,¢) and £ be the Lebesgue measure restricted on (0,¢)*!. Given any T > 0, z € R,
and k > 0, let

CE(;C,)T]( S5 x) é/ﬂ{hfg)):,j] (z,w,t) € -}Vg(dw) X E?(dt) (2.9)

where v*(.) is the k-fold product measure of v,. For {X;’(J:) : j > 0}, we define the time-scaled
version of the sample path as

D¢

0@ = {X]] €0,7]}, vI>0 (2.10)

[t/n] ()< ¢
A

with [z] £ max{n € Z : n < z} and [z] £ min{n € Z : n > z}. Note that X[0 T]( x) is a
D[0, T)-valued random element. For any k € N and A C R, let

DY[0,T] 2 Ay (A x R* x (0,T1F), T >0 (2.11)

as the set that contains all ODE paths with k& perturbations by time 7. We adopt the convention
that ]D)E;D[O,T] £ (). Also, for any n > 0, let

Am) &0~ H(n™).
From Assumption 1, one can see that A(n) € RV4—1(n) as n ] 0. In case T =1, we suppress the time
horizon [0,1] and write D, dg,, h®), C®), DY, and X"(z) to denote D[0,1], d,.j015 hiphys o)

[0, 1]’ [0,1]°

]D)(k)[() 1], and X[0 1]( x), respectively.
Now we are ready to state the main results. First, Theorem 2.2 establishes the uniform M-
convergence of (the law of) X [7(’) (@) to C® (. :z) and a uniform version of the sample-path large

deviation for X[%,T] (z). The proof is given in Section 3.3.

Theorem 2.2. Under Assumptions 1, 2, ? and /4, it holds for any k € N, T > 0, and any compact
A C R that \™F(n)P (X[% T]( )€ ) = C[o T]( ;@) in M(D[0, T \]fofl)[O,T]) uniformly in x on

A asn— 0. Furthermore, for any B € Spjo,1) that is bounded away from ]D)Effl)[(), T,

infyca P(X[) 1 (z) € B)

inf C(¥) ;x) < liminf
w2 Con(72) = " o ) (2.12)
Sup,c4 P (x) e B ’
< lim sup ved ( k[o 71 ) < sup CE ](B x) 0.
n40 A ( ) z€A



2.2.2 The Truncated Case

Interestingly enough, the sample-path large deviations for X "( ) are obtained by first studying its
truncated counterpart of X"( ). Specifically, for any = € ]R b > 0, and n > 0, on the filtered
probability space (Q, F,F P) we define

XP@) =2, XP@) = X0 @) + oo (na(X]0 @) 4 0o (X (@) Z) Viz1, (2.13)
where the truncation operator ¢.(-) is defined as

ve(w) 2 (wAe)V (—c) YweER,c>0. (2.14)

Here u A v = min{u,v} and v Vv = max{u,v}. For any T,7n,b > 0, and z € R, let X[%l’bT] () =

{XFJ?UJ (x): t€[0,T) } be the time-scaled version of X;ﬂb(m) embedded in the continuous-time space,

and note that X [%‘ 7]

For any b, T € (0,00) and k € N, define the mapping ik

(x) is a random element taking values in ]D)[O 7).
o) T] : Rx R* x (0, T)*" — D|0, T as follows.

Given any 79 € R, w = (wy,--- ,wy) € R¥ and t = (t1,--- ,t;) € (0,T]*T, let ¢ = h(k lb(:vo,w,t) be
the solution to

-~ 219
Cﬁlis =a(&) Vse[0,T), s#t1,ta, -, tk; (2.16)
& =&— +op(0(&-) -w;) if s =t; for some j € [K] (2.17)

fg)jlﬂ? can be interpreted as a truncated analog of the mapping hfg’)T] defined in (2.5)—

(2.7). Here, hfg’)qlf])(;vo,w,t) also return an ODE path with k& jumps, but the size of each jump is
truncated under b. For any b,7 >0, ACR and k =0,1,2,---, let

The mapping h

DY [0, 7] 2 KN (A x RF x (0, T]FT) (2.18)

be the set of all ODE paths with k£ jumps, where the size of each jump is modulated by the drift

coefficient o(-) and then truncated under threshold b. We adopt the convention that D;ﬁl)‘b[Q T £ 0.
Given any x € R, £ > 0,b >0, and T > 0, let

k)|b k)|b
COl(-sa) é/n{hEO}T'} (w,w,8) € - pk(dw) x £} (dt). (2.19)

Again, in case that T = 1, we set X"®(z) 2 X[%‘b]( ), hRIb £ hfk)‘]b ]D)(k)lb 2 ptk )‘b[ 1], and

ckb & C%)l‘]b. Now, we are ready to state the main result. See Section 3.3 for the proof.
Theorem 2.3. Under Assumptions 1, 2, and 3, it holds for any k € N, any b,T > 0, and any compact

A CR that \=%(n)P (anb (x)e - ) — C[0 T]( ;x) in M(ID[0, 7] \D(kfl)lb[o T]) uniformly in x on

[0,T]
A as n — 0. Furthermore, for any B € Spjo 1) that is bounded away from ]D)(k 1)lb[O,T],

inf,c 4 P(X[%, (2) € B)

inf C(k)‘b(B ) < liminf

zed 10.T] =500 M (n) (2.20)
b '
sup,c4 P(X)7. () € B
< lim sup €4 ( k[o 7] ) < sup ka)lﬁ(B m) 0.
nl0 A ( ) z€EA



Here, we provide a high-level description of the proof strategy for Theorems 2.2 and 2.3. Specifi-
cally, the proof of Theorem 2.3 consists of two steps.

e First, we establish the asymptotic equivalence between X[%I’ZZF] (z) and an ODE perturbed by
the k& “largest” mnoises in (Z;);<r/y, in the sense that they admit the same limit in terms of
M-convergence as 1 | 0. The key technical tools are the concentration inequalities we developed
in Lemma 3.4 that tightly control the fluctuations in X;ﬂb(x) between any two “large” noises.

e Then it suffices to study the M-convergence of this perturbed ODE. The foundation of this
analysis is the asymptotic law of the top-k largest noises in (Z;);<r/, studied in Lemma 3.5.

See Section 3.3 for the detailed proof and the rigorous definitions of the concepts involved. Regarding
Theorem 2.2, note that for b sufficiently large it is highly likely that X7(x) coincides with X;-ﬂb(x)
for the entire period of j < T'/n (that is, the truncation operator ¢, did not come into effect for a
long period due to the truncation threshold b > 0 being too large). By sending b — oo and carefully
analyzing the limits involved, we recover the results for X]n(SC) and prove Theorem 2.2.

2.2.3 Results for Stochastic Differential Equations

Lastly, we collect the results for the sample-path large deviations of stochastic differential equations
driven by heavy-tailed Lévy processes. Recall that any one-dimensional Lévy process L = {L; : ¢t > 0}
can be characterized by its generating triplet (cr,or,v) where ¢z, € R is the drift parameter, o, > 0
is the magnitude of the Brownian motion term in L;, and v is the Lévy measure of the Lévy process
L, characterizing the intensity of jumps in L;. More precisely, we have the following representation

LthLt-f—O'LBt—‘r/

z[N([0,] x dz) — tv(dz)] +/ N ([0,1] x dz) (2.21)
lz|<1

|z|>1

where B is a standard Brownian motion, the measure v satisfies [(|z|* A 1)v(dz) < oo, and N is a
Poisson random measure independent of B with intensity measure Lo, X v. See chapter 4 of [47] for
details. We impose the following assumption that characterizes the heavy-tailedness in the increments
of Lt.

Assumption 5. EL; = 0. Besides, there exist o > 1 and p=), p(t) € (0,1) such that for Hf_)(x) =
v(z,00), H ) (2) £ v(—o00, —2) and Hp(z) 2 V((OO, —z) U (z, oo)),

e Hi(x) € RV_,(x) as © — 00;

o lim, oo HV (2)/Hy () = p™), lim, o0 Hy ) (2)/Hi(2) = p).

Consider a filtered probability space (Q,]—" JF = (]:t)tZO,P) satisfying usual hypotheses stated
in Chapter I, [43] and supporting the Lévy process L, where Fy = {0),Q} and F; is the o-algebra
generated by {L; : s € [0,¢]}. For n € (0, 1], define the scaled process

L" & {L] =nLy,: t€0,1]},
and let ;" be the solution to SDE

Yo (z) =z,  dY{'(z) =a(Y,"(z))dt + (Y, (2))dL]. (2.22)

Recall the definitions of the mapping hE(])C,)T] in (2.5)-(2.7) as well as the measure C%}T]( -5x) in (2.9).
Also, recall the notion of uniform M-convergence introduced in Definition 2.1. Define Y[g 7] (z) =
{Y/"(z) : t€]0,T]} as a random element in D[0, 7. In case that 7' = 1, we suppress [0, 1] and write

Y"(x). The next result characterizes the sample-path large deviations for Y[g)T] (x) by establishing
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M-convergence that is uniform in the initial condition x. The proofs are almost identical to those of
X7 (r) and hence omitted to avoid repetition. Let

Ar(n) &0 " Hp(n™).

Theorem 2.4. Under Assumptions 2, 3, 4, and 5, it holds for any T > 0, k € N, and any compact
set A C R that )\Zk(n)P(Y[g T]( z) € - ) — CE(?)T]( ;x) in M(D[0, T \]D)Ef_l)[O,T]) uniformly in x

on A as n — 0. Furthermore, for any B € Spo | that is bounded away from ]D)Ef_l)[O,T],

inf C(k) ](B ) < limint infaca P(Y[Q T]( x) € B)

zea (0T 740 Nk ()
sup,e 4 P (Y (x) € B
< lim sup A (k[O’T] ) < sup C[0 T]( _;w) < 0.
nd0 /\L(U) z€EA

Analogous to the truncated dynamics X;’lb(x), we introduce processes Ytnlb(x) that can be seen
as a modulated version of Y;’(z) where all jumps are truncated under the threshold value b. More

generally, we consider the construction of a sequence of stochastic processes (Yt" 1b3(k) (z; f, g)) k>0 Siven
any f: R — R and g : R — R that are Lipschitz continuous. First, for any z € R and t > 0, let

;" O a; £9) 2 F(1 O w; £,9))dt + g (v (w3 £, 9)) ALY (2.23)

and set Y%(O) (z; £, g) & {Yt"lb;(o)(x; f.9): t€[0,1]}) for any b > 0. As an immediate result of this
construction, we have Y:’I '(0)(x;a,o) = Y"(z) and Y% (2;a,0) = Y"(x). Next, building upon
the process Yn‘ (x f,g), we define

T"lb;(l)(x' f,9) = min {t >0: ‘ (Ynjb;(o)(x;f, 9)) ~AE?’ = ‘Athb;(O)(x; 1, g)‘ > b}, (2.24)

W (s f.9) £ AYIES) (5 f.0) (2:25)

as the arrival time and size of the first jump in Y"‘ ( ; f,g) that is larger than b. Furthermore, by

proceeding recursively, we define (for any k > 1)

bi(k) b(k bi(k

nnl\b((k) (z:f, )(55 I )— nnlw(wz( £29) (95 [ )+‘Pb(ng ()($§f,9))7 (2.26)

dY" P (@ f,9) & F(D (@ f, ) dt + g(Y"“’“’“)(x- £r9))dLy vt > @ £ ), (2.27)

nlb(k+1)( ,g) 2 min {t S Tn\b (; f,9) ‘g Y"‘ (x £,9)) - AL} }7 (2.28)

WP (@ £,9) £ AV (23 £,9) (2.20)

U\b (k+1)( if,9)
Lastly, for any ¢t > 0,b > 0 and « € R, we define (under convention Ty‘f g(O; x) =0)

v @) 2 3 v Y wia,0) - 1t € [P @30,0), 7" (@30,0) ) | (2.:30)
k>0

and let Y[g‘;]( = {Ytnlb(as) : ¢t €[0,T]}. By definition, for any t > 0,b> 0,k > 0 and z € R,

V@) =V wa0) = te [P @e0), " @a,0)). (2.31)

Again, in case that T = 1 we suppress [0, 1] and write Y°(z). The next result presents the sample-
path large deviations for Yt"‘b(m). Once again, the proof is omitted as it closely resembles that of
XM ().
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Theorem 2.5. Under Assumptions 2, 8, and 5, it holds for any b, T > 0, k € N, and any compact

set A C R that )\Zk(n)P(Y[gj;] (x)e -)— C%’)ZIFZ])( - ;x) in M(D[0, T \Df_l)lb[O,T]) uniformly in x

on A asn — 0. Furthermore, for any B € Spjo,1) that is bounded away from ]D)Ef_l)‘b[O,T],

. b
infyca P(Y'y(2) € B)

inf CE(])C),}?(BO;J}) < liminf

€A nd0 A]Z(’l])
b
sup,c 4 P(Y;"(7) € B
< lim sup €A (k[O’T]( ) ) < sup CE(’;)QLI] (Bf;x) < 0.
nl0 AL () z€A

2.3 First Exit Time Analysis
2.3.1 Results for Stochastic Difference Equations

In this section, we address the first exit time analysis of X/(z) and X;.”b(x), defined in (2.2) and (2.13),
from an attraction field of some potential with a unique local minimum at the origin. Specifically,
throughout Section 2.3.1, we fix an open interval I £ (S1efts Sright) Where siee < 0 < Spight, and impose
the following assumption on a(-).

Assumption 6. a(0) = 0. Besides, it holds for all x € I\ {0} that a(z)z < 0.

Consider the case where a(-) = —U’(+) for some potential U € C*(R). Assumption 6 then implies
that U has a unique local minimum at 2 = 0 over the domain I. Moreover, since U’ (x)z = —a(z)x > 0
for all z € I'\ {0}, we know that the domain I is a subset of the attraction field of the origin in the
following sense: the limit lim; o y¢(z) = 0 holds for all 2 € T where y;(z) is the solution of ODE

dy(x)
dt

It is worth noticing that Assumption 6 is more flexible than standard assumptions in related works.
For instance, [28, 24] required the second-order derivative U”(-) to be non-degenerate at the origin as
well as the boundary points of I, with an extra condition of U € C? over a wide enough compact set,
and held the drift coefficient o(-) as constant. In contrast, we conduct a first exit time analysis with
significantly relaxed assumptions.

Define

yo(z) =z, =a(y:(z)) Vt>0. (2.32)

@) 2min{j>0: X/(@) ¢ 1}, @) 2min{j>0: XV ¢ 1},

as the first exit time of X7'(x) and X;’lb(sc) from I, respectively. To facilitate the presentation of the

main results, we introduce a few concepts. Define g0 : R x R* x (0,00)*T — R as the location of
the perturbed ODE at the last jump time:

~ k)|b
G (2, w,8) 2 B (2w, ) () (2.33)

where t = (t1,...,tx) € (0,00)*", w = (wy,...,w;) € R*, and hE(?J‘“? :R x R* x (0, T]F" — D[0, T is

as defined in (2.15)-(2.17). For k = 0, we adopt the convention that §(®®(z) = 2. This allows us to
define Borel measures (for each & > 1 and b > 0)
Chlb( ) 2 /]I{g(k_l)lb(x—l—(pb(o(x) “wp), w,t) € - }ua(dwo) x V"N (dw) x L5 (dt) (2.34)

with £*! being the Lebesgue measure restricted on {(t1,- -+ ,tx) € (0,00)% : 0 <ty <ty < --- < tg}.
Also, define

C(-;z)2 /]I{x—l—cr(:c) ‘wE - }Va(dw). (2.35)
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In case that z = 0, we write C®)IP(.) 2 CWIP( . . 0). and C(
72 |Sieft] A Sright T 2 [r/b]. (2.36)

Here, r is the distance between the origin and I¢, and J, is the number of jumps required to exit
from [ if the size of each jump is bounded by b.

Recall that H(-) = P(|Z;| > -) and A(n) = n~'H(n~'). For any k > 1 we write \*(n) = (/\(n))k.
As the main result of this section, Theorem 2.6 provides sharp asymptotics for the joint law of
first exit times and exit locations in X;-]lb(x) and X7 (z). The results are obtained through the general
framework developed in Section 2.3.2. Specifically, the uniform sample-path large deviations developed
in Section 2.2 prove to be the right tool in the first exit time analysis, allowing us to verify Condition
1 uniformly for all initial values over the asymptotic atoms A(e) = (—e¢,€). See Section 2.3.2 for the
general framework and Section 4.3 for the detailed proof of Theorem 2.6.

Theorem 2.6. Let Assumptions 1, 2, 3, and 6 hold.
(a) Let b > 0 be such that sies/b ¢ Z and spignt/b ¢ Z. For any € > 0, t > 0, and measurable set

BCI,
. QI g-
lim sup sup P(C’Z‘n AT (n)T”‘b(x) > t; Xf,,‘ﬁb(x) (z) € B> < % - exp(—t),
nl0 zel. b
C(INIb(ge
o . * T b . n|b C (B )
hr:}l&)nfxlglfé P<Cb7] AT ()7 (2) > ¢ X ot () (x) € B) > — -exp(—t)
where Cj = CWDIb(1e).
(b) For any t > 0 and measurable set B C I€,
C(B~
imsup sup P €1 X)r7(0) > 15 X0, 0) € B) < CE expl-0),
n TCle
e C(B°)
*n. n . n > . —
hl}zﬁ)nfxlgiP(C n- AT (z) > t; XTn(w)(:E) € B) Z G exp(—t)

where C* 2 C(I°).

2.3.2 General Framework

This section proposes a general framework that allows the analysis of the metastability and global
dynamics of stochastic systems based on the sample path large deviations. Consider a general metric
space S and a family of S-valued Markov chains {{V]"(a:) :j >0} :n > 0} parameterized by n,
where x € S denotes the initial state and j denotes the time index. We use the notation V[g,T] (x) =
{VLZ/nJ (z) : t € [0,T]} to denote the scaled version of {V}'(z) : j > 0} as a D0, T]-valued random
variable. For a given set E, let 7j(z) = min{j > 0: V;'(z) € E} denote {V;"(s) : j > 0}’s first hitting
time of F. We consider an asymptotic domain of attraction I C S, within which V[g,T] (z) typically
(i.e., as n | 0) stays throughout any given time horizon [0,7] as far as x € I. We will make these
informal descriptions precise in Condition 1. In many cases, however, V."(z) is bound to escape I
eventually due to the stochasticity if we do not constrain the time horizon. The goal of this section is
to establish an asymptotic limit of the joint distribution of the exit time 7/.(z) and the exit location
V", . (). Throughout this section, we will denote V', () (%) and V" (@) with V) (z) and V] (z),

Tre (2) Teere 7e ()
respectively, for notation simplicity.

We introduce the notion of asymptotic atom to facilitate the analyses. Let {I(¢) C I :¢ > 0} and
{A(e) €S :€e> 0} be collections of subsets of I such that (J ., I(€) = I and [,y A(e) # 0. Let C(-)
is a probability measure on S\ I satisfying C'(9I) = 0.
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Definition 2.2. We say that {{VJ"(:U) :j >0} :n > 0} possesses an asymptotic atom {A(e) C
S : € > 0} associated with the domain I, location measure C(-), scale v : (0,00) — (0,00), and
covering {I(e) C I : € > 0} if the following holds: For each measurable set B C S, there exist
0p : (0,00) x (0,00) = (0,00), €g > 0, and Ts > 0 such that

mf:veA(e (T[( )e () < T/n; Vi (z) € B)

C(B°) — ép(e,T) < liminf < . 2.37
(B7) = ople ) < Ty AT/ (247
. Sup:L’EA(e) P(TI C(LL') T/T], Te( ) € B) _
< lim sup <C(B ) +dp(e, T 2.38

nl0 W(n)T/n () 1) (2.38)
SUPer(e) P(T e acenye (@) > T/n
lim sup et P (7 o\ () (7) ) =0 (2.39)
nl0 ¥(mT/n
imi < =1 .
timfaf il P ("o (@) < /) (240

for any e < ep and T > Ty, where y(n)/n — 0 asn ] 0 and dp’s are such that

A, 0m (e 1) =0
Condition 1. A family {{V;’(x) :j >0} :n >0} of Markov chains possesses an asymptotic atom
{A(e) C S : € > 0} associated with the domain I, location measure C(-), scale v : (0,00) — (0, 00),
and covering {I(e) C I : e > 0}.

The following theorem is the key result of the general framework. See Section 4.1 for the proof of
the theorem.

Theorem 2.7. If Condition 1 holds, then the first exit time 7}.(z) scales as 1/v(n), and the distri-
bution of the location V1(x) at the first exit time converges to C(-). Moreover, the convergence is
uniform over I(e) for any e > 0. That is, for each € > 0, measurable B C I¢, and t > 0,

c(B® " <liminf inf P c(z)>t, V()€ B
(B°)-¢™" < liminf inf P(v(n)7f.(z) (v) € B)

<limsup sup P(y(n)7].(z) >t, V/'(z) € B) <C(B7)-e "
nl0  z€l(e)

2.3.3 Results for Stochastic Differential Equations

Define stopping times
m(z) £inf {t >0: Y (z) ¢ I}, T;‘b( Sinf{t>0: Ytn'b(x) ¢ I}

as the first exit times of Y;’(x) or Ytnlb(x) from I = (Sieft, Sright). Analogous to Theorem 2.6, the
following result characterizes the asymptotic law of the first exit times 7y (z) and - nle (z) using the

measures CM1P(.) defined in (2.34) and é() defined in (2.35). We omit the proof due to its similarity
to that of Theorem 2.6.

Theorem 2.8. Let Assumptions 2, 3, 5, and 6 hold.

(a) Let b > 0 be such that sies:/b & Z and spignt/b ¢ Z. For any € > 0, t > 0, and measurable set
B CIe,

CWIb(B)

lim sup sup P(Cb )\Jb (m)T 7’lb( ) >t y"ib (z) € B) < I - exp(—t),
b

nd0 xzel. Mb( )
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E(TIb (B
Jb 7]|b . T]‘b > C ( ) . —
hrrr]ﬁ)nfgglgiP<Cb)\ (mry (z) > t; YT;‘b(x)(x) € B) > o exp(—t)
where Cp & CWDIb([e),
(b) For any t > 0 and measurable set B C I¢,

C(B-

limsup sup P C*AL(n) - (z) > t; Y”(L)( z)eEB| < — - exp(—t)

nl0 zel, C
C(B°)
* ! >
hr}yﬂlnleglfeP(C Ap(n)ry(z) >t Y (e y(x) € B) 2~ exp(—t)

where C* 2 C(I°).

2.4 Sample-Path Convergence of Global Dynamics
2.4.1 Problem Setting and Main Results

Throughout Section 2.4, we set a(-) = —U’(-) for some potential function U : R — R satisfying the
following assumption.

Assumption 7. Let U : R — R be a function in C(R). Besides, there exist a positive integer Ny > 2
and an ordered sequence of real numbers —oo < my < 51 < Mo < 53 < -+ < Sy 1 < My, < 00
such that (under the convention s = —oo0 and s, = 00)

(Z) U’(Z‘) =0ifze {ml’sla T ’Snmm_17mnmm};
(it) U'(z) <0 for all € U, (5i-1.m5);
(iti) U'(z) > 0 for all € Uy, 1 (M5 85)-

See Figure 2.1 (Left) for an illustration of such function U with n,;, = 3. According to Assump-
tion 7, the potential function U has finitely many local minima m;. Meanwhile, the local maxima
81, Snyu,—1 Dartition R into different regions I; = (s;_1,s;). Such regions are viewed as the at-
traction fields of the local minima m;’s: as the name suggests, any ODE dy;(z)/dt = —U’(y:(z)) with
initial condition yo(x) = = € I; admits the limit lim;_, o y:(2z) = m,. Building upon the first exit
time analysis in Section 2.3, we characterize the global dynamics of X7 (x) and X;"b(a:). Note that we
impose the condition Ny, > 2 simply to avoid the trivial case of ny;, = 1: in this case, no transition
between different attraction fields will be observed due to the simple fact that there only exists one
attraction field over potential U.

In order to present the main results, we introduce some concepts to help characterize the geometry
of U. First, for each attraction field I;, let

ri 2 |mi — sio1| Alsi —my] (2.41)

be the effective radius of I;, i.e., the minimum distance required to exit from I; when starting from
m;. Next, for any ¢ € [nmin] and j € [nmin] with j # i, let

[(Sj—l - ml)/lﬂ if ] > ’i,
f(mz—sj)/b] if g <.

Here J;" (i) can be interpreted as the minimum number of jumps (with sizes bounded by b) required to
escape from I;, which also reflects the the width of I; relative to the truncation threshold b. Besides,
J; (i, 7) is the distance from m; to I; when measured against the truncation threshold b > 0. By
definition, we must have J;* (4, 7) > J;"(¢). Furthermore, the introduction of J;*(¢) and J, (4, j) allows
us to formally develop the concept of typical transition graph.

Ty (i) = [ri/bl,  Ty(i,5) = { (2.42)
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Ji(2,1)=2 Ji3.2)=1 CH@D=2" FE2=1

mi s T, o im m ma ms ~om my & Loms
1 ) Jp(1,2)=1 Jp(2,3)=2 L J(1,2)=1 Jp(2,3)=3 "
0.2« 0.6 »i< 09 =-i0.3 R
—— b=03

Figure 2.1: Typical transition graphs G, under different gradient clipping thresholds b. (Left) The
potential function U illustrated here has 3 attraction fields. For the second one I = (s1, $2), we have
s2 —mg = 0.9,m2 — 51 = 0.6. (Middle) The typical transition graph induced by b = 0.5. The entire
graph G, is irreducible since all nodes communicate with each other. (Right) The typical transition
graph induced by b = 0.4. When b = 0.4, since 0.6 < 2b and 0.9 > 2b, we have J;5(2,1) = 2 and
J7(2,3) = 3, and hence J;f(2) =2 = J,5(2,1) < JF(2,3). Therefore, the graph G, does not contain
the edge ms — m3 and there are two communication classes: G1 = {m1, ma}, G2 = {ms}.

Definition 2.3 (Typical Transition Graph). Given a function U satisfying Assumption 7 and some
b > 0, the b-typical transition graph is a directed graph G, = (V, Ep) such that

L4 V = {m17 e 7mnr,,,m};
o An edge (m; = my) is in Ey iff (i, 7) = T ().

The graph G, can be decomposed into different communication classes that are mutually exclusive.
Specifically, for m;, m; € V with ¢ # j, we say that m; and m; communicate if and only if there exists
a path (m; = mg, — -+ = my, — m;) as well as a path (m; — my; — -+ = myy, — m;) on G,. In
this section we focus on the case where G is irreducible, i.e., all nodes communicate with each other
on graph G,. See Figure 2.1 (Middle) and (Right) for the illustration of irreducible and reducible
cases, respectively.

Now, we are ready to present Theorem 2.9 and show that, under proper time scaling, X;"b(x)
converges (in terms of finite dimensional distributions) to a continuous-time Markov chain that only
visits the widest attraction fields over U. Here, the width of each attraction field I; is characterized
by the relative width metric J,"(¢) defined in (2.42). We use

T (V) = max T (i) (2.43)

i1€[Nmin]: M;EV

to denote the largest width (relative to the truncation threshold b > 0) among all attraction fields.
Next, define

Vi = {mi s i € fnminl, J5(0) = ' (V)} (2.44)
as the set that contains all the widest local minima (when measured against the truncation threshold
b > 0). Recall that H(-) = P(|Z1| > ) and A(n) = n"*H(n™!) € RV4_1(n). Define scale function

* Ty (V)
() = n-(Am)™" T € RV g0 (v)-(a—1)41 (1) (2.45)

We note that the condition |s; — m;|/b & Z Vi € [Nmin), J € [min — 1] in Theorem 2.9 is a mild one
as it holds almost everywhere but countably many b > 0.

Theorem 2.9. Let Assumptions 1, 2, 3, 4 and 7 hold. Let b € (0,00) be such that |s; —m;|/b & Z for
all i € [Nmin) and j € Npmin — 1]. Suppose that Gy is irreducible. There exist a continuous-time Markov

chain Y*I° with state space V', as well as a random mapping m, independent of Yt*‘b satisfying
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o my(m)=m if me V)
e my(m) is a random variable that only takes value in V" if m & V'

such that the following claim holds: given any i € [Nuin), € I;, and 0 <t <ty < -+ < tg,

b b *|b *|b
(KT sy @ X0 sy @) = (W @ma)). - ¥ w(ma)) - asn Lo

Theorem 2.9 will be established through an abstract framework developed in Section 2.4.2, which
uplifts the first exit time analysis results to the sample-path convergence of global dynamics. The
laws of Y*I* and m, are specified in Section 5.1.

The next result studies the sample-path convergence of Xj"(x) (i.e., without truncation). The
intuition is that, given any 7' > 0, there is a high chance that X7 (z) coincides with the truncated

X;ﬂb(x) for all j < T, especially when the truncation threshold b is large. Therefore, by sending the
truncation threshold b in ijb(gc) to 0o, we recover the results for X]”(x) We specify the law of the
limiting CTMC Y;*(-) in Section 5.1 and detail the proof in Section 5.2.

Theorem 2.10. Let Assumptions 1, 2, 3, 4 and 7 hold. Given any i € [Numin), © € I;, and 0 < t; <
to < -0 < g,

(Xfe s @+ Xy iy () = (Y (ma), - ¥ ) asm 40
where H(-) = P(|Z1| > ) and Y;*(+) is a CTMC with state space {mq,--- ,m, . }.

Finally, we state a direct corollary of Theorem 2.9 that highlights the elimination of sharp minima
under truncated heavy-tailed dynamics. Theorem 2.9 reveals that, under small 7, the sample path

of the truncated dynamics X;?lb(:):) closely resembles that of an CTMC that completely avoids all
the narrower attraction fields of the potential U. Corollary 2.11 then further demonstrates that the
fraction of time X;ﬂb(x) spends around sharp minima converges in probability to 0 as n | 0, thus
verifying the elimination effect under truncated heavy-tailed dynamics. See Section 5.5 for the proof.

Corollary 2.11. Let Assumptions 1, 2, 3, 4 and 7 hold. Let b € (0,00) be such that |s; —m;|/b ¢ Z
for all i € [Nuin) and j € [Nunin — 1]. Suppose that Gy is irreducible. Then given any i € [Nyn), « € T,
and any T > 0,

e n|b P
f/o ]I{XLt//\Z(n)J(x)E Lng I; pdt =0 asn 0.
Jr mygEVt

2.4.2 General Framework

Consider a general metric space (S,d). Let Y}, Y;"’E, and Y;* be S-valued stochastic processes sup-
ported on the same probability space, Inspired by the approach in [28], we focus on the following
condition that characterizes a type of asymptotic equivalence between processes Y;" and Y;"°.

Condition 2. Given any 0 < t1 < ty < --- <t = t, the following claims hold for all ¢ > 0 small
enough:

(Z) <}/t?767}/t727767"' 7}/#,276) = (}/;‘:51/227 7}/;52) a577¢0;

(i1) For any i € [k], liman(d(f/t:“e,}Q’Z) > e) =0.
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As shown in Lemma 2.12 below, Condition 2 establishes a type of asymptotic equivalence between
two families of stochastic processes Y;" and Y;” such that they admit the same limit Y;* in terms of
finite dimensional distributions. See Section 5.3 for the proof of Lemma 2.12.

Lemma 2.12. Suppose that Condition 2 holds. Given any k> 1 and 0 < t1 <ty < - < tg,
(}/tyll7.'.’}/tz):><}/{:7.'.7)/tz> asn‘l(o.

Naturally, the plan is to prove Theorem 2.9 via Lemma 2.12 by setting V;" = X@?)\Z(TI)J (z) and

Y, = Yt*‘b(ﬂ(mi)). To identify the right choice of process ¥;7 and facilitate the verification of
sample-path convergence characterized in Condition 2, (i), we introduce the second key component of
our framework, i.e., a technical tool for establishing the weak convergence at the sample-path level.
Specifically, the following definition encapsulates the class of jumps processes considered in this paper.

Definition 2.4. Let random variables ((Uj)jzh (Vj)j21> be such that V; € SYj > 1 for some general
metric space S, U; € [0,00) for all j > 1, and lim;_, « P(ngi U;j >t) =1Vt >0. A continuous-time
process Y, on R is a ((Uj)jZL (Vj)jzl) Jump process if (under the convention Vy =0)

J
Y, =Vye V>0,  Jt)=max{J>0: » U; <t}
j=1

We add two remarks regarding this definition. First, (U;),;>1 and (V;),;>0 can be viewed as the
inter-arrival times and destinations of jumps in Y;, respectively. It is worth noticing that we allow for
instantaneous jumps, i.e., U; = 0. Nevertheless, the condition lim;_, P(qu Uji>t)=1Vt>0
prevents the concentration of infinitely many instantaneous jumps before any finite time ¢ € (0, c0),

thus ensuring that the process Y; = V() is almost surely well defined. In case that U; > 0 Vj, the
jump process Y; admits the more standard expression Y; = V; <= t € [3°;_, Uj, Z;J:l U;). Second,
to account for the scenario where the process Y; stays constant after a (possibly random) timestamp

T, one can introduce dummy jumps that keep landing at the same location. For instance, suppose that
after hitting w € S the process Y; is absorbed at w, then a representation compatible with Definition
2.4 is that, conditioning on V; = w, we set Uy, as iid Exp(1) RVs and V, = w for all £ > j + 1.

As the second key component of the framework, Lemma 2.13 states that, in order to establish
the convergence of jump processes, it suffices to verify the convergence of the inter-arrival times and
destinations of jumps therein.

Lemma 2.13. Let the metric space (S,d) be separable. Let Y; be a ((Uj)th (Vj)jZI) Jumps process

and, for eachm > 1, Y be a ((Uj")jzl, (an)jzl) jump process. Suppose that
o (UM, VM UF VI ) converges in distribution to (Uy,Vi,Us, Vo, -+) as n — 0o;
e Foranyu>0and anyj>1, P(Uy+---+U; =u) =0;
e For anyu >0, lim; ,ooc P(U1 + Uz +---U; > u) =1.
.

Then for any k> 1 and 0 <t <t < -+ <t} < 00, (Y;” ,Y;’;) = (Y}l,---,Ytk) asn — 00.

The verification of Condition 2, (i) hinges on the chioce of the approximator ¥;"¢. To this end, we
construct a process Xf’elb(x) as follows. Let (under convention 7 ’e‘b(x) =0)

#1e8(2) 2 min {j >0: X;’lb(m) € U (mi —e,m; + 6)}7 (2.46)

ie[nmin]
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el () & mm{j > V@) XP@ e | (mi—em +e)} Vk > 2. (2.47)
AL ()
Also, define f,?’e‘b(x) by the rule
(@) =i = X?Jf{‘b( (@) € I (2.48)
Tk' xr

Essentially, 7,/ ’Glb(x) records the k-th time X;-]lb(x) visits (the e-neighborhood of) a local minimum and

fg’e‘b(x) denotes the index of the visited local minimum. Let X/"“"(z) be the (((%,Z’e‘b(;z:) - %,Z_e‘lb(;z;)) :
. - Smelb b
)\Z(n)) .- (mi.;he\b(x))k21) jump process. By definition, X}’ “ (z) keeps track of how X;’l (z) tra-
verses the potential U and makes transitions between the different local minima (under time scaling
with A} (n)).
Using Lemma 2.13, the convergence of the jump process X? ’E‘b(x) follows directly from the con-

n,€lb ~17,¢[b . . . . -
vergence of 7, “l (x) — Tlgf‘l (x) and Mgnelv () 1€ the inter-arrival times and destinations of the
k

transitions in X;ﬂb(x) between different attraction fields of U. This is exactly the content of the first
exit time analysis. In particular, based on a straightforward adaptation of the first exit time analysis
in Section 2.3.1 to the current setup, we obtain Proposition 2.14. The proof is detailed in Section 5.4.

Proposition 2.14 (Verifying Condition 2, (i)). Let Assumptions 1, 2, 3, 4 and 7 hold. Let b € (0, c0)
be such that |s; —my;| /b & Z for all i € [Npmn) and j € [Nmin — 1]. Suppose that Gy, is irreducible. Given
any € > 0 small enough and any i € [Nyin), © € I,

(K@, Zi @) = (Y mm). - Y (mm) ) asn b0 k21 0<h <<t

Meanwhile, Proposition 2.15 verifies Condition 2, (ii) and confirms the equivalence between Xt" ’elb(x)

and X;-ﬂb(sc) in the asymptotic sense. We give the proof in Section 5.4.

Proposition 2.15 (Verifying Condition 2, (ii)). Let Assumptions 1, 2, 3, 4 and 7 hold. Let b € (0, 00)
be such that |s; — m;|/b & Z for all i € Ny and j € [Npin — 1]. Suppose that Gy is irreducible. Let
S Uie[nmm] I;. Given any t > 0, it holds for all e > 0 small enough that

. nlb 5n,e|b B
%%POXLQ/A;(M(I) - X/ (:c)’ > e) =0.
Now, we are ready to prove Theorem 2.9.

Proof of Theorem 2.9. Fix some i € [nmin] and « € I;. Applying Propositions 2.14 and 2.15, we
verify the conditions in Lemma 2.12 (under the choice of Y," = Xﬁ:l?)\;(n)J (), Y1 = th’elb(:r), and

Y = Yt*lb(ﬂ'b(mi))) and conclude the proof. O

2.4.3 Results for Stochastic Differential Equations

To conclude, we collect the sample-path convergence results for Yt"‘b(;z:) and Y,"(x). We skip the proof

as they are almost identical to those of X;ﬂb(z) and X7/(x). Recall the definition of V;" in (2.44) as the
set that contains all the widest local minima m; over U (when measured by the truncation threshold
b > 0). Also, recall that Ar(n) = n~'Hy(n™') and Hy(z) = Hp(z) = v((o0, —z) U (z,00)), where v
is the Lévy measure of the Lévy process L;. Define scale function

* T (V
N 2 )" € RV (1) tay (). (2.49)
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Theorem 2.16. Let Assumptions 2, 3, 4, 5, and 7 hold. Let b € (0,00) be such that |s; —m;|/b ¢ Z
for all i € [npmin] and j € [Nmin — 1]. If Gy is irreducible, then given any i € [N, © € I;, and
0<ty <ty < -+ <tyg,

b b *|b *|b
(Vs o @ Vs @) = (Vo mma). - Vi (m(ma))) sy Lo
where the continuous-time Markov chain Yt*lb and the random mapping () are characterized in

Theorem 2.9.

Theorem 2.17. Let Assumptions 2, 3, 4, 5, and 7 hold. Given any i € [Nuyin), © € I;, and 0 < t; <
tg < -0 < ty,

(Yﬂl/mnu (@), 7Yﬂk/AL<n>J(I)) = (Yf (mi), - ’Ytz(mi)) asn 40

where the continuous-time Markov chain Y," is characterized in Theorem 2.10.

3 Uniform M-Convergence and Sample Path Large Deviations

3.1 Technical Lemmas

Straightforward as they are, the proofs of the next two lemmas are provided for the sake of complete-
ness.

Lemma 3.1. Let a : (0,00) — (0,00), b: (0,00) — (0,00) be two functions such that lim. o a(e) =
0,lim.gb(e) = 0. Let {U(e) : € > 0} be a family of geometric RVs with success rate a(e), i.e.
P(U(e) > k) = (1 —a(e))* for k € N.

(i) For any ¢ > 1, there exists g > 0 such that

c-af(e)

exp(— o) ) < P(U(G) > %) < exp(— ca(b€()e)) Ve € (0, €0).

(i1) Suppose that, in addition, lim. o a(e)/b(e) = 0. For any ¢ > 1, there exists ¢g > 0 such that

a(e) 1 c-a(e)
: < P(U(e) < We)) < be) Ve € (0, ).

[1/b()]
Proof. (i) Note that P (U(e) > b(le)) = (1 - a(e)) . By taking logarithm on both sides, we have

/() 1 (1= 909) _aq
1/b(e) —af(e) ble)

P (U(c) > Wi)) — 11/b(0))1n (1 - a(e)) =

w = 1, we know that for € sufficiently small, we will have —0‘58 < lnP<U(e) >

Since lim,_,q

b(le)) < - :lg(ee)). By taking exponential on both sides, we conclude the proof.

(ii) To begin with, from the lower bound of part (i), we have

P(U@S%@) zlfP(U<e>>%) gleXp(c.Z((;)) - b(())
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for sufficiently small € > 0. For the lower bound, recall that 1 — exp(—z) > % holds for z > 0

sufficiently close to 0. Since we assume lim. | a(e)/b(e) = 0, applying this bound with x = a(e)

Veb(e)
along with the upper bound of part (i), we get
1 1 a(e) a(e)
P < —)>1- A ST IS
(U(E) - b(e)) - exp( Ve b(e)) ~ c-b(e)
for sufficiently small e. O

Lemma 3.2. Suppose that a function g : R — R is Lipschitz continuous with L < oo such that
lg(x) — g(y)| < Llz — y| for all x,y € R. Given real numbers x,T € R, and n > 0, and a sequence of
real numbers (2;)7—,, let {Tk}r=0,...n and {Ti}r=0, . n be constructed by

o=, T ==axp_1+ng9(xx—1)+nzx for k=1,2,--- n;

To =1, Tp=2=Tp—1+n9(Tp—1) for k=1,2,--- n.
If there exists some ¢ € (0,00) such that maxy<p,n|z1 + -+ + zx| + | — Z| <€, then

max |xp — T| < ¢-exp(nln).
k<n

Proof. Let aj, £ x}, — T3, and note that ay = 7 Zle (g(fj,l) —g(mjfl)) +n(z1+--+2r)+x—2. Due
to the Lipschitz continuity of ¢(-), this yields |ax| < nL(|ag| + - - - |ak—1]|) + ¢. It then follows from the
discrete version of Gronwall’s inequality (see, for example, Lemma A.3 of [33]) that |ax| < é-exp(nLk)
for any k=0,1,--- ,n. L]

Let x}/(x) be the solution to

xzl(z) =z, z](z) =] | (z)+ na(m?_l(:ﬁ)) Vi > 1. (3.1)

After proper scaling of the time parameter, m? approximates y; with small 7. In the next lemma, we
bound the distance between w’[t/nj (x) and y¢(y).

Lemma 3.3. Let Assumptions 2 and j hold. For any n > 0,t >0 and x,y € R,

sup lys(y) — @), (@) < (nC + |z — y|) exp(D1)
s€|0,

where D,C € [1,00) are the constants in Assumptions 2 and 4 respectively.
Proof. For any s > 0 that is not an integer, we write 7(z) = @], (). Also, we set y(y) = ysy(y)
for any s > 0. Now observe that (for any s > 0)

S

v2) = vy ) 0 [ atulw)dn

Ls]

Ls]
wly) =+ [ alwlm)ia

Ls]
wly) =atn | ofallo)du

Let b(u) = y(y) — 2} (x). It suffices to show that sup,e(g ¢/, [0(w)] < (nC + |z — y|) exp(Dt). To this
end, we observe that (for any s > 0)

S

lb(s)] < |o(Ls])I + !n/ a(yi(y))du| < [b([s])] +nC

Ls]
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Ls]
<o [ Jolwitw) — a(el@) [dut lx — y] 40
0
< nD/ |b(w)|du + |z — y| + nC due to Assumption 4.
0

Apply Gronwall’s inequality (see Theorem V.68 of [43]) to b(-) on interval [0,¢/n] and we conclude the
proof. O

Our analysis hinges on the concept of the large noises among (Z;);>1, i.e., some Z; large enough
such that n|Z;| is larger than some prefixed threshold level § > 0. To be more concrete, for any i > 1
and 1,8 > 0, define the i** arrival time of “large noises” and its size as

77%(n) £ min{n > 77%(n) : |Za| > 6}, 75°(n) =0
Wz‘>6(77) < 228 (- (3.3)

For any § > 0 and k =1,2,---, note that

P (%) < [1/n)) < P(7700) =725 n) < L1/m) ¥j € [K])

[1/n] - k L1/n] k
=X a-nem) HEm| <Y HEm)
i=1 i=1
k
< [1/n-H(©/m)| - (3.4)
Recall the definition of filtration F = (F;);>0 where F; is the o-algebra generated by Zi, Zs, - , Z;
and Fyp = {0,Q}. In the next lemma, we establish a uniform asymptotic concentration bound for

the weighted sum of Z;’s where the weights are adapted to the filtration F. For any M € (0,0),
let T'j; denote the collection of families of random variables, over which we will prove the uniform
asymptotics:

Ty 2 {(Vj)jzo is adapted to F: |V;| < M Vj > 0 almost surely}. (3.5)
Let p(t) £ exp(Dt) for any t > 0 where D < oo is the Lipschitz constant in Assumption 2.
Lemma 3.4. Let Assumption 1 hold.
(a) Given any M >0, N >0, t > 0, and € > 0, there exists 69 = do(€, M, N,t) > 0 such that

J
limp™ sup P max n Y ViiZi|>e| =0 Vo € (0, o).
740 (Vi)izo€l M jSLt/nJA(Tfé('ﬂ)—l) ;

(b) Furthermore, let Assumption 4 hold. For each i, define
J
Aimb ey 2 { max | > (X1 @) 2

JE€I;(n,0)
n:T?fl (m)+1

Ln, o) 2 {jeN: 72%m) +1<j < (77°(m) —1) A1/n]}. (3.7)

Here we adopt the convention that (under b = oo)

<ef; (3.6)

J
A;(n,00,€,0,x é{ max ‘ o(X)_1(2))Z,
(n )= { dmax n ; (X1 ()
n=7.""% (n)+1

< 6}-
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For any k>0, N >0, e >0 and b € (0,00], there exists 69 = do(€, N) > 0 such that

k
. _N ) c\
lnlﬂ)l’ﬂ EEEP((QAl(n,b,e,é,x)) ) =0 Vo € (0, o).

Proof. (a) Choose some /3 such that < B < 1. Let

2/\a

1y - 1
Z§1>ézin{\zi|gn73}, 702 70 _gr0 g (2)AZH{\Z|6(n %}} Vi > 1.

Note that Z Vio1Z; = ZZ Vi 1Z —l—z 1Z( ) on j < 77%(n), and hence,

j
max 7]‘ Vi_
i<lt/nin (7 (m—1) ;

J
< max n‘ZVi,lZi(l)‘—F max n‘ZVZ 1Z( ’
jSLt/nJA(TM(n)*l i1 i<te/min(zem-1) s

J
< max ‘ Vic1Z, ‘—i— max ) Vi_ ZZ-(2)’.
i<tem Z SRR R ; '

J j
< A0l S0 ol S
jgtt/mn; ' jSLt/an; ' jgwmn; '

Therefore, it suffices to show the existence of §y such that for any 6 € (0, d),

limn™™ sup P( max VicsiEZ; SIEN ) =0, 3.8
nwn (Vi)iso€Tm (J<Lt/nJ 77’ Z ! ‘ (3.8)
limn™  sup ( max Vi_ Z M S ): 3.9
s P e |Z 1Z)| (3.9)
limn™™  sup P( max Vic1Z; @ S ) 0 3.10
nwn (Vi)iso€Tar  NI<LE/7) 77| Z ' | ( )
For (3.8), first recall that EZ; = 0, and hence,
[B2Y| = [BZI{|Zi| > 1/0"}| < BIZ|I{|Z] > 1/n°}
—E[(1Z - 10" H{|Z:| — /0" > 0} | + 1/0" - P(Zi| > 1/n),
and since (|Z;| — 1/7")1{|Z;| — 1/n” > 0} is non-negative,
E(Zi| - 10" ){|Zi| - 1/n" > 0} = / P((1Zi] =1/ )| Zi| = 1/0"} > 2)dz
0
:/ P(|Zi\—1/nﬁ>x)dx:/ P(|Z1| > z)dz
0 1/n?
Recall that H(z) = P(|Z1| > x) € RV_, as © — oo. Therefore, from Karamata’s theorem,
B2 < [ P> 2)do+ 1/n L] > 1/0) € RV anys(a) (.11)
1/n
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as n J 0. Therefore, there exists some 79 > 0 such that for any (V;);>0 € T'ar and n € (0,10),

max 7 ZV EZV| <M - B2 | < ¢/3,

J<[t/n]

from which we immediately get (3.8).
Next, for (3.9), fix a sufficiently large p satisfying

-1 - 2N 2N S 2N - 2N
p=1 Pp “a y P .
B 1-p (=1 " 2a—-1)8

Note that for (V;);>o € T'ar and n > 0, since {nV;_ 1Z :4 > 1} is a martingale difference sequence,

. P> (3.12)

max Vi_ Z(l)‘
<J<Lt/7ﬂn‘ 2 Vi

Lt/n] A o\
<ab || Y (wiaZ) <aM’E || Y (n2")
=1 =1
" N TN
< cicoMPE <]£H§L/};J’ ZnZ D < cica (p—l> MPE Z nZ; (3.13)

for some ¢1,co > 0 that only depend on p and won’t vary with (V;);>0 and 7. The first and third
inequalities are from the uppper and lower bounds of Burkholder-Davis-Gundy inequality (Theorem
48, Chapter IV of [43]), respectively, and the fourth inequality is from Doob’s maximal inequality. It
then follows from Bernstein’s inequality that for any n > 0 and any s € [0,¢],y > 1

sl sl
B 5240 > 0) (| S5 w2 o)
j=1 j=1

ln%W )
I g+ Lo B[(ZV)2]

< 2exp ( (3.14)

Our next goal is to show that % -n?- E[(2§1))2] ' B2 for any 77 > 0 small enough. First, due
to (a +b)? < 2a? + 2b,

B[(Z(")?] = B[(z® - B2{")?] < 2B[(21")"] + 2[B2(")? < 2B[(2V)"] + 2(BI2))*

Also, it has been shown earlier that E|Z; 1)| € RV(a-1)3(n), and hence [E|Z(1 \]2 E RV2(a-1)5(1)-
From our choice of p in (3.12) that p > GarDp 1)/3, we have 1+ 2(a — 1)3 > 1 — 3+ 2 thus implying

-n? 2[E\Z(1)|] : n'~ “AHE for any n > 0 sufficiently small. Next, E[(Z(l) )?] = f 2zP( Z(l)\ >

)da: =/ L 2xP(|Z1| > z)dx. If @ € (1,2], then Karamata’s theorem implies [, 1/’ 22P(|Z1| >
r)dr € RV_(2-a)5(n) asn | 0. Given our choice of p in (3 12), one can see that 1—(2—a) g > 1—ﬁ—|—%

As a result, for any 7 > 0 small enough we have % -n* - 2E[(Z; z4 )) | < 17]1 PHE I a > 2, then

5
lim,, o fol/n 2¢P(|Z1| > x)da = [;° 22P(|Z1| > x)dx < oo. Also, (3.12) implies that 1 — 3+ % <1

As a result, for any n > 0 small enough we have -n? 2E[(Z(1)) | < én17ﬁ+%. In summary,

t = 1 ,_gi2n
PR NS Ui (3.15)
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holds for any n > 0 small enough. Along with (3.14), we yield that for any n > 0 small enough,

[t/n] _lyl/p 3
(‘ ZnZ(l)‘ > n? y) < 2exp (212—W> §Qexp(—1y1/”> Yy > 1,
P

37
where the last inequality is due to our choice of p in (3.12) that 1 — 8 — % > 0. Moreover, since

p
/nzN <

fooo exp (—%yl/p) dy < oo, one can see the existence of some C,gl) < oo such that E‘ ZJLZI’J 772](-1)

C,(,l) for all n > 0 small enough. Combining this bound, (3.13), and Markov inequality,

; o~ p
E[ max ‘Zle 77‘/2—121(1)‘ }

(1)‘ ) J<1t/n]
Vi1 Z
P | o2 7
Ls/n)  Z(1)|P
<CIMPE‘Z]':1T] nz; ’ <C’MP.CZ()1). .
- €r /3P - er/3p

for any (V;)i>0 € I'ps and all > 0 sufficiently small. This proves (3.9).
Finally, for (3.10), recall that we have chosen /8 in such a way that o —1 > 0. Fix a constant

J =[5 +1, and define I(n) 2 #{i < [t/n] : Z{” # 0}. Besides, fix 6y = 537y For any

§ € (0,60) and (V;);>0 € T'as, note that on event {I(n) < J} we must have irtax n| > Vie 1Z(2)‘ <
> B

n-M-J-do/n < MJdy < €/3. On the other hand,

p(i = 7)< (Y1) (#O)) < @0 (HO)) € RV sapey ) a5 n L0,

Lastly, the choice of J = [

251 | + 1 guarantees that J(af — 1) > N, and hence,

lim  sup (max Vi Z( > n" <lim sup P ZJ/ N _o.
nd.0 (Vi)i»0€T M J<lt/n] n’z 1 ’ )/ n10 (Vi)soo€T a1 ( (77) ) n

This concludes the proof of part (a).

(b) To ease notations, in this proof we write X”® = X" when b = co. Due to Assumption 4, it
holds for any € R and any > 0,n > 0 that U(Xglb(z)) < C. Therefore, {o(X!"(2))}is0 € T
From the strong Markov property at stopping times (7'-> g (77))].>17

7

k

supP((ﬂ (n,beéx ) ZsupP( n,beém)))

z€R i=1 i=1 *€R

J
<k- sup P max n Vie1Z;| > e/2>
(Vi)izo€Te Ni<[1/n)A (2% (m)-1) ’; <

where C' < oo is the constant in Assumption 4 and the set I'c is defined in (3.5). Thanks to part (a),
one can find some &y = Jy (e, C, N) € (0,0) such that

J
sup P max n| ZVi,lZZ-’ > 6/2) =o(n™)
(Vi)izo€T'c jSLl/nJ/\(Tf‘s(n)*l) i=1

(as ] 0) for any ¢ € (0, dp), which concludes the proof of part (b). O
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Next, for any ¢ > § > 0, we study the law of (Tj>5(77))j>1 and (W]>5(n))j>1 conditioned on event

B2 o) 2 {727 n) < L1/ < 7278 (n); W) > e ) € K]} (3.16)

The intuition is that, on event Ei «(1), among the first |1/7| steps there are exactly k “large” jumps,
all of which has size larger than c¢. Next, define random variable W*(¢) with law

. — ()" W — ()"
P(W*(c)>z)=p (x) ., P(=W*)>z)=p (ac) Yo > ¢, (3.17)
and let (W*( )) , be a sequence of iid copies of W*(c). Also, for (U; )]>1, a sequence of iid copies
of Unif(0,1) that is also independent of (W*( )) >10 let Uiy < Uiy < -+ < Uiy be the order

statistics of (U;)¥_,. For any random variable X and any Borel measureable set A, let .Z(X) be the
law of X, and .Z(X|A) be the conditional law of X given event A.

Lemma 3.5. Let Assumption 1 hold. For any d > 0,¢c > 6 and k € Z7T,

_ P(E2,(m)  1jct
lim ’ = ,
nd0 Ak (77) k!

and

2 (WS ) W5 )+ oW n)nr ), )+ nr )| E2 ()
=2 (W (), W3 (), Wi (e), Uy, Uity > Uiy ) a5 77 4.0,

Proof. Note that (Ti>6(77))i>1 is independent of (Wi>5(77))i>1. Therefore, P(E? (1)) = P(r7%(n) <
[1/n] <728 ) - (P|Wo(n)| > c))k Recall that H(x) = P(|Z;| > ). Observe that

P (%) < [1/n) < 7ts ()

P(#{i < 1/« 02| > 8} =)

_ (Llém) (1 _H(é/n))u/m—k 16/ as)
——— —
éql(r,) é112(71) él]s(ﬂ)

For ¢1(n), note that

coal (/) (/) =1) - (10 —k+1)/k 1 5.19)
nio 1/nk 1/n* i '

Also, since (|1/n] — k) - H(6/n) = o(1) as n | 0, we have that lim,o¢2(n) = 1. Lastly, note that

P (n|Wi ()| > ) = Hic/n) [ H(5/n),

and hence,

) - (POwim)>a)) mm) - (Hem [H6m) (o)

lim = lim = lim — L =1/c*

nio (H(1/n))" o (H(1/n))" 0 (H(1/))

Plugging (3.19) and (3.20) into (3.18), we yield

Lo PEL () ar() - ae0n) as(n)- (P(wi ()| > C))k 1/t

mo ) L (H (1 /)" &
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Next, we move onto the proof of the weak convergence. For any x > ¢,

P(Wi () > ) _ D) POWE ) < ~2) _ O3

im — 1m -
0 P (W7 (n)] > c) @ o P (n|W°(n)] > c) z

As a result, we must have jf(an‘s(n), nWyl(n), - ,nW,?‘S(n)}Eik(n)) = X(Wl* (c),- - ,W,’;(c))

Moreover, notice that the sequences nW;°(n), - ,nW.°(n) and n77°(n), - -+ ,n7.°(n) are condition-
ally independent on event Eg,k(n). Indeed, for any 1 <iy < --- <1, < |1/n] and ¢1,--- , e > ¢,

P (77°(m) = iy and y|W; 5 ()| > ¢; j € [K])
P(r20 () < [1/n) < 28 ()s alW7Om)] > ¢ Vi € [k])
_ P( ) =i Vi = )P ()] > ¢ v € [K)
P(77%(n) < [1/n] < 7y ()P (n|w->5< )| > ¢ Vi k)
due to the independence between ( T; )) and (W;°(n ))i21
= P77 =i ¥ 2 1| 770 n) < [1/n) < 728 ) - P (nlW7 )] > 5 g € K] | W7o > ¢ Vi€ [k])
=P(r700m) =iy Vi 2 1| 20 0n) < [1/n) < 28 s mlW7o )] > ¢ Vi€ [k])

(nle‘s(n)l > c; Vj € [K] ‘ ") < 11/n) <72 ) W0 (n)| > ¢ Vi€ [k‘})-

Again, we applied the independence between (7, >5(n))i>1 and (Wi>6(77))i>1~ From the conditional in-
dependence between nWy°(n), -+ ,nW°(n) and nri°(n),--- ;7% (n) on event E?,(n), we know
that the limit of f(nW1>5(77),77W2>5(77),~~ ,nW,f‘s(n)‘Eg)k(nD is also independent from that of

f(ané(n), nrs (), 7 (n) ‘Eg,k(n)) Therefore, it now only remains to show that

3(777-56(77)7 777-2>6(77)7 e 7UTJC>6(77)‘E2,1§(77)) = $<U(1;k)7 Ty U(k,]c)) .

Note that since both {n7>°(n) : i = 1,...,k} and {UGyk i =1,...,k} are sorted in an ascending
order, the joint CDFs are completely characterized by {t; : i = 1,...,k}’s such that 0 < ¢t; < tg <

- <ty < 1. For any such (ty,--- ,t) € [0,]*, note that
P (5% (n) > tr, o) > ta, - w20 (0) > te | E2u(n)
=P (077 0) > b, 07 ) > o, om0 0) > e | 70 0) < [1/n) < 77 (n)
P (n770(m) >ty 750 (n) > b, o 00 (n) > s 770 (n) < |1/n) < 775 (n))

P (70 < [1/n) < 77 ()

and observe that

P(nr70m) > tr, mrs(n) > o, o 070 (m) >t 770) < (1/n) < 725, ()
P (770 < [1/n) < 77y (n)
87 @2(m)gs(n) "
B a1(n)gz 7])(]3 ‘S ‘/QI
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where S7 £ {(sl,~~- sk) €{L,2, - [1/n] =1} ms; >t Vi€ K] 51 <s2 <o < sk}‘ Note
that

[1/n]-1 sp—1 Sp—1—1 s3—1 so—1

s= 3 > > o X Xt

se=l L s =[P 41 sk o= o2 41 =241 si=[ S+

Together with (3.19), we obtain

= @i =0 [ [ b

= P(U(i;k) >t; Vi € []])

and conclude the proof. O

Recall the definitions of the sets Dh) and ]D)( I i (2.11) and (2.18) respectively. The next two

results reveal useful properties on sets of form ID)E4) and ]D)( )b when Assumptions 2 and 4 hold.

Lemma 3.6. Let Assumptions 2 and 4 hold. Let A C R be compact and let B € . Let k =

0,1,2,---. If B is bounded away from ]D)Effl), then there exist € > 0 and § > 0 such that the following
claims hold:

(a) Given any x € A, the condition |w;| > 0 Vj € [k] must hold if h*) (z,w,t) € BF;
(b) dy, (B3 DY) > 0.

Proof. The claims are trivial if A or B is an empty set. Also, the claims are trivially true if & = 0;
note that in (b) we have }D);_l) = (). In this proof, therefore, we focus on the case where A # (), B # (),
and k£ > 1.

Since B is bounded away from ]D)( 2 , there exists € > 0 such that dj, (B3¢, ]D)(lc 1)) > 0 so that
part (b) is satisfied. We will show that there exists a &, which together with € batlbﬁeb (a) as well.Let
D € [1,00) be the Lipschitz coefficient in Assumption 2. Besides, recall the constant C' € (1,00) in
Assumption 4 that satisfies sup, g |o(x)| < C. Let p = exp(D) and

€

= .
pC+1

(3.21)

Note that § < € To show that the claim (a) holds for such & and §, we proceed with proof by
contradiction. Suppose that there is some ¢ = (t1,--- ,t;) € (0,1]*", w = (wy,--- ,wy) € R*, and
zo € A such that & 2 ) (zg,w,t) € B yet |w;| < & for some j = 1,2,--- k. We construct
¢ e ID) (=1 such that dj, (€,€) <& Let J 2 min{j € [k] : |w;| < d}. We focus on the case J < k,
since the case J = k is almost identical but only slightly simpler. Specifically, recall the definition of
RO (.) given below (2.7), and construct &' as

&(s) s €0,ty)
§(s) = QRO (=) (s —ts) s€[tstir)
&(s) s € [trs1,t).

That is, &’ is driven by the same ODE as £ on [tj,t741), except that at the beginning of the intervals,
&' starts from £(t;—) instead of £(¢;). On the other hand, & coincides with & outside of [t;,t 11).
To see how close { and ' are, note that from Assumption 4, we also have that |¢(t;) — &(t;—)| =
’U(f(tJ—)) . U)J’ < C96. Then using Gronwall’s inequality, we get

1€(s) — &' (s)| < exp ((ts41 — ts)D)|E(ts) — & (ts—)|
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< plé(ts) — &(ts—)|
< pCé < E, (3.22)

for all s € [ty,ty41). This implies that dj, (£,£’) < €. However, this cannot be the case since £ € B€,

¢ e fofl), and we chose € such that dJl(BSE,]D)Eqkil)) > 0. This concludes the proof for the case
with J < k. The proof for the case where J = k is almost identical. The only difference is that & is
set to be ¢'(s) = &(s) for all s < ty,, and &'(s) = h(O (&'(tp—)) (s — tx) for all s € [ty, 1], O

In some of the technical tools developed below, we will make use of the following uniform nonde-
generacy assumption, which can be viewed as a stronger version of Assumption 3.

Assumption 8 (Uniform Nondegeneracy). There exists ¢ € (0,1] such that inf,cg o(x) > c.

We make one observation related to Assumption 8 and the truncation operator ¢, defined in (2.14).
For any b,c > 0, any w € R and any z > ¢, note that for w £ ©p/e(w), we have @p(z - w) = pp(z - w).
Indeed, the claim is obviously true when |w| < b/c (so w = w); in case that |w| > b/c, we simply get
vp(z - w) = pp(z - w) with the value equal to b or —b. Combining this fact with |pp(z) — pp(y)| <
|z —y| Vz,y € R, we yield (for any b, ¢ > 0, any w1, ws € R, and any 21,22 > ¢)

lop(21 - w1) — @p(22 - w2)| < |21W1 — 220 where w1 = @p/c(w1), Wa = @p/e(w2). (3.23)

Now we are ready to develop a result for D(f)lb that is analogous to Lemma 3.6.

Lemma 3.7. Let Assumptions 2 and 4 hold. Let A C R be compact and let B € Sp. Let k =

0,1,2,---. If B is bounded away from ]D)Effl)‘b, then there exist € > 0 and § > 0 such that the
following claims hold:

(a) Given any x € A, the condition |w;| > § Vj € [k] must hold if R (x,w, t) € B;
(b) dg, (B, DY V") > 0.

Furthermore, suppose that Assumption 8 holds, then there exist € > 0 and § > 0 such that
(¢) Given any x € A, the condition |w;| > & ¥j € [k] must hold if h®)+e(z w, t) € B,
(d) dj, (B, DY VP > 0.

Proof. The same arguments in Lemma 3.6 can be repeated here to identify some constants €, > 0
such that the following two claims hold:

e given any z € A, the condition |w;| > § V5 € [k] must hold if A(®)I®(z w, t) € B;
o d; (B,DY V) > 3¢

thus concluding the proof of (a),(b).
Let p = exp(D) with D € [1,00) being the Lipschitz coefficient in Assumption 2, C' > 1 being the
constant in Assumption 4, and ¢ € (0,1) being the constant in Assumption 8. We claim that

bD\1k
£ = hW (g w t), & = B+ (z w0 t) = dj(6€) < [2p(1—|— —)] ¢ (3.24)
c
for any € > 0, x € R, t = (t1,---,t1) € (0,1]*", and w = (w1, - ,wr) € R¥. Then we can pick
some € > 0 small enough such that [2p(1 + %)]ké < €p/4. First, for any t = (t1,---,t;) € (0,1]*T,

w = (wy, - ,wp) € R¥ and xq € A such that h(®I**+¢(z w, t) € B, applying (3.24) we then get
h(k”b(x_o, w,t) € BT C B due to € < €y/4. Considering our choice of 8 in part (a), we must have
|w;| > ¢ for all j € [k], thus concluding the proof of part (c).
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Next, for part (d) we proceed with a proof by contradiction. Suppose ‘Ehat dj, (B, fofl)‘b%) =0.
Then we can find some & € B and & = h®+e(z w, t) € DF VT such that dy, (£,¢) < 2
However, due to (3.24), it holds for £ = RO (2w, t) € ]D)Ef)lb that dj, (f’,é) < €0/2, thus leading
to the contradiction that d]l(B7DE4k)|b) < dj (€,6) < dy, (6,€) +dy, (€,6) < 2+ 9 < €. This
concludes the proof of part (d).

Now it only remains to prove (3.24). We fix some z € R, ¢t = (t1,---,t) € (0,1]*", w
(w1, ,wy) € RE. Also, let tg = 0, ty1 = 1, € = A (z,w,t), ¢ = hPIPFe(z, w, t) and R;
SUPye(o,;] |&(t) — €'(t)]. First of all, by definition of AM)I® we get Ry = [£(t1) — €' (t1)] < e. Now we
proceed by induction and suppose that for some j € [k] we have R; < [2p(1 + %)]J_le. On interval
t € [tj,tj41), thanks to Assumption 2 we can apply Gronwall’s inequality to get

sup  [¢(t) — €' (t)] < exp (D(tj1 — t7)) |E(t5) — €' ()| < pR;. (3.25)

teftytit1)

>l

Lastly, at t = tj11, if j = k (so tj41 = 1), the continuity of &, &’ implies
. bD k-1 bD -k
€1) ~ €/0] = Jim [€(6) — €(0)] < pBi < p- [20(1 + 22)] e < [2p(1+ 22"
In case that j <k — 10 t;41 < 1, the definition of A®¥)1* implies (let 2z, £ &(tj41—), 2, £ &' (tj11-))
|€(tj+1) — € (tj41)]
= |z + @b (0(z)wjs1) — [2h + Gore(0(2L)w)zr) ]|

<zw = 2L+ |@p (o (z)winn) = o (o (z)wj) | + w6 (0 (zL)w)t1) = pre(0(2h)wjta)]|
< |ou = 24|+ lon((uga) — eulousen) | +

< o= 2| 4 lo(z) — o) - lopelwsin) +e  sing (3.23)
<l = 2|+ D |z — 2] - (b/c) +e due to Lipschitz continuity of o; see Assumption 2
bD bD
=1+ —)|zs — 2| +e<(14+ —)pR;j+¢  due to (3.25)
C C
bD bD .-

< [2p(1+ 2 e

The proof to (3.24) can be completed by arguing inductively for j = 1,2, -+ k. O

For any £ € D, let [|€]| = sup;c(o 1) [£(t)]. We present a result about the boundedness of all & in
Db

Lemma 3.8. Let Assumptions 2 and 3 hold. Given an integer k > 0, some —oo < u < v < 00, and
some b > 0, there exists M = M (k,u,v,b) < oo such that ||§|| < M V€ € ]D)Ek)lb

w,v]

Proof. Let &*(t) = yi(u). Let N = |[u—v|Vband p = exp(D) > 1 where D € [1,00) is the
Lipschitz coefficient in Assumption 2. Let ¢ = h(®)I’(z w,t) be an arbitrary element of fo)lb with
r € AC [uv], w= (w, - ,wg) € RF t = (t1,--,t) € (0,1]*". From Assumption 2 and
Gronwall’s inequality, we get sup,ejg 4,y [£*(t) — §(1)] < |z — ufexp(Dt1) < plo — u| < pN. Since £*(2)
is continuous, and [£(t1) — &(t1—)| < b, we get sup,epoq,) 1€7(t) — £(t)| < pN +b < 2pN. Now proceed
with induction. Adopt the convention that tx;1 = 1, and suppose that for some j =1,2,--- |k,

sup [€"(t) — £(6)] < (20N .
te[0,t;] —_
:Aj
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Then from Gronwall’s inequality again, we get |£*(t) — &(t)| < pA; for any ¢ € [t;,t;41). Due to the
continuity of {* and the upper bound b on the jump size of § at ¢;41, we have

€(tj+1) — E°(tj41) < pAj +b < 2pA; < Ajpa.

Therefore, sup,cjo,,, 1€7(t) — &(t)| < Aj41. By induction, we can conlude the proof with M =
A1 + 1€ = (20)FIN +l€7])- O
Next, we present a corollary that follows directly from the boundedness of fo)‘b shown in Lemma

3.8. To facilitate the analysis, we consider the following “truncated” version of functions a(-),o(-).
For any M > 1,

a(M) if x > M, o(M) ifox > M,
ap(z) 2 a(-M) ifx < —M, om(z) 2 o(—=M) ifx < —M, (3.26)
a(x) otherwise. o(x) otherwise.

Given any a(-), o(-) satisfying Assumptions 2 and 3, it is worth noticing that aps(-), oar(-) will satisfy
Assumptions 2, 4, and 8. Similarly, recall the definition of the mapping h(®I® in (2.15)-(2.17). We
also consider its “truncated” counterpart by defining the mapping hs\%b :R x RF x (0,11 — D as
follows. Given any zg € R, w = (wy,- -+ ,w) € RF ¢ = (t1,--- ,tx) € (0,1]*, let & = hg\%b(xo,w,t)
be the solution to

o = To; (3.27)
%: M(gt) Vt € [O,l], t;étl,tg,”' A (3.28)
& =&+ oo(onm(&—)w;) if t = t; for some j € [k]. (3.29)

Also, we let ]D)Xi)z\l/l;L = hg\%b (R x R¥ x (0,1]*). One can see that the key difference between hMﬁb and

R is that, when constructing hg\%b, we use the truncated aps(-),on () as the drift and diffusion
coefficients instead of the vanilla a(-),o(:).

Corollary 3.9. Let Assumptions 2 and 3 hold. Let b > 0, k > 0. Let A C R be compact. There
exists My € (0,00) such that for any M > My

o sup,< [§(1)] < Mo VE € Dy T XC)J\I; ;
e Foranyt= (ty, --,t) € (0,1]*1, w = (wy,--- ,wx) € R* and x¢ € A,

RO (20, w, 8) = B (20, w, 1),

Proof. Let —o0o < u < v < oo be such that A C [u,v]. Given 79 € A, w € R¥, and t € (0,1]*T,

let £ £ h(k)‘b(xmw,t) D(k)‘b - ID)E )‘?. Let My < oo be the uniform upper bound associated

with ng)qlﬁ in Lemma 3.8: i.e., supycp 1 [€()] < Mo V€ € D k”?. If M > My, then we must have
£ =hPP(zy w,t) = h%?ilb(xo,w,t) due to [|€]| < My < M, and hence Df:)]\l/[bi = ]D)Ef)lb This concludes
the proof. 0O

Now we are ready to study the continuity of mappings h(*) defined in (2.5)-(2.7) and h(®)1® defined
n (2.15)-(2.17).

Lemma 3.10. Let Assumptions 2 and 3 hold. Given any b,T > 0 and any k = 0,1,2,---, the

mapping hféc):,lg is continuous on R x R¥ x (0,T)*T.
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Proof. To ease notations we focus on the case where T' = 1, but the proof is identical for any T > 0. Fix
some b >0 and k =0,1,2,---, some z* € R, w* = (wf, - ,w}) € Rand t* = (t5,--- ,t5) € (0, 1)*.
Let £* = hFIP(z* w*, t*). Also, fix some € € (0,1). It suffices to show the existence of some & € (0, 1)
such that dy, (£%,¢) < e for all ¢ = hMI(2/ w' t') with 2’ € R, w' = (w}, - ,w},) € R¥ ¢ =
(th, -+, t}) € (0,1)FT satisfying

|z* — 2’| < 6, lwj —wi| V[t —t;| <3 Vj e [k] (3.30)

ngz‘fl,z*ﬂ], given any M € (0,00) large enough the

claim [|€*|| + 1 < M and ||¢'|| + 1 < M holds for all ¢ = h®IP(2/ w’ #') satisfying (3.30). By picking

an even larger M if necessary, we also ensure that M > 1 + max;e ] \w;‘| Let a* = ap, 0 = oum

(see (3.26)). Let O = sup,ei_p o la(z)| Vo(z) V1. Let h* = hgf[)ilb, see (3.27)-(3.29). The choice

of M implies that £* = h*(z*, w*,t*) and & = h*(a’,w', t').
_ Letp 2 exp(D) > 1 where D € [1,00) is the Lipschitz coefficient in Assumption 2. We pick some
0 > 0 small enough such that

In particular, by applying Corollary 3.9 onto

2 <1ne  28pF(DM + 1)FL(6C™ + p)d < e. (3.31)
Also, by picking § > 0 small enough, it is guaranteed that (under convention t§ = t; = 0, t; , =
t;chl = 1)

iy — 1t

§<oV1 Il T < = (), ) € (0,1)F, t— 5| < 6. 3.32
S 1y — 8 (B, 1) € (0, 1), max |t — ] (3:32)

Now it only remains to show that, under the current the choice of ¢, the bound dy, (§,¢’) < € follows
from condition (3.30). To proceed, fix some & satisfying condition (3.30). Define A : [0,1] — [0, 1] as

Au) 0 ifu=20
u) =94t . . .
5+ t}i—t"j (u—1ty)  ifue (t),t),,] for some j =0,1,--- k.

For any u € (0,1), let j € {0,1,---,k} be such that u € (#},%},,]. Observe that

P P
[A(u) —u| = t;f—|—tf+17_tf-(u—t;)—u = t;+tf+17—tf.v_(v+t;) with v 2 u —t}
Jj+ J Jj+ J
* / t;+17t;
§|tj—tj|+ ﬁ—lv
j+1 J
<315 1<e (3.33)

In summary, sup,,¢o,1) [A(u) —u| < €. Moving on, we show sup,,¢o,1] |€*(A(u)) =€ (u)| < €. with an in-
ductive argument. First, Assumption 2 allows us to apply Gronwall’s inequality and get sup,¢ g xa¢/) &% (u)—
¢ (u)] <exp (D (t; Ath))|a* — 2’| < pb. As a result, for any u € (0,7 At}),

e(F o) -cw|<le(F) -ew
1 1

& (Mw) — €' (u)| =

+ € (u) — £ (u)|

t*
<le(5 o) 5*(u>'+p5
1
< sup|a*(x)] - t—,l— “u+ pd due to £ = h* (2", w*, t¥)
z€eR t1

<C*+pd=(C*+p)d  due to (3.32).
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In case that t] < ¢}, “(Au)) = & (u)| < (4C* + p)d. In case that t7 < t},
due to &' = h*(z/,w’,t') for any u € [t],t]) as well as the properties (3.32)(3.33),

€' (u) — €(17)

& (Mw)) — € (A@D)] < sup|a” ()| - A(w) = A(t7)| < 2C73.

<sup|a ()| - Ju— t5| < C*6;

As aresult, sup,e (o) |§" (A(w)) — & (u)| < (4C* + p)d. In addition, due to |¢y(z) — @u(y)| < |z — 1y,

—|e () + o (6 O Jut ) - €60 - (o7 (€050t )

< e (Mt =) - €| + *(w ))wi 0*(6’ -))uh

< | () =€) + o (€ () ) = o (£t -)) |- twil + o (€5 ) |- s = w3
& (A=) — €t + o (¢ (M=) = o (€t -)) |- M+ €7

<
< (4C* 4 p)d + (AC* +p)6 - D - M + C*5 due to Assumption 2
= [(4C* + p)(DM +1) + C*]g due to § < 4.

In summary, sup,, (o,

*(A(w)) =€ (u)| < [(4C* + p)(DM +1) +C*]§ < (DM +1)(6C* + p)é. Now

we proceed inductively. Suppose that for some j =1,2,--- |k,
sup [€"(Mw) — €'(u)| < 271~ (DM + 1) (6C" + p) 5.
uE[O,tj] éRJ_

For any v € [0, (tj,, A5, ) —t}),

€ (A +0) =€/ +v)] < (€7 (A(E) +0) = €t +0)| +[€°(t] +v) = €t + )]

<

£ ()\(t;- +v)) =& (th +v)| + pRjg Using Gronwall’s inequality

< supla” (@)] - I\ + v) — (&) +0)| + pR;S
z€R

< 20%5 + pRjg due to (3.33).

Again, in case that ¢}, <17, we already get sup,¢(o . ’5* (A(w)) _5/(u)‘ < (5C+pRj)S. In case
)
that ¢, < t},,, note that for any u € [t;,,,t},), one can apply properties (3.32)(3.33) to yield

€)= € (¢50)] < supla*(@)] - fu — 5] < O°F;

€ (Aw)) — € (Mtj0))| < supla*(@)] - [Mw) = A1) < 2075

In summary, we get SUPye (o0, ’5 ( (u) ) &' (u )| < (50* +pR]—)5~. Lastly, in case that j = k+1 (so
(1) —-¢(1 )‘ < limsup,, |£*(A(2)) —§’(t)‘ < (5C* + pR;)d <
7+15 In case that j < k, using |¢p(x) — ou(y)| < |2 — yl,

& (A(t0)) — € (t20)|

th =1, =t; = tr4y1 = 1), we have
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=& (/\(t;'-i-l_)) + ©p (U* (f* ()\(t;+1—)))w;+1> - f,(t;'-u_) — ¥ (U* (f/(t9+1—)>w;+1) ‘
A7) = & Ea—)| + |07 (f* (A(t;‘H*)))le —o’ (5/(t3+1*))w3‘+1’

< [ (A7) = € W) + |0 (€ (017 ) = " (€E1a )| lwj

+

IN

o* (fl(tg'ﬂ_) ‘ Jwipy — Wil

& (At11-) = € Ea )| + o (60E 1)) = 0" (€ t) |- M+ 76
(5C* + pR;)6 + (5C* + pR;)d- D - M + C*§ because of Assumption 2

- [(50* +pR;) (DM +1) + C*[5 < (6C* + pR;) (DM +1)3

= 6C* (DM +1)8 + p(DM + 1)}%]»5 < p(DM +1)R;6 + p(DM + 1)R;6

= 2p(DM + 1)R;0 = 27 p (DM + 1)1 (6C* + p)d = R; 116,

=

A

IN

and hence SUPye[0,¢/ ] ’5* (A(u))—f'(u)‘ < Rj+15~. By arguing inductively, we yield sup,,c(o 1 ‘f* (AMu))—
g u)] < Ri416 < € due to our choice of & in (3.31). Combining this bound with (3.33), we get
dj, (£%, &) < € and conclude the proof.

O

Lemma 3.11. Let Assumptions 2, 3, and 4 hold. Given any k =0,1,2,--- and T > 0, the mapping
hféc)T] is continuous on R x RF x (0, T)*T.

Proof. To ease notations we focus on the case where T' = 1, but the proof is identical for arbitrary
T > 0. Fix some k =0,1,2,---, 2* € R, w* = (w}, - ,w}) € Rand t* = (¢t],--- ,t;) € (0,1)*T. We
claim the existence of some b = b(z*,w*,t*) > 0 such that for any 6 € (0,1), 2’ € R, w’ € R* and
t' € (0,1)*T satisfying

2" —a'| <& |wi —wi|V|t) —t;] <dVjel[k] (3.34)

we have h(®)(z/,w’,t') = hFI(z/ w',t'). Then the continuity of h(®) follows immediately from
the continuity of h(®I® established in Lemma 3.10. To find such b > 0, note that we can simply
set b = C - (max{|w}| : j € [k]} + 1) where C > 1 is the constant in Assumption 4 satisfying
sup,cg |o(z)| < C. Indeed, for any § € (0,1) and any § € (0,1), 2’ € R, w’ € R¥ and ¢’ € (0,1)k"
satisfying (3.34), for ¢ = h®)(2/, w’ ') we have &' (t;—)wi| < C - (max{|w}|: j € [k]}+6) <b for
all j € [k], thus implying & = h)IP(2/ 4w’ ¢'). This concludes the proof. O

As an important consequence of the previous discussion, we verify the sequential compactness
condition (2.1) for measures C*)( - ;) and C™IP( . ; 2) when we restrict 2 over a compact set A.

Lemma 3.12. Let T >0 and k > 1. Let A C R be compact.

(a) Let Assumptions 2, 3, and 4 hold. For any sequence x,, € A and x* € A such that lim, o x, =
¥,

lim CW(f;2,) = CW(f;2%)  Vfec(Do,T)\DY V0,1]).

n—o0

(b) Let Assumptions 2 and 3 hold. Let b > 0. For any sequence x, € A and z* € A such that
limy, 500 Tp, = 'T*:

lim CWP(f;2,) = CPl(f2*)  vfec(Do, 7]\ D "0, 7).

n—oo
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Proof. For convenience we consider the case T = 1, but the proof can easily extend for arbitrary
T > 0.

(a) Pick some f € C(D\ ]D)ff*l)). and let ¢(x) = ¢s(x) 2 CHF(f;x). We argue that ¢(z) is a
continuous function using Dominated Convergence theorem. First, from the continuity of f and h(¥)
(see Lemma 3.11), for any sequence y,, € R with lim,;, 0 ym = y € R, we have

mlgn()()f( ) (Y, w t)) f(h(k) (y, w,t)) VYw e RF, t e (0,1)*

Next, we apply Lemma 3.6 onto B = supp( f), which is bounded away from ]D)Eqk_l), and find 6 > 0 such
that h¥)(z,w,t) € B = |w;| > § Vj € [k]. (A ®) (z,w, t))| < [ fI|-I(Jw;| > & Vj € [K]).
Also, note that [I(Jw;| > 6 Vj € [k])vE(dw) x L£M(dt) < 1/6% < oo. This allows us to apply
Dominated Convergence theorem and establish the continuity of ¢(z). This implies

lim C®)(f;2,) = lim ¢(an) = ¢(a*) = CH(f;27).

n—oo

Due to the arbitrariness of f € C(D\ Dfﬁl)) we conclude the proof of part (a).
(b) The proof is almost identical. The only differences are that we apply Lemma 3.10 (resp.
Lemma 3.7) instead of Lemma 3.11 (resp. Lemma 3.6) so we omit the details. O

In the next lemma, we show that the image of h(!) (resp. h(MI*) provides good approximations of
the sample path of X7 (resp. X;"b) up until 77°°(n), i.e. the arrival time of the first “large noise”; see
(3.2),(3.3) for the definition of 7.7°(n), W;>°(n).

Lemma 3.13. Let Assumptions 2 and 4 hold. Let D,C € [1,00) be the constants in Assumptions 2
and 4 respectively and let p = exp(D).

(a) For any €,8,n >0 and any x,y € R, it holds on the event

(L 3ot o)<

1<L1/?7J/\ () — 1 j=1

that
sup |€t—X[7t/nJ(a:)| <p-(e+]z—yl+n0), (3.35)
t€(0,1]: t<n‘r1>5(77)
where
e = PV W ) ) i () < 1,
hO(y) if 0 (n) > 1.
(b) Furthermore, suppose that Assumption 8 holds. For any €, b > 0, any § € (0, %) € (0, bzACl)

and any x,y € R, it holds on event

{ max n‘z X"lb

Z<L1/77JA 70 (m)— 1

that

sup & =X (@) <p- e+ ]z —y|+nC), (3.36)
te(0,1]: t<n7y 5(17)

35



bD
sup &—-X" @) <p- (14 =) (e+|a—y|+20C (3.37)
o™l X <o (14 7) 0 )

where

o RO (y, g W2 (), () if i’ (n) <1,
ROIb(y)) if nr0(n) > 1.

Proof. (a) By definition of &, we have & = y:(y) = h(O(y)(t) for any t € [0,1] with t < n77°(n).
Also, since 77°°(n) only takes values in {1,2,---}, we know that nr% () < 1 <= 77°(n) < |1/n] and
70 (n) > 1= 7% (n) > [1/n].

Let A2 {maxlql/w/\( #5(ny-1) 77’ Z] vo(X] 1 (2))Z; ‘ < e} Recall the definition of the deter-

ministic process " defined in (3.1). Applying Lemma 3.2, we know that on event A,
(@)~ X] (@) e exprD - [1/n]) <pe Vi< AT -1).  (3.39)

On the other hand, recall that y(y) is the solution to ODE dy(y)/dt = a(y:(y)) under initial
condition yo(y) = y. Since & = y;(y) on t < nr°(n), by applying Lemma 3.3 we get

sup )ft =z (m)‘ < (nC+ |z —yl) - p. (3.39)
te(0,1]: t<7]‘r1>6('r])

Therefore,

sup {thft/m(x)‘ <p- (e+|xfy|+n0). (3.40)

te[0,1]:t<nr % (n)
(b) Note that for any = € R and any t € [0,1] with ¢t < n77°(n),
RO (2)(8) = O (2)(8) = KD (@, W (), 9 (0)) () = BD (2, g W1 (), 0770 (1) (1) = ().

Also, for any w with |w| < § < 5%, note that ¢, (na(x) + a(x)w) = na(z) + o(x)w Yz € R due
to nsup,eg |a(z)| < nC < % and sup,ep o(z)|w| < Clw| < b/2 (recall our choice of nC < & A 1).
As a result, X"(a:) = X;’lb(x) for all z € R and j < 77°(n). It then follows directly from (3.40)
that sup, (o 1j.<pr>s ) |66 — []z:l?nj ()] < p-(e+ |z —yl+nC). A direct consequence is (we write

it
y(u;y) = yu(v), ( ,y) = limy1s Yo (), and £(¢) = & in this proof)
lyr ) =5y) = X7 @) < p- (e o=yl +0C). (3.41)

Therefore,
b
€t ) = X105 (@)

=y’ () =1y) + @ (no (y(mf‘s(n)—; y)) Wf‘s(n))

- [Xffb%)l(x)*%( (X7 @) +o (X2 (x))Wfé(m)H
< |yt m)=iy) - X0 L @)]
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e (o (= W) ) = 0 (00 (X2 )25 )|
<1
e (0 (X280 @)W ) = (X2, 0) 0 (X)) )|
£n

Based on observation (3.23), we get

[ (W2 )| - o (wrr =) = o (X7, (@)

b

>6 . nlb
- D ’?J(Uﬁ (m—3v) fXng(n),l(w)‘ S

I

IN

D
p-(e+ |z —yl+nC)

IN

using Assumption 2 and the upper bound (3.41). On the other hand, from |¢y(z) — @p(y)| < |z — Y|

we get I < ’na (Xan5(n) 1(%‘))’ < nC. In summary,
Tl —

bD
&—X@lfnj(:c)‘ < (1+?) p-(e+ |z =yl +nC) +nC

sup
te[0,1]: t<n% (n)

bD
< (1+7> p-(e+ ]z —yl+2n0).

This concludes the proof of part (b). O

By applying Lemma 3.13 inductively, the next result illustrates how the image of the mapping
R®Ib approximates the path of X;-”b(x).
Lemma 3.14. Let Assumptions 2, 4, and 8 hold. Let A;(n,b,e,6,x) be defined as in (3.6). For any
k>0, zeR, eb>0,0c¢ (O,%), and n € (O,Z’Q—ACE), it holds on event (ﬂfill Ai(n,b,e,6,z)) N
{720 < 1/n) < 7i(n)} that

_ yenld . @ g .

t:}épl]lé(t) X (x)‘ <[30-00+ : )| - 3pe

where & = AW (z, W0 (n), - oW (), (n), -+ 077 °(n)), p = exp(D) > 1, D € [L,
the Lipschitz coefficient in Assumption 2, C > 1 is the constant in Assumption 4, and ¢ € (0
the constant in Assumption 8.

00) is
1) is

1) i
Proof. First of all, on A;(n,b,€,d,x), one can apply (3.36) of Lemma 3.13 and obtain

sup ’ft - Xftljnj ()] = sup yi(x) — X[’t/w (x)‘ <p-(e+nC) < 2pe,
te[0,1): t<nT%(n) te[0,1]: t<nt{’(n)
where we applied our choice of nC' < ¢/2. In case that k = 0, we can already conclude the proof.
Henceforth in the proof, we focus on the case where k > 1. Now we can instead apply (3.37) of Lemma
3.13 to get

sup

b bD bD
t€[0,ns° (n)] & = Xiiyn) (x)’ sp (1 T 7) (e+2nC) < 3p- (1 + 7)&

due to our choice of 2nC < e. To proceed with an inductive argument, suppose that for some
7=1,2--- k—1 we can show that

bD 17
sup ’&—Xﬁ%](x)’ < [3p-(1+*)r6-
te[0,1An77% ()] ¢

:Rj
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To highlight the timestamp in the ODE y;(y) we write y(¢;y) = y:(y) in this proof. Note that for

any t € [777]->6(77), 777—].>_f1 (77)), we have & = y(t - 777]‘>6(77);£n7->5(77))' Therefore, by applying (3.37) of
J

Lemma 3.13 again, we obtain

o e Xp @) <o (1472) (4 Ry +200)

t€ [nr2% (mynr 2, ()]

bD
Sp-(l—i-?)-(%—i—Rj) due to 2nC < €

bD
<3p- (1+7)Rj — Ry,  duetoR; >e.

. ) . k
Arguing inductively, we yield SUDy (0,172 ()] |£t — X[It‘;m (x)} < R = [3p. (1+ %)] e. Lastly, due to
(3.35) of Lemma 3.13 and the fact that 777,;?1(77) > 1,

sup gthftI?nJ(x)’SP'(€+Rk+nC)§p'(2€+Rk)
te[nry’ (m),1]

bD 1k
< p-3Ry < 3p~(1+7)] 3pe

This concludes the proof. O

3.2 Proof of Theorem 2.1

We first provide the proof of Theorem 2.1, i.e., the Portmanteau theorem for the uniform M(S \ C)-
convergence.

Proof of Theorem 2.1. We first prove (i) = (i4) and proceed with a proof by contradiction. Suppose
that the claim limsup, o supgeg g (F) — p1o(F) < 0 does not hold for some closed F bounded away
from C and some € > 0. Then there exists some sequences 7, | 0 and 6,, € © and some § > 0 such
that pg" (F) — pg, (F') > 6 ¥n > 1. Now, we make two observations. First, using Urysohn’s lemma
(see, e.g., lemma 2.3 of [34]), one can identify some f € C(S\ C) such that Ip < f < Ipe, which leads
to the bound pg" (F) — e, (F°) < pg"(f) — pe, (f) for each n. Second, from statement (i) we get
limy, 00 ‘ wo- (f) — e, ( /)| = 0. In summary, we yield the contradiction

limsup 1" (F) — peo,, (F°) < limsup pg" (f) — po,, (f)
n—oo

n—oo
< lim |pgr (f) = po, (H)] = 0.

The case where claim liminf, o infoce 1) (G) — po(G) > 0 does not hold for some open G bounded
away from C and some ¢ > 0 can be addressed analogously by applying Urysohn’s lemma and con-
structing some g € C(S \ C) such that Ig, < g < Ig. This concludes the proof of (i) = (ii).

Next, we prove (i) = (i). Again, we consider a proof by contradiction. Suppose that the claim
limy 0 Supgee |14 (9) — po(g)| = 0 does not hold for some g € C(S\C). Then there exist some sequences
M 4 0, 0, € © and some d > 0 such that

g (9) — po, (9) >0 Vn=1. (3.42)

To proceed, we arbitrarily pick some closed F' C S that is bounded away from C, and some open
G C S that is bounded away from C, and then make two observations. First, using claims in (i),
we have limsup,, , o, pig" (F) — pe, (F€) < 0 and liminf,, o p15" (G) — pa, (Ge) > 0 for any e > 0.
Next, due to the assumption (2.1), by picking a sub-sequence of 8,, if necessary we can find some pg+
such that lim, e |pa, (f) — pe-(f)| = 0 for all f € C(S\ C). By Portmanteau theorem for standard
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M(S\ C)-convergence (see theorem 2.1 of [34]), we yield limsup,,_, . po, (F€) < pg« (F€) for the closed
set F© and liminf,, o po, (G¢) > po- (G.) for the open set G.. In summary, for any € > 0,

limsup pp" (F) < limsup pg,, (F°°) + limsup py" (F) — po,, (F°) < po= (F°),

n— o0 n— oo n—o0
lim inf 37 (G) > lim inf g, (Ge) + limint g (@) — puo, (Ge) > pio- (G,

Lastly, note that lim, g g~ (F¢) = po- (F) and lim, o pg- (Ge) = pg~(G) due to continuity of measures
and (oo F“ = F, .o Ge = G. This allows us to apply Portmanteau theorem for standard M(S\ C)-
convergence again and obtain that lim,_, |,ugz (9) — po+(9)| = 0 for the g € C(S\ C) fixed in (3.42).
However, recall that we have already obtained lim, o |19, (9) — po-(g)| = 0 using assumption (2.1).
We hereby arrive at the contradiction
Jim [ (g) — o, (9)] < lim [pg" (9) — o+ (9)] + lim [po-(9) — o, (9)] = 0

and conclude the proof of (i) = (7).

Due to the equivalence of (i) and (#4), it only remains to show that (i) = (ii7). Again, we consider
a proof by contradiction. Suppose that the claim limsup, o supgee tig(F) < supgee pio(F) in (i)
does not hold for some closed F' bounded away from C. Then we can find sequences 1, | 0, 6,, € ©
and some 0 > 0 such that " (F') > supgeg po(F) + 0 Vn > 1. Next, due to the assumption (2.1), by
picking a sub-sequence of 8, if necessary we can find some ug+ such that lim,,_, |u9" (f)— po- (f)| =0
for all f € C(S\ C). Meanwhile, (i) implies that lim,, ’,u(,: (f) = o, (f)| =0 forall feC(S\C).
Therefore,

Jim {pg" (f) = po- ()] < N [pg” (f) = po,, ()| + Lim_|pao, () = po- ()| =0
for all f € C(S\ C). By Portmanteau theorem for standard M(S \ C)-convergence, we yield the
contradiction limsup,,_, ., ftg" (F) < pg-(F) < supgeg po(F). In summary, we have established the
claim limsup,, |, supgeg iy (F) < supgeg po(F) for all closed F bounded away from C. The same
approach can also be applied to show liminf, o infgc p17(G) > infoco po(G) for all open G bounded
away from C. This concludes the proof. O

To facilitate the application of Theorem 2.1, we introduce the concept of asymptotic equivalence
between two families of random objects. Specifically, we consider a generalized version of asymptotic
equivalence over S\ C, which is equivalent to definition 2.9 in [12].

Definition 3.1. Let X,, and Y, be random elements taking values in a complete separable metric
space (S,d). Let €, be a sequence of positive real numbers. Let C C S be Borel measurable. X, is said
to be asymptotically equivalent to Y, in M(S\ C) with respect to ¢, if for any A > 0 and any
B € S bounded away from C,

lim e,;lp(d(xn,yn)n(xn €BorY,cB)> A) —0.
n—oo

In case that C = (), Definition 3.1 simply degenerates to the standard notion of asymptotic equiv-
alence; see definition 1 of [45]. The following lemma demonstrates the application of the asymptotic
equivalence and is plays an important role in our analysis below.

Lemma 3.15 (Lemma 2.11 of [12]). Let X,, and Y, be random elements taking values in a complete
separable metric space (S,d) and let C C'S be Borel measurable. Suppose that €, 'P(X,, € -) — ()
in M(S\ C) for some sequence of positive real numbers e,. If X, is asymptotically equivalent to Yy,
when bounded away from C with respect to €, then ¢, P(Y,, € -) — u(-) in M(S\ C).
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3.3 Proof of Theorems 2.2 and 2.3

In the proofs of Theorems 2.2 and 2.3 below, without loss of generality we focus on the case where
T = 1. But we note that the proof for the cases with arbitrary T" > 0 is identical.

Recall the notion of uniform M-convergence introduced in Definition 2.1. At first glance, the
uniform version of M-convergence stated in Theorem 2.2 and 2.3 is stronger than the standard M-
convergence introduced in [34]. Nevertheless, under the conditions provided in Theorem 2.2 or 2.3
regarding the initial conditions of X" or X"®, we can show that it suffices to prove the standard
notion of M-convergence. In particular, the proofs to Theorem 2.2 and 2.3 hinge on the following key
result for X0

Proposition 3.16. Let 1, be a sequence of strictly positive real numbers with lim, ., 1, = 0. Let
compact set A CR and x,,z* € A be such that lim,,_, o x, = z*. Under Assumptions 1, 2, and 3, it
holds for any k =0,1,2,--- and b > 0 that

P(Xnn\b )/)\k C(k)lb( . ;x*) n M([D)\]fofl)'b) as n — 0.

As the first application of Proposition 3.16, we prepare a similar result for the unclipped dynamics
X" defined in (2.10).

Proposition 3.17. Let 7, be a sequence of strictly positive real numbers with lim, o1, = 0. Let
compact set A C R and x,,x* € A be such that lim,,_, o x, = z*. Under Assumptions 1, 2, 3, and 4,
it holds for any k=0,1,2,--- that

P(X"™ (x, ) /A —>C(k)( ;x*) in M(D\Dfﬁl)) as n — oo.

Proof. Fix some k =0,1,2,--- and some g € C(ID) \ ]D)chl)). By virtue of Portmanteau theorem for
M-convergence (see theorem 2.1 of [34]), it suffices to show that

3 7771 k (K) (e po*
Jim Bg (X7 (20))] /A" () = C(g; 7).
To this end, we first set B = supp(g) and observe that for any n > 1 and any §,b > 0,

E[ (X7 ()]

Elg(X "(l’n))]l(X”" B)]
= E[g(X ™ (z,))L(r7 (1 1/77nJ X" (x,) € B)]
+E[9(Xnn(xn))ﬂ( >5 () > [1/nn]; X (20n) € B)]
B[ @) ) < [1/na] < 72500 W ()] > oo for some j € [k]: X (x,) € B)]
+E[g(X™ () )I(77° () < [1/0n] < 7571 (0n)s 0 W50 ()] < % vj € [k]; X" (2n) € B) ]

£1.(n,b,5)

where C' > 1 is the constant in Assumption 4 such that |a(z)| V o(z) < C for any x € R. Now we
focus on term I.(n,b,d) and let

A(n,,6) 2 {72001) < (1) < 728 0m)s mal W7 (0)| < 5o Wi € B X () € B,

For any n large enough, we have 1, - sup,cg |a(z)| < 1,C < b/2. As a result,for such n and any
§ € (0, %), on event A(n,b,d) the step-size (before truncation) na(X;"_bl(x)) + na(X}'l_bl(x))Zj of
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X]mb is less than b for each j < [1/71,], and hence X" (z,,) = X"™/*(2,). This observation leads to
the following upper bound: Given any b > 0 and § € (0, 20) it holds for any n large enough that

E[g(Xnn( ))] < ||g||P(Tk+1(77n) S Ll/nnJ)
:pl(n 4)
+lgll P (7% () > [1/0a]5 X (4) € B)

A
=p2(n,d)

gl P (7 m) < [1/m) < 7205 mal W7 ()| > o for some j € [K])

Zpa(n,b,0)
+ E[Q(Xnn\b(xn))],

Meanwhile, given any n large enough, any b > 0 and any ¢ € (0, %)’ we obtain the lower bound
E[g(X" (zn))] = E[L(n,b,0)]
= E[g(X""‘b(xn))H(Z(n,@ 6))} due to X" (z,) = X"/ (z,) on A(n,b,0)
> B[g(X""(@.))] - gl P((Aln,b,6))°)

> E[g(X""(2,))] = llgll - [p1(n,8) + pa(n, ) + ps(n,b,6)].

Suppose we can find some § > 0 satisfying

Jim_ py(n, 8) /N (nn) = 0, (3.43)
nan;Opg(n, 6)//\k(nn) = 0. (3.44)

Fix such é. Furthermore, we claim that for any b > 0,

k 0 1

. k a
h?rlnﬁsotépzos(n,675)/A (1) < ¥5(b) = 555 - (ﬁ) ha (3.45)
Note that limy_, ¥5(b) = 0. Lastly, we claim that
blim CPI(g:a*) = CH) (g;2%). (3.46)
—00
Then by combining (3.43)—(3.44) with the upper and lower bounds for E[g(X" (z,))] established
earlier, we see that for any b large enough (such that 55 > ¢),
E[g(X"(zn))] E[Q(X"" (@a))] _ . E[g(X7P(z,))]
lim — b) < lim ————= < lim + b),
E[g(X" (24))]

— llgll s (b) + CHIP(g;2*) < lim < |lgll s (b) + CPI(g;2).

noee AR ()

In the last line of the display, we applied Proposition 3.16. Letting b tend to oo and applying the limit
(3.46), we conclude the proof. Now it only remains to prove (3.43) (3.44) (3.45) (3.46).

Proof of Claim (3.43):
Applying (3.4), we see that p;(n,d) < (H(%)/nn)k+1 holds for any § > 0 and any n > 1. Due to

the regularly varying nature of H(-), we then yield limsup,, _, . /\iﬂr(fl(f}l) < 1/6%* D < 0o, To show
that claim (3.43) holds for any ¢ > 0 we only need to note that

0 1 H(1/n,
lim sup pi(n,9) < lirnsupM lim A(n,) < ——— - lim H{L/m)

S Nk () = P AR () e M) S Sageny T, T =0
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due to w = A1) € RVa-1(n) asn | 0and a > 1.

Proof of Claim (3.44):
We claim the existence of some € > 0 such that

k+1
{Tk>5(77) > [1/n]; X"(x) € B} N ( m Ai(n,00,6,6,2)) =0 Vo e A §>0, ne(0, C’ip) (3.47)

i=1

where D,C € [1,00) are the constants in Assumptions 2 and 4 respectively, p £ exp(D), and event
A;(n,b,€,6,x) is defined in (3.6). Then for any 6 > 0, we yield

k+1
limsuppg(n,é)/)\k(nn) < lim sup supP(( ﬂ Ai(nn,oo,e,é,x))c) /)\k(nn).
i=1

n— 00 n—oo xz€A

Applying Lemma 3.4 (b) with some N > k(a — 1), we conclude that claim (3.44) holds for all § > 0

small enough. Now it only remains to find € > 0 that satisfies condition (3.47). To this end, we first
note that the set B = supp(g) is bounded away from D(ffl). By applying Lemma 3.6 one can find

€ > 0 such that dj, (B¢, ID)XC_D) > €. Now we show that (3.47) holds for any € > 0 small enough with
(p+ 1)e < € To see why, we fix such e as well as some z € A, § > 0 and n € (0, Cip) Next, define

process X% (z) 2 {X"(x) : t € [0,1]} as the solution to (under initial condition X{"’(z) = )
dX7° (x g ‘
tdit() —a(XP0(x))  VE20, 0 ¢ {nr0(n): j = 1),

v 71,0 _ " :
Xn74,>§("7) (l’) - XTi>§("7) (I) VJ Z 1

On event (ﬂfill A;(n,00,¢€,0, a:)) N {7']?6(77) > |[1/n]}, observe that

dy, (X" (x), X"())
< sup ‘)u(t"é(x) _X[]t/nj (:r:)‘
te [0 8 () U [nr 8 (m)nrs® () ) U0 [ 28 () 28, ()

<p-(e+nC) <pet+e<e because of (3.35) of Lemma 3.13.

In the last line of the display above, we applied n < Cip and our choice of (p+ 1)e < €. However,
on {77%(n) > |1/n]} we have X" (z) € ]fofl). As a result, on event (ﬁfill A;i(n,00,€,6,x)) N
{77%(n) > |1/n]} we must have d, (]fofl),X”(x)) < €, and hence X"(z) ¢ B due to the fact that
dj, (BE,]D)SC*U) > € This establishes (3.47).

Proof of Claim (3.45):

Due to the independence between (777°(n) — T;’_l(é))j>1 and (Wi>5(77))j>1,

b

Pa(n,5,8) = P (77 () < [1/1a] < 7781 (1) )P (mal W, ()] > 55 for some j € [k])

< P(7"(n) < [1/m.)) -ip(nmw;é(nnn > o)

—

3

HE/mo\ , Hze 50)
S( T )'k'H(?.l '

~—

Nn

Due to H(xz) € RV_q4(x) as x — oo, we conclude that limsup,,_, pf\g%”;‘)s) < % . (%)O‘ = Ys(b).
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Proof of Claim (3.46):

The proof relies on the following claim: for any S € .#p that is bounded away from D(k 1)
Jim CWb(8; ) = CH(S; z¥). (3.48)
—00

Then for g € C(D \ ]D)Ef*l)) fixed at the beginning of the proof, we know that B = supp(g) is

-, Also, for an arbitrarily selected A > 0, an approximation to g using
. . . . D\ N
simple functions implies the existence of some N € N, some sequence of real numbers (cg”)i:l, some

bounded away from ID)XC

sequence (Béi))ivzl of Borel measurable sets on D that are bounded away from ]D)(:_l) such that the
following claims hold for g2(-) £ 2N, céi)]I( - € By)):

B CB Vie|N]; [g%(&)—g(&)| <A VEeD.
Now observe that

lim sup |C®I(g; %) — C(k)(g;x*)‘ < limsup’C(k)lb(g;x*) — CWIb(gA, 2¥)

b—o0 b—o0

+ lim sup ‘C(k)‘b(gA; z*) — CW (g% 27)

b—oo

+ limsup |C™) (¢2; 2*) — CH) (g; 2*)

b—oo
First, note that CF)I®(gA; %) = Ziv (z)C(k)“’(B(Z) x*)
Therefore, applying (3.48), we get limsup,_, ., Mo (gh; %) — C(k)(g ;)| =
CWIb(g2;z7) — CWIb(g; %) < A~C(’“)'b(3;x*) and |CH) (g%;2%) — CW) (g;2%)| < A - CW)(B;z).
Thanks to (3.48) again, we get limsup,_, ’C(’“)‘b(g;x*) — C®(g; z*)‘ < 2A - C®)(B; z*). The arbi-

trariness of A > 0 allows us to conclude the proof of (3.45).
We prove (3.48) by applying Dominated Convergence theorem. From the definition in (2.19),

and C®)(¢%;2%) = Y1 e CO (B 27).

RIb(S: 2*) é/ﬂ{w)lb(z*,w,t) € S}ug(dw) x LT (dt)

where S € .%p is bounded away from ]D)Ef_l). First, for any w € R* ¢ € (0,1)*" and z € R, let
M £ max;cp |w;|. For any b > MC where C' > 1 is the constant satisfying such that sup,cp |a(z)| V
o(z) < C (see Assumption 4), by comparing the definition of A%} and R it is easy to see that
R (2w, t) = h(F) (z* w,t). This implies limp_, o H{h(’f)‘b(x*,w,t) € S} = H{h(k)(at*,w,t) € S’}
for all w € R* and t € (0,1)*". In order to apply Dominated Convergence theorem and conclude
the proof of (3.48), it suffices to find an integrable function that dominates I{ar(l(z* w,t) € S }

Specifically, since S is bounded away from fo_ ) we can find some € > 0 such that d 7, (S, ID) (k= 1)) :

Also, let p = exp(D) where D € [1,00) is the Llpschltz coefficient in Assumption 2. Fix some § < p—c
We claim that

]I{h(k”b(x*,w,t) € S} < 11{|wj\ >5vje [k]} Vb >0, weRF, te(0,1). (3.49)

From [I{|w;| > & Vj € [k]}vF(dw) x LM (dt) < 1/6F < 0o we conclude the proof. Now it only
remains to prove (3.49). Fix some w = (wy,--- ,wy) € RF, t = (t1,--- ,t1) € (0,1)*T, and b > 0. Let
& = h®IP(z* aw,t). Suppose there is some J € [k] such that |w;| < 6. Tt suffices to show that &, ¢ S.
To this end, define £ € D as (recall that y.(x) is the ODE defined in (2.32))

&p(s) s€0,ty)
§(s) = Q ys—t, (E(ts—)) s €ty tis)
&v(s) s € [try1,t]-
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Note that ¢ € DYV and |€(ts) — & ()| = |A& ()] = |o(&(ts—)) - wy|- Applying Gronwall’s
inequality, we then yield that for all s € [t;,t7-1),

[€6(5) — &(s)] < exp (D(s = 1)) - |o(&(ts—)) - wy]
< p-|o(&(ts=)) -ws|  where p= exp(D)
< pClwy| due to sup|o(x)| < C, see Assumption 4
z€R

< pCo < € due to our choice of § < ,0%7

which implies d j, (€, &) < & However, due to § € ]D)Ef_l) and dj, (S, ]D)Ef_l)) > €, we must have § ¢ S.
This concludes the proof of (3.49). O

With Proposition 3.17 in our arsenal, we prove Theorem 2.2.

Proof of Theorem 2.2. For simplicity of notations we focus on the case where T' = 1, but the proof
below can be easily generalized for arbitrary 7' > 0.

We first prove the uniform M-convergence. Specifically, we proceed with a proof by contradiction.
Fix some k = 0,1,--- and suppose that there is some f € C(D\ ID)(:_U), some sequence 7, > 0 with
limit limy, o 7, = 0, some sequence z, € A, and € > 0 such that ‘,uglk)(f) —C) (f,xn)’ >eVn>1
where ugc)(-) = P(X"" (zn) € - )/)\k (nn). Since A is compact, by picking a proper subsequence we
can assume w.l.o.g. that lim, ., z, = x* for some z* € A. This allows us to apply Proposition 3.17
and yield lim,,_, |u§lk)(f) —CW(f; x*)f = 0. On the other hand, using part (a) of Lemma 3.12, we

get lim,, }C(k)(f; x,) — CR)(f; 2*)| = 0. Therefore, we arrive at the contradiction

lim [ (f) = CW(fra)] < Tim [u(f) = CW(f52)| + lim [CW(f;2%) — CH(fr2)] = 0

n—oo

and conclude the proof of the uniform M-convergence claim.

Next, we prove the uniform sample-path large deviations stated in (2.12). Part (a) of Lemma
3.12 verifies the compactness condition (2.1) for measures C*)( - ;z) with z € A. In light of the
Portmanteau theorem for uniform M-convergence (i.e., Theorem 2.1), most claims follow directly
from Theorem 2.2 and it only remains to verify that sup,c 4 ck) (B_; sc) < 00.

Note that B~ is bounded away from ]D)fffl). This allows us to apply Lemma 3.6 and find € > 0
and § > 0 such that

e Given any x € A, h¥)(z,w,t) € B* = |w;| > 0 Vj € [K],
e BN ]D)Ef_l) =.
Then by the definition of C*®)® in (2.9),

sup CW (B~ z) = sup /n{;«ﬂﬂ (z,w,t) € B~ N fo)'b}yz(dw) x LV (dt)
€A z€A

< /H{"LUJ'| > 5 V] S [/C]}I/g(dw) X ﬁlfT(dt) < 1/Ska < 0.

This concludes the proof. O
Similarly, building upon Proposition 3.16, we provide the proof to Theorem 2.3.

Proof of Theorem 2.3. The proof-by-contradiction approach in Theorem 2.2 can be applied here to
establish the uniform M-convergence. The only difference is that we apply Proposition 3.16 (resp.,
part (b) of Lemma 3.12) instead of Proposition 3.17 (resp., part (a) of Lemma 3.12). Similarly, the
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proof to the uniform sample-path large deviations stated in (2.20) is almost identical to that of (2.12)
in Theorem 2.2. In particular, the only differences are that we apply part (b) of Lemma 3.12 (resp.,
Lemma 3.7) instead of part (a) of Lemma 3.12 (resp., Lemma 3.6). To avoid repetition we omit the
details. O

3.3.1 Proof of Proposition 3.16

As has been demonstrated earlier, Proposition 3.16 lays the foundation for the sample-path LDPs of
heavy-tailed stochastic difference equations. To disentangle the technicalities involved, the first step
we will take is to provide further reduction to the assumptions in Proposition 3.16. Specifically, we
show that it suffices to prove the seemingly more restrictive results stated below, where we impose
the the boundedness condition in Assumption 4 and the stronger uniform nondegeneracy condition in
Assumption 8.

Proposition 3.18. Let 1, be a sequence of strictly positive real numbers with lim,_, 1, = 0. Let
compact set A C R and x,,,x* € A be such that lim,,_, o x, = x*. Under Assumptions 1, 2, 4, and 8,
it holds for any k =0,1,2,--+ and b > 0 that

P(Xnn\b )/)\k ) = C(k)lb( ;1:*) mn M(D\Df_l)lb) as n — oo.

Proof of Proposition 3.16. Fix some b > 0,k > 0, as well as some g € C(]D) \ ]D)(:*l)‘b) that is also
uniformly continuous on . Thanks to the Portmanteau theorem for M-convergence (see theorem 2.1
of [34]), it suffices to show that lim,_, E[g(X™*(z,))] /A8 (n, C®Ib(g:2*). Let B 2 supp(g).

Note that B is bounded away from ]D)(k Dle, Applying Corollary 3.9, we can fix some My such that
the following claim holds for any M > M, : for any £ = b )‘b(;vo, w,t) with t = (t1,--- ,t) € (0, 1]*T,
w = (wy,- - ,wy) € RF and x( € A,

€ =hPl(zo, w,t) = hg\%b(xo, w, t); SFp] [€(t)| < M. (3.50)
tef0,1

Here the mapping hg\]f[)jb is defined in (3.27)-(3.29). Now fix some M > My+1 and recall the definitions
of apr, o in (3.26). Also, define stochastic processes Xl (z) £ {X[’t‘;’w (z): t€[0,1]} as

X?lb(x) = )?;7‘_171(95) + o (T]CLM ()Z;"_bl(x)) +noun ()N(yl_bl(x))ZJ> Vi>1

under initial condition )N(g Ib(x) = z. In particular, by comparing the definition of )?jmb(x) with that
of X]mb(x) in (2.13), we must have (for any z € R,n > 0)

[b nlb
sup | X7 >M << sup |X > M, 3.51
tEOl]’ Lt/n] (@) t€[0,1] | Lt/n] (@)] (3:51)
b
tzl(l)pl] ’Xftl/nj @) <M = X () = X (). (3.52)

Now observe that for any n > 1 (recall that B = supp(g))

Blo(xX™ )] = Blo (X" (w))I{ X" ) € B; sup X[ ()| < M
+E[g(Xnn\b(x ))H{me(x ) 62 ]Sup ’X%“) s MH (3.53)
n n sel01] |_t/77 .

An upper bound then follows immediately from (3.51) and (3.52):

Blg(X™ )] < Blg(X™ )| + gl P( sup X[ )| > M).
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Similarly, by bounding the first term on the R.H.S. of (3.53) using (3.51) and (3.52), we obtain

E[g(X™" (2, E|g(X"(z,))I{ X" (x,) € B; sup [XT)0 (2 M
[9(X™(2n))] = Blg (X ) )I{ X (wa) € B sup |X17) ()] < 01}

> E[g(X™ ()] = o) P sup 1751 (o) > M).

To conclude the proof, it only remains to show that

ok Sl _ Bl 4

Tim A~ () Blg(X7P(r,))] = CPP(g:a%), (3.54)
. —k n

Tim A (nn)P(tgl[épl]‘XLt/J( )|>M) 0. (3.55)

Proof of Claim (3.54):
Under Assumption 3, one can easily see that as, oy would satisfy Assumpti~on 4 and 8. This allows
us to apply Proposition 3.18 and obtain lim,—,cc A™*(1,)E[g(X " *(z,,))] = C®I(g; 2*) where

CWIb( . . ) é/ﬂ{hgf[)ﬂb(x,w,t) € - }Vﬁ(dw) x Ly1(dt).

Given (3.50) and the fact that 2* € A, we immediately get C®I( . ;2*) = C®IE( .. 2*) and conclude
the proof of (3.54).
Proof of Claim (3.55):

Let E £ {{ € D: sup,epq) [§(t)| > M}. Suppose we can show that E is bounded away from ]D)( e
then by applying Proposition 3.18 again we get lim sup,,_, .. P (X""“’(:Cn € E) /)\k"‘1 (nn) < o0, which
then implies (3.55). To see why E is bounded away from ]D)Ef)lb, note that it follows directly from
(3.50) that

£eDP" = sup |¢(t)) < My <M 1
te[0,1]

due to our choice of M > My + 1 at the beginning. Therefore, we yield dj, (]D)Ef)lb,E) > 1 and
conclude the proof. O

The rest of Section 3.3 is devoted to establishing Proposition 3.18. In light of Lemma 3.15, a natural
approach to the M-convergence claim in Proposition 3.18 is to construct some process X115:(k) that is
not only asymptotically equivalent to X”® (as n | 0) but also (under the right scaling) approaches to
Cl(,k) in the sense of M-convergence. To properly introduce the process X nb:(k) - a few new definitions
are in order. For any j > 1 and n > j let

Tzle,n) 2 i€ n]: |Zi| > ¢} Ve>0; Z<J’>(n)émax{czo; Tz(e, Ll/nj)zj}. (3.56)

In other words, Jz(c,n) counts the number of elements in {|Z;| : ¢ € [n]} that are larger than ¢, and
Z9)(n) identifies the value of the j*" largest element in {|Z;| : 4 < |1/n]}. Moreover, let

) 2 min {k > 7D ) ¢ |2 2 29}, W) 220, Vi=12 ) (3.57)

with the convention that T(j)( ) = 0. Note that (7, (])( ), Wi(j)(n))ie[j] record the arrival time and

size of the top j elements (in terms of absolute value) of {|Z;| : i € [n]}. In case that there are ties
between the values of {|Z;| : i < |1/n]}, under our definition we always pick the first j elements. Now
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for any j > 1 and any 7,b > 0,2 € R, we are able to define X71%() (z {X"lb (J)( ): te[0,1]} as
the solution to
dth\b;(j)(x)
dt
th‘b;(j)(x) = )A(Z’,lb;(j)(x) + @ (no(Xleb;(j)(x))Wi(j)(n)) if t = nTi(j)(n) for some i € [j]. (3.59)

=a(X/" (@) vee0,1], t ¢ {rP () : i€ 5]}, (3.58)

with initial condition )A(g‘b;(j)(x) = z. For the case j = 0, we adopt the convention that
dX7% O () Jdt = a(X7P O (2)) Vit € [0,1]

with Xglb;(o) () = z. The key observation is that, by definition of X115:(k) it holds for any 7,b > 0,
k >0, and x € R that

m) < (1l <) = X" (@) = RO (g W0 (n), nT>0 () (3.60)

with W>°(n) = (W2 (n),- -, W°(n)) and 720 (n) = (77°(n), -+ , 7% (n)). The following two results
allow us to apply Lemma 3.15, thus bridging the gap between X"“7 and the limiting measure C*)1®
in the sense of M-convergence.

Proposition 3.19. Let 1, be a sequence of strictly positive real numbers such that lim,, . 1, = 0.
Let compact set A C R and x,,x* € A be such that lim, .. z, = z*. Under Assumptions 1, 2,
4, and 8, it holds for any k = 0,1,2,--+ and b > 0 that X""“’(acn) 18 asymptotically equivalent to

Xml6:R) () (as n — o0) w.r.t. \¥(n,) when bounded away from ]D)Effl)‘b.

Proposition 3.20. Let 7, be a sequence of strictly positive real numbers with lim, o1, = 0. Let
compact set A C R and x,,x* € A be such that lim,,_, o x, = z*. Under Assumptions 1, 2, /, and 8,
it holds for any k=0,1,2,--- and b > 0 that

P(me (8 (i )/Ak = C®IP( ) in M(D\DF ) asn — oo

where the measure C®I js defined in (2.19).

Proof of Proposition 3.18. In light of Lemma 3.15, it is a direct corollary of Propositions 3.19 and
3.20. 0

Now it only remains to prove Propositions 3.19 and 3.20.

Proof of Proposition 3.19. Fix some b > 0,k > 0, and some sequence of strictly positive real numbers
Ny with lim,_, o n, = 0. Also, fix a compact set A C R and z,,2* € A such that lim,,_,. z, = z*.
Meanwhile, arbitrarily pick some A > 0 and some B € .#p that is bounded away from ]D)(lc DIb

suffices to show that

lim P(dJl (X (2, ), X100 (2, )X (2,,) or X0 K) (2,) € B) > A) /Ak(nn) =0. (3.61)

n—oo
Applying Lemma 3.7, we can fix some € > 0 and § € (0, C) such that for any x € A, t = (t1,--+ , 1) €
(0,1]*", and w = (wy,- -+ ,wy) € R¥,
(2w, t) € B or hOIPHe(x w t) € B = lw;| > 3C3/c Vi € [K]. (3.62)
dy, (BE, DYV 5 ¢ (3.63)

where C' > 1 and 0 < ¢ < 1 are the constants in Assumptions 4 and 8, respectively. Meanwhile, let

By 2 {X"(z) € B or X" () € B; dg, (X"(x), XM (1)) > A},
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By £ {Tk>-|i(77) > [1/n]},

By 2 {77°(n) < [1/n]},

By & {77|Wi>5(17)| > ¢ for all i € [k]}.
Note that

By = (Bo N B§) U (By N By N BS) U (By N By N By N BS) U (By N By N By N Bs). (3.64)

k
To proceed, set p(¥) £ [3p~ (14 %)} -3p where p = exp(D) and D € [1, 00) is the Lipschitz coefficient
in Assumption 2. For any € > 0 small enough so that

1)
PP e < A, e<2—p, e<€/2, e€(0,1),

we claim that

c k _
%iggp(ffo nB )//\ (n) =0, (3.65)
lim sup P(B0 N BN B2>/)\k(n) —0, (3.66)
70 r€A
li P(ByoN B NBsNBS) /\F(n) = )
lim sup ( 0oNBiNByN 3>/ (n) =0, (3.67)
li P(By,NB,NByNBs)/N(n)=0 3.68
limn sup ( 0N B1N By 3)/ () (3.68)

if we pick § > 0 sufficiently small. Now fix such §. Combining these claims with the decomposition of
event By in (3.64), we establish (3.61). Now we conclude the proof of this proposition with the proofs
of claims (3.65)—(3.68).

Proof of (3.65):
For any § > 0, note that (3.4) implies that sup,. 4 P(Bo N Bf) < P(Bf) < (= H(sn~1)) " =
o(A\*(n)), from which the claim follows.

Proof of (3.66):
It suffices to find § > 0 such that

lim P( Bo 0 {72 (n) > LL/nl} ) /) =

2B

In particular, we focus on § € (0,8 A &) with § characterized in (3.62). By definition, X"%®) (z) =
I o, e ), r )W ), W9 0). Moreover, on {773(n) > L1/n]} we s
have #{i € [[1/n]] + n|Zi| > 6} < k. From the definition of Z( () in (3.56), we then have that
min; ez 77|Wi(k)(n)\ < 4. In light of (3.62), we yield X"%(")(z) ¢ B¢ on {r%(n) > [1/n]}, and hence
B C{X""(x) € BYn {r°(n) > [1/n]}.

Let event A;(n,b,€,d,z) be defined as in (3.6). Suppose that

{(X"(x) € BYyn{m°(n) > [1/n]} 0 (N Ai(n,bye,8,2)) = 0 (3.69)
holds for all > 0 small enough with 7 < min{ 1’2/\01, &} any d € (0, 20) and any « € A. Then

k41

Ai s Uy 167 ‘ b
hm:telgP MR ( <11mgsatelgP( Q (n,b,€,6,)) )/)\ (n)
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To conclude the proof, one only need to apply Lemma 3.4 (b) with some N > k(a — 1).
Now it only remains to prove claim (3.69). To proceed, let process )U(,?lb;é(ac) be the solution to

deb;é(f) olb;8 s
tT = a(th ' (I)) Yt € [0,00) \ {T]Tj> (n): j>1}, (3.70)
Xglfl;i(m (z) = ijf%) (z) ¥zl (3.71)

under the initial condition Xglb;é(x) = z. Let X7b(z) & {X"|b6 (z): t€[0,1]}. For any j > 1,
observe that on event (N7_; A;(n,b,€,6,z)) N {’Tj>6( ) > Ll/n]},

d, (X" (), X"P(2))

< n|bé b
< sup [ (@) = X[, (@)

te[0mr 8 () U [nr® ()3 () U0 [0 2% () e ()

<p-(e+nC) <2pe <&  due to (3.36) of Lemma 3.13. (3.72)

Therefore, on event (N5, A;(n,b,e,6,2)) N {r7°(n) > |1/n)}, it holds for any j € [k — 1] with
n57%(n) < 1 that

AXZITb;Z(n) n|b6 (m) Xana(n)( )‘ see (3.71)
77|b g _ ynlb nlb ~ ynlb
Xn7>5(77) () Xff"(n) 1 ’Jr ‘X 70 (m)— 1 (@) XTfa(n)(x)
< €+Db. (3'73)

As aresult, on event (NF_; 4;(n, b, €, 0, x))ﬁ{ﬁf‘s(n) > [1/n]}, we have X7¥9 (1) e ]D)(:_l)lb%. Consid-

ering the facts that ]D)Ef_l)“H'E is bounded away from B¢ (see (3.63)) as well as d s, (X1 (), Xb(z)) <
€ shown in (3.72), we have just established that X"*(x) ¢ B, thus establishing (3.69).

Proof of (3.67):

On event By N By = {r7%(n) < [1/n] < T,?fl(n)}, it follows from (3.60) that X7%(*)(z) =
RO (2, qW 0 (n), -+, aWZ2(n),nr7° (), -+ ,n7°(n)). Furthermore, on B§, there is some i € [k]
with [nW>%(n)| < §. Considering the choice of § in (3.62), on event By N By N BS we have X7%(%) (1) ¢
B, and hence

ByNByNByNBS C{X"(z) € BYn {r7°(n) < |1/n] < 7201 (n); n|W;7(n)| < 6 for some i € [k]}.
Furthermore, we claim that for any 2 € A, any § € (0,0A %) and any > 0 satisfying 7 < min{%7, 4},

{X(2) € By {77°(n) < [1/n] < 7701 (n); nlW7(n)] < 6 for some i € [k]}

kil 3.74
ﬂ(ﬂAi(n,b,e,&m)) = 0. (8.74)

=1
Then it follows immediately that for any § € (0,6 A 2),
k+1
lim su P(B N B, NB OB)/A’“ ) < limsu P( Ai(n,b,e,8,x ) AR
i sup P (B 1 B1 01 B 1 Bg) /3 o) < limsup P(( (7] Autn.b.c8.2))7) /340

Applying Lemma 3.4 (b) with some N > k(a — 1), the conclusion of the proof follows.
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We are left with proving the claim (3.74). First, note that on this event, there exists some J € [k]

such that n|W;°(n)| < §. Next, recall the definition of )u(flb;é (2) in (3.70)-(3.71), and note that it has
been shown in (3.72) (with j = k + 1) that

ts%pl] )u(flb;é( ) — Xft‘fm( )‘ < 2pe < E. (3.75)
€10,

If we can show that X7/%9(z) ¢ Bf, then (3.75) immediately leads to X"l*(z) ¢ B, thus proving claim
(3.74). To proceed, first note that

X77|b

b;d b
Xﬂﬂ>d ( ) — X’ﬂ 1

nry 5() 1( )‘ ‘
< 2pe+n\ Ty @) (X @)W )
< 2pe+nC + Cs < 3CH due to 2pe < 0,7 < 6, and C > 1.

X7]|b5

777—J 70 (77)

() — X"'Z(n)( )\ see (3.71)

using (3.75)

Meanwhile, the calculations in (3.73) can be repeated to show that X”'b?‘s(x) € ]D)Xc)lb%, and hence
X’”‘b“s(x) = h(k)‘b+€(x,z'51, e ,{Dk,ané(n),~~ ,777,?5(7))) for some (wy,--- ,w;) € RF. Due to 0 <
¢ <o(y) <C Vy € R (see Assumptions 4 and 8),

> > c-|wyl,

which implies |@ | < 3C3/c. In light of our choice of § in (3.62), we yield X" (z) ¢ B and conclude
the proof.

Proof of (3.68):
We focus on § € (0,6 A 5%). On event By N By = {r°(n) < [1/n] < k+1( )}, XI5() admits
the expression in (3.60). This allows us to apply Lemma 3.14 and show that, for any « € A and any

€ (0, 62/\65’ ), the inequality

5 71050 _ _ 711050 L
309 > ‘AXW?‘;(U) (x)’ B ¢b+€< U(anf‘;(n)*(x)) W

dy, (X" E) (2), XM () < sup [X7P (@) = X7 (2)] < p®le
telo,1]

holds on event (ﬂk's_1 A;i(n, b€, 6, :r:)) N Bi N By N By N By. Due to our choice of p®le < A at the
beginning of the proof, we get (ﬂkH Ai(n,b,€,0,2)) N By N By N B3N By = ). Therefore,

k+1

lim sup sup P(Bl NBsN B3N BO)/)\k(n) < lim sup sup P(( m A;(n, b€, 6, x))c) /)\k(n)
nd0 z€A nd0 xz€A i=1
Again, by applying Lemma 3.4 (b) with some N > k(a — 1), we conclude the proof. O

In order to prove Proposition 3.20, we first prepare a lemma regarding a weak convergence claim
on event B2,(n) 2 {r73(n) < [1/n) <728, (n); alW7(n)| > ¢ ¥j € [k} defined in (3.16)

Lemma 3.21. Let Assumption 1 hold. Let A C R be a compact set. Let bounded function ® :
R x R* x (0,1]¥" — R be continuous on R x R¥ x (0, 1)*'. For any § > 0,¢> 6 and k =0,1,2,---,

E[@(:C,WW1>5(77),--- W ), (), om0 (n ))]IE‘sk(n)} (1/¢™®) o i ()

() |7

lim sup
0 zeA

where ¢ k() = [ (z, Wi(e), -+ Wi(e), Uapy, - - ,U(k;k))},

50



Proof. Fix some § > 0,¢ > § and k = 0,1,---. We proceed with a proof by contradiction. Suppose
there exist some e > 0, some sequence x,, € A, and some sequence 7, > 0 such that

‘Aik(nn)E[q)(xm Wn"ann)HEf,k(nn)} - (1/k!) Tk ¢c,k(xn) >e Vn=>1 (3'76)

where W & (nWo(n),--- ,nW°(n); 77 2 (pr°(n), -+ ,n7°(n)). Since A is compact, we can
always pick a converging subsequence x,, such that z,, — z* for some z* € A. To ease the notation
complexity, let’s assume (w.l.o.g. ) that x,, — 2*. Now observe that

lim )\_k(nn)E[‘I)(me"" TW")]IE%(W)}

n—oo

= [ tim A5 )P (B ()] - i B[, W 7)

n— oo

EZ ()]

= (1/k!) - k. E[@(m*, w, U*)} = (1/Kk)) - ™% - ¢ o (2*) due to Lemma 3.5

where W* 2 (W7 (c ))j LU= (U(j;k))jzr However, by Bounded Convergence theorem, we see

that ¢, is also continuous, and hence ¢,k (2,) = ¢ r(z*). This leads to a contradiction with (3.76)

and allows us to conclude the proof. O
We are now ready to prove Proposition 3.20.

Proof of Proposition 3.20. Fix some b > 0, some k =0,1,2,--- and g € C(D\ fo*l)lb) (ie., g:D —

[0,00) is continuous and bounded with support B = supp(g) bounded away from ]D)ff_l)‘b). First of

all, from Lemma 3.7 we can fix some 6§ > 0 such that the following claim holds for any zo € A and
any t = (t1,-+,t) € (0, ), w = (w1, -+ ,wy;) € RF:

AW (20w, ) € BS = |w;| > 6 Vj € [k]. (3.77)
Fix some & € (0,6 A g), and observe that for any n > 0 and z € A,

g(XM W (@) = g( XMW @) 1{77° () < [1/n] } + g (X0 (@) 1{°(n) > [1/n]}

£1,(n,2) £a(n.2)
+ g (XMW @) I{r7° () < [1/n) <770 (0); [nW;°(n)] < 6 for some j € [k]}

:Is(ﬁvx)
g(X" 8 (@) I(EZ , (n) -

A
=Ia(n,x)

k41
For term I (n, z), it follows from (3.4) that sup,cp E[I1(n,z)] < |g] - [nin . H(5/77n)} . Therefore,
1

: _ _1nk
lim,, o SUp,c 4 E[Il(n,x)]/(n "Hin™"))" < (5&'(‘2].!1) im0 2 e n — .
. Sl k k

Next, by definition, X7%(*) () = h(k)‘b(x,m'l( )(n), e ,777',5 )( ), 77W1( )( ), - ,77Wk( )(n)). More-
over, on event {77°(n) > [1/n]}, we must have #{i € [[1/n]] : n|Zi| > 6} < k. From the definition
of Z(®)(n) in (3.56), we then have that min;ey 77|W1-(k)(77)| < 4. In light of (3.77) and our choice
of § < 4, for any z € A and any n > 0, on event {7.°(n) > [1/n]} we have X)) ¢ B for
B = supp(g), thus implying I>(n,z) = 0 for any € A and n > 0.

Moving onto term I3(n,z), on event {7°(n) < [1/n] < 772, (n)} the process X% (z) admits
the expression in (3.60), which implies X7%®*)(2) ¢ B. due to (3.77) and our choice of § < 4. In
summary, we get I3(n,z) = 0.

o~
\

o1



Lastly, on event E2 , (n), the process X105(F) () would again admits the expression in (3.60). As
a result, for any 7 > 0 and x € A, we have

E[L(n, )] = E[®(z,nW > (n),n77° (1)) 1(E,(n))]

where W>?() = (W (n), -+, W20 (n), 7°(n) = (77 (), -+, 7% (n)), and @ : R R¥ x (0, 1)*T —
R is defined as ® (0, w, £) 2 g(h®)1(zg, w, t)). Meanwhile, let ¢(z) 2 E[cb(a;, WE@), - W), Uy, -+~ ,U(k;k))].

First, the continuity of mapping ® on R x R¥ x (0, 1)*T follows directly from the continuity of g and
RIb (see Lemma 3.10). Besides, ||®|| < |lg|| < oo. It then follows from the continuity of ® and
Bounded Convergence Theorem that ¢ is also continuous. Also, [|¢]| < ||®]| < |lg]| < co. Now observe
that

lim sup A"“(77)E[<1>(:c7nW”S(n),77T>‘5(77))11(15735,;6(77))} — (1/k) - ¢ ()| = 0

due to Lemma 3.21. Meanwhile, due to continuity of ¢(-), for any z,,z* € A with lim,_, o 2, = ™,
Fg(z*)

we have lim, o ¢(z,) = ¢(x*). To conclude the proof, we only need to show that MGT =

C®1b(g: 2*). In particular, note that

o(x*) = /g(h(k)‘b(x*,wl, cee W, t, e ,tk))ll{|wj| >6Vje [k]}
k
P(U(l;k) edty,--- »U(k-;k) € dtk) X (H 0. I/a(dwj)).
j=1

First, using (3.77), we must have g(h(k)(x*,wl, e ,wk,t)) = 0 if there is some j € [k] with |w;| < 4.
Next, P(U(l;k,) € dty, - Uy € dtk> =k T{0 <t <ty <<ty < 1}LEN(dty, -, dty) where

ﬁlfT is the Lebesgue measure restricted on (0,1)*". The conclusion of the proof then follows from
p(z*) = k- 5ok /g(h(k)lb(x*, w, t))ui(dw) x L¥T(dt) = k! - 5°F . Cl()k) (g;2%),

where we appealed to the definition in (2.19) in the last equality. O

4 First Exit Time Analysis

4.1 Proof of Theorem 2.7

Our proof of Theorem 2.7 hinges on the following proposition.

Proposition 4.1. Suppose that Condition 1 holds. For each measurable set B C'S and t > 0, there
exists 6y p(€) such that
oy . —t _ . . . n . n
OB°) -~ —dp(e) < liminf_inf P17 (2) > 1 V(@) € B)

< limsup sup P('y(n)T}’(e)c(a:) >t VI(x) € B) <C(B7)-et+ 3¢5 (€).
nd0  zc€A(e)

for all sufficiently small € > 0, where 6, g(€) — 0 as € — 0.

Proof. Fix some measurable B C S and ¢ > 0. Henceforth in the proof, given any choice of 0 < r < R,
we only consider € € (0,¢ep) and T sufficiently large such that Condition 1 holds with T replaced with

ST, 25°T, T, and RT. Let

pl@) 2 inf {j = pl_(2) + [rT/n] : V] (x) € Ale)}
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where p{(z) = 0. One can interpret these as the ™ asymptotic regeneration times after cooling period
rT/n. We start with the following two observations: For any 0 < r < R,

P(T?(@c(y) € (RT/n, p?(y)]) < P(T,(E) (y) A pY(y) > RT/n>
<P(V/(y) € 1O\ A V) € [I1T/u), RT/1])

R—r
< sup P<777 Narene(2) > 7T/77>
Lo P onac)

=(m)T/n-o(1) (4.1)

where the last equality is from (2.39) of Condition 1, and

sup P (V1 (y) € B; 7)o (y) < pl))
yEA(e)

< sup P(VT’Z (y) € B; 0 (y) < RT/n) + sup P(T}’(e)c(y) € (RT/n, p{’(y)})
yEA(e) yEA(e)

< swp P(V1(y) € B; 7). (y) < RT/n) ++m)T/n- o(1)
yEA(e)

< (C(B™) +dp(e, RT) + o(1)) - v(n)RT /1 (4.2)

where the second inequaility is from (4.1) and the last equality is from (2.38) of Condition 1.
We work with different choices of R and r for the lower and upper bounds. For the lower bound,
we work with R > r > 1 and set K = [%w Note that for n € (0, (r—1)T), we have [#T/n] > T/n

and hence p}.(x) > K|rT/n] > t/v(n). Note also that from the Markov property conditioning on
F ol (@)
J

inf P(v(n )TI(E) (z) > t; V] (z) € B)

z€A(e)
o0
> inf P(r] \.(z) > pl(x); VI (z) € B)= inf P(T" (z) € (p1(x), plyi(x)]; VI (2) € B)
= (o I(e) Te meA(E)j:K I(e) J j+ Te
> Y
2, inf) 2P (Pllr(@) € () A} + Tl Vo) < B)
> inf inf P(7] <T/n; V1 B)-P(7] ! .
2 )2 P (o) < T/ V) € B) P (e (0) > £]0)
o yeux}li; )P<Tl(e) ( ) > T/?], Vn (y) € B) ];< wellz}\f(‘e)P(TI(e)c (I) g & (I)) (4 3)

From the Markov property conditioning on F, Pl (@) the second term can be bounded as follows:

o0

>, it P(r () > p(a))
j:K

>Z (ygg{@P(ﬁw( >>p’f<y>))KH - OOO (1 sw P Sp?(y)»mj

1 (
SUPye a(e) P (T?(e)c (y) < p’f(y)) YEA(e)




t/v(n)
T/n +1

! . <1 — (1+0s(e, RT) + o(1)) ~7(77)RT/T]) . (44

>
~ (14 ds(e, RT) + o(1)) - v(n)RT /7

where the last inequality is from (4.2) with B = S. From (4.3), (4.4), and (2.37) of Condition 1, we
have

o o
hrgﬁ)nfwelrx}‘lze)P( ~(n)T I(G)C(x) >t; V/(z) € B)
> liminf C(B°) —dp(e,T)+ o(1)
m0 (14 ds(e, RT) + o(1)) - R
L C(B°) — 8p(e,T)
1+ ds(e, RT)

STy
: <1 — (14 ds(e, RT) + o(1)) ~’y(n)RT/77>

cexp (= (1+dg(e, RT)) - R+ ).

By taking limit 7' — oo and then considering an R arbitrarily close to 1, it is straightforward to check
that the desired lower bound holds.
Moving on to the upper bound, we set R = 1 and fix an arbitrary r € (0,1). Set k = {%J and

note that

Stj‘r())P(v(n)T}’(e)C(w) >t V!(z) € B) = Sil())P(ﬁ() () > t/v(n); V! (z) € B)
rEA(e reA(e

- zglﬁ)P(n(é) () > t/v(n) = pj(z); V() € B)

@®

+ sy P(rilo.(@) > A(0)s pw) > ey Vi) € B)

(In
We first show that (II) vanishes as n — 0. Our proof hinges on the following claim:

{Thae () > t/30m); pl(@) >t ()} < U{T, 2) Aple) = oy (@) = T/}

Proof of the claim: Suppose that T?(e)c(sc) > t/y(n) and pjl(z) > t/v(n). Let k* = max{j > 1: p(x) <
t/v(n)}. Note that k* < k. We consider two cases separately: (i) pjl. (z)/k* > (t/v(n) — T/n /k* and

(ii) pj. () < t/v(n) —T/n. In case of (i), since p.(x)/k* is the average of {p](x) — p]_,(2) : j =
., k*}, there exists j* < k* such that

t/v(n) =T/n _ kKT/n—T/n — T/

() = pl_y () > LEL 2 > TP

Note that since pl. (z) < pil.(x) < t/v(n) < T?(e)c(x), this proves the claim for case (i). For case (ii),
note that
P i1 (2) AT e (@) = pll(2) = t/v(n) — (t/v(n) = T/n) = T/n,
which proves the claim.
Now, with the claim in hand, we have that

k
(I1) < Z Zg}())P(TI(G)C(x) Apj(z) —pj i (x) > T/n)
j=1%
k
=S ii?)E{P(T?(E)C(x) AP0 = oy (x) 2 T/n| For (I))]
]:1./13 €
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k

<Y sup P(r]. () Apl(y) > T/n)
= 1 YEA(e)

t
= STin

for sufficiently large T’s, where the last inequality is from the definition of k and (4.1). We are now
left with bounding (I) from above.

(D)= sup P(r},.(@) > t/3(n) = ple(); V2 (2) € B) < sup P(rl.(x) > plk(a); V}(z) € B)

Y(m)T'/n - o(1) = o(1)

CEGA( ) z€A(€)
=3 sup P(r].(0) € (o), pls(@)]; V() € B)
k’L‘GA(G

—Z sup E

kaA €) |:

E I{V/(z) € B} - H{TI (x) < ply (2 ‘]—' " x)] H{TI(€)C x) > p?(x)}]

sup E

w E| s P(V0) € B e 0) £ 210)) - (e (0) > )}
kme €

yEA(e

:yi‘ji)P(V (v) € B; e () < p1(0)) S s P (7e(2) > ()

The first term can be bounded via (4.2) with R = 1:
sup P (V1 (y) € B; 7ji).(v) < o))
yEA(e)

< (C(B) 4+ 05(6T) + o1)) AT/ + 5 4T/ o(1)

whereas the second term is bounded via (2.37) of Condition 1 as follows:

> sup P(].(2) > pl(a))

j= —, TEA(e)
00 ( ) k+j 00 ) k+j
< ( sup P(7 Ec( ) > [rT/n] ) = (1— inf P(7 €C( ) <7T/n )
j;) yeA(e) 1 ; yEA(e) ( I(e)
1 t/T"'/(:)fl
< inf P( T(ee W) < rT/n>

(1=
inf,ea( P(T?(E)C(y) < TT/?]) ( yeA(e)
= T (1 — 5B(€,TT)1—|— 0(1)) N T/n . <1 — 7. (1 —p(e,rT) + 0(1)) '7(77)T/77)W_

Therefore,

. C(B_>+(SB(6 T)
limsup sup P T se(x) > t; VI(z) € B) < !
nsp sup PO () > 8 Vi) € B) < a5 0

-exp(—r~ (1—65(e,rT)) ~t).

Again, taking T — oo and considering r arbitrarily close to 1, we can check that the desired upper
bound holds. O

Now we are ready to prove Theorem 2.7.
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Proof of Theorem 2.7. We first claim that for any €,¢’ > 0, t > 0, and measurable B C S,

oy | -t <1 . n i n
C(B°)-e de.B(€) < hr;l&)nfmenll(f6 )P( (M) - T (@) > 1, VI(z) € B)

< limsup sup P(’y(n) ~T}7(E)c(.%') >t, V! (z) € B) <C(B7)-e "+
nl0  zel(e)
(4.5)

where 0, p(€) is characterized in Proposition 4.1 such that §; g(e) — 0 as € — 0. Now, note that for
any measurable B C €,

P(y(n) - 7} (2) > t, V](z) € B)

:P(y(m (z) > t, VI(z) € B, VT’Z(x)eI)—i—P(y( )-70(z) > t, VI(z) € B, v;g(x)w)

¢9) (11)

and since
1) < P(V;z (z) € I) and () = P(v(n) 7(z) > t, VI(z) € B\ I),
we have that

. n > limi n
hrvI]lilOnchel?(fe)P( (n) - fe(x) > t, VI(z )EB) _llrgilonfxel?(i)P( (n) - 70 (x) > t, VTe(x)EB\I)

>C((B\I)°) e " =6, ple)
=C(B%) et - ¢, B\1(€)

due to B C ¢, and

limsup sup P(V( ) T(x) > t, V(2 )EB)
nd0  zel(e)

< limsup sup P(’y(n) 1 (x) > t, VI(z) € B\ I) + limsup sup P(VT’Z () € I)
nd0  zel(e) 0 zel(e) )

< C((B \ I)f) ceTt —+ 5t,B\I(E) + O(Ii) + (507](6)
=C(B7) e "+ 6 p\ule) + bo1(e).

Taking € — 0, we arrive at the desired lower and upper bounds of the theorem. Now we are left with
the proof of the claim 4.5 is true. Note that for any x € I,

P(y(n)- 7 (x) > t, V! (x) € B)

= B|P () () > 1. Vi(a) < B

Fipoio) - (Hrhio@) < T/} + Ko@) > T/n}) | 4
Fix an arbitrary s > 0, and note that from the Markov property,

P(y(n) - 7l(x) > t, VI (x) € B)

<B| swp P(0) > t/0) ~ T/n V20) € B) -k (o) < T/} | + P(rh (o) > 7))

yEA(e)

< sup P(y(n) - 7(y) > t =5, V) (y) € B) + P(7] (@) > T/n)
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for sufficiently small 7)’s; here, we applied v(n)/n — 0 as 7 | 0 in the last inequality. In light of (2.40)
of Condition 1, by taking n — 0 uniformly over = € I(€’) and then T' — co we yield

limsup sup P(y(n) i (x) > t, V] (x) € B) < C(B7) e ") 45, p(e)
nl0  zel(e)

Considering an arbitrarily small s > 0, we get the upper bound of the claim (4.5). For the loswer
bound, again from (4.6) and the Markov property,

lim inf f P > t, V’7 € B
minf inf (v - 72@) (z) € B)

> liminf inf E £ P >t , VI ! )<T
> limist_of, y;s;(e) ) > 4/7(0) V() € B) 1z @) < T/n)

> liminf inf P "(y)eB)- inf P <7
2 liminf i (V y) >t Vily) € ) il P (i @) < T/n)
> C(B%) - §,.p(e),

which is the desired lower bound of the claim 4.5. This concludes the proof. ]

4.2 Technical Lemmas for measures é(k)‘b( )

In order to prove Theorem 2.6, in Section 4.2 we first prepare several technical lemmas that reveal
important properties of measure C®lb (+) defined in (2.34). Throughout this section, we impose
Assumptions 1, 2, 3, and 6 for all results derived below. Besides, we fix a few useful constants. For
the sake of notation simplicity, for the majority of this section we fix some b > 0 such that sjs /b ¢ Z
and Sygnt/b ¢ Z. With this, for r = |Sieft| A Sright We have r > (JF — 1)b. This allows us to fix,
throughout this section, some € > 0 small enough such that

€(0,1), 7> (JF—1)b+3e (4.7)
Next, for any € € (0, €), let
t(e) £ min {t >0: yi(Siers +€) € [—€, €] and Yi(Sright — €) € [—¢, e]} (4.8)

for the ODE y;(x) defined in (2.32), and recall that I, = (Sjef; + €, Sright — €) is the r-shrinkage of
set I. Also, we use I = [Siefs + €, Sright — €] to denote the closure of I.. Then, the definition of £(-)
immediately implies

yt(y) € [_65 6] vy € 1;7 vt > t(G) (49)
Recall that I~ = [Seft, Sright]. The following lemma collects useful properties of the mapping hf(]f ):IF?

defined in (2.15)-(2.17).

Lemma 4.2. Let Assumptions 2 and 6 hold. Let € > 0 be the constant characterized in (4.7).
Furthermore, suppose that sup,c;- |a(z)|V |o(z)| < C for some C' > 1 and inf ;- o(x) > ¢ for some
€ (0,1]. (We adopt the convention that tg = 0.)

(a) Suppose that J;" > 2. It holds for allT >0, xg € [~b—&b+¢€], w = (w1, -+ ,wgr_2) € RIv 2
and t = (tl, e ,tjb*_g) € (O,T]Jb*_QT that

sup [E()| < (JF — )b+ € <r — 2¢ where £ £ h(ng] 2)‘b(x0,w,t).
t€[0,T)
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(b) It holds for all T > 0, v € [~€,€], w = (w1, -+ ,wzx_1) € R7 1 and t = (t1,--- stgr-1) €
(0,775 —1T that

sup |€()] < (Jy — )b+ € < r — 2€ where £ = hfgg,]_l)‘b(xo,w,t).

t€[0,T]

(c) There exist § > 0 and t > 0 such that the following claim holds. Let T >0, xg € [—¢, €], wo € R,

w=(wy, -, wgr_1) ERT T and t = (ty,--- ,tzr—1) € (0, T]% . If
sup_[€(t)] = — & where € 2 A5V (w0 + 9y (0(w0) - wo) w, t),
te[0,7] ’
then

® SUPef0t7x ) 1E@)| < (T —Db+e<r—2€
o K(tgy-1)|>r—¢
° infte[o,tjg,l] 1£(t)| > €
o |wj|>6 forallj=0,1,---,JF —1;
oty 1 <L
() Let T > 0, w € Ryw = (wy,- -~ wg;) € RF ¢ = (1, ,tg:) € (0,717 and e € (0,€). If
|E(t1—)| < € for & = hfggq})lb(x,w,t), then

|§(t‘7§‘) _é(tjb* —t1)] < {2exp (D(T—tl)) . (1 N %>i|jb*+l g

where & = hﬁf}:iz]‘b(@b(a(O) cwr), (wa, - wgr), (ta — ti,t3 —tr, oo tge — tl)) and D > 1 is

the constant in Assumption 2.

(e) Given A >0, there exists eg = €9(A) € (0,€) such that for any T >0, 0 > r —€, x € [—€, €],

w = (wy, - ,wgy) € R, and t = (t1,--- stae) € (0, 7] 1,

Eta) I VIt —t) >0 = [ty —t) —E(tgy)l < A
where & = hiyy " (@, w, 8) and € = Wiy ) (@u(0(0)wr), (wa, -+ s wgp), (ta—ta,ts—ta, - 7 =
t1)).

Proof. Before the proof of the claims, we stress that the validity of all claims do not depend on the
value of o(+) and a(-) outside of I~. Take part (a) as an example. Suppose that we can prove part (a)

under the stronger assumption that sup,cp |a(z)|Ao(z) < C for some C € [1,00) and infyer o(x) > ¢

for some ¢ € (0,1]. Then due to supiepo 77 [€(t)] < 7 = [Sieft] A Spignt for & = hfgg,]_mb(xo,w,t),

we have £(t) € I~ for all t € [0,7]. This implies that part (a) is still valid even if we only have
sup,c;- |a(x)| Ao(z) < C and inf,c;- o(x) > ¢. The same applies to all the other claims. Therefore,
in the proof below we assume w.l.o.g. that the strong assumptions sup,¢p |a(z)| A o(z) < C for some
C € [1,00) and infer o(z) > ¢ for some ¢ € (0,1] hold.

(a) The proof hinges on the following observation. For any j > 0,7 > 0,29 € R,w = (w1, -+ ,w;) €
R/ and t = (1, ,t;) € (0,T)PT, let & = hEé?‘Tb] (g, w,t). The condition a(z)x < 0 Vz € (—v,7) im-
plies that
()]
2 = —lalem)] Ve 0, TN\ {t, - 5} (4.10)
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Specifically, suppose that J,* > 2. For all T' > 0,70 € [-b— &b+ €, w = (w1, -+ ,wgr—2) € RTv 2
and t = (t1, - ,t7:—2) € (0, T)75 =21 it holds for ¢ & h[({bT] 2)|b(x0,w7t) that d|£(t)|/dt < 0 for any
te[0,T]\ {t1, - ,t7r 2}, thus leadlng to

up £ < 1€0)] + D AL
telo,T t<T

< EO)| + (T —2)b due to truncation operators ¢ in h[o 7l —2le

<b+e+ (T —2)0
=(Jy —1)b+e<r—2€ due to (4.7).
This concludes the proof of part (a).

(b) The proof is almost identical to that of part (a). In particular, it follows from (4.10) that
dl¢(t)|/dt <0 for any t € [0,T]\ {t1, -+ ,t7x—1}. Therefore,

sup [€(t)] < [6(0)] + > |AE()]

¢€[0,7] t<T

(7 ~D)lb

< |€(0)] + (g — 1)b  due to truncation operators ¢ in (0,7]
<Ee+ (T —1b<r—26  dueto (4.7).
(c) We start from the claim that SUDte[0,t 7 1) |£(t)] < 7 — 2€. The case with Jf = 1 is trivial

since [0,t7--1) = [0,0) is an empty set. Now consider the case where J > 2. For % 2 20+
¢u(0(xo) - wo), we have |Zg| < €+ b. By setting w = (wy,--- ,wgb*,g),f = (t1, -+ ,tgy—2) and
£ = h(Jb] 2)|b(xo, w, 1), we get £(t) = £(¢) for all ¢ € [0,7:-1). It then follows directly from results

in part (a) that SUDse(0.¢ 0 1) €)= SUDte[0,t 70 _y) E@)| < (Jy —Db+e<r—2e
Next, to see why the claim [§(t7+—1)] > r — € is true, note that we already know sup,co 7 1€(t)] >
r — € and we have just shown that supyco,,. ,)[{(t)] < r—2¢6. Now consider the following proof
-

by contradiction. Suppose that [§(t7+—1)| < 7 — & Then by definition of the mapping hf(f%—l)‘b, we

know that §(t) is continuous on t € [t.7=1,T]. Given observation (4.10), we yield the contradiction
that SWeelt,. 7] lE@®)] < €t g1 A (SuPte[o,tJb*,l) |£(t)|) < r — € This concludes the proof.
Similarly, to show the claim infycjo; . ,)[§(t)] > € we proceed with a proof by contradiction.
gy
Suppose there is some t € [0,%7- 1] such that [§(¢)| < € Then observation (4.10) implies that

D)l <€D+ D AL
se(t,tjb*,l]

<Ee+(Jy —1)b due to truncation operators ¢y in hﬁfé]_l)lb

<r—2€ due to (4.7).

However, we have just shown that |{(t7--1)| > r — € must hold. With this contradiction established
we conclude the proof.

Recall that C' > 1 be the constant satisfying sup,cp |o(x)| < C. We show that for any ¢ > 0 small
enough such that

(JF —1b+3e+Cs <,
we have |w;| > § for all j =0,1,--- ,Jy — 1. Again, suppose that the claim does not hold. Then

there is some j* =0,1,--- , 7 — 1 with |w;-| < J. From observation (4.10), we get
€tz -0l SO+ Y A&
te[ovtjg‘—l]
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*

< lool + ¢o([o(w0) - wo ) + Z oo (| (et-)) i)

<Ee+ (T —1)b+C5  dueto |zg| <€,

<r—2€ due to our choice of 4.

(y)] <Cforally eR

This contradiction with the fact |{(t7--1)| > 7 — € allows us to conclude the proof.

Lastly, we move onto the claim ¢ 7- 1 <¢. If J;f =1, then due to {g = 0 the claim is trivially true
for any ¢ > 0. Now we focus on the case where J, > 2 and start by specifying the constant ¢. From
the continuity of a(-) (see Assumption 2) and the fact that a(y) # 0 Vy € (—r,0) U (0,r), we can find
some ¢¢ > 0 such that |a(y)| > ¢z for all y € [-r + € —€] U [€,r — €. Now we pick some

tgéT/Cg, E:(jb*—l)tg

We proceed with a proof by contradiction. Suppose that tgr—1 2 t = (J; — 1) - te, then we can
find some j* = 1,2,---, 7, — 1 such that ¢;« — t;«_; > te. First, recall that we have shown that
|£(t;+—1)] < r — €& Next, note that we must have |{(¢)| < € for some ¢ € [t;-_1,t;+). Indeed, suppose
that |£(t)| > € for all ¢ € [tj«_1,t;+). Then from observation (4.10) and the fact that |a(y )\ > cg for
all y € [—v, —€ U [€,7], we yield

7,
€t =)l < €t —1)| —cete < —ce — =0
€
The continuity of £(t) on ¢t € [tj«_1,t;+) then implies that for any ¢ € [tj-_1,t;«) close enough to

tj«, we have [§(t)] < € However, note that we have shown that infycfo . | |£( )| > € With this
b

contradiction established, we conclude the proof. X
(d) Let R; £ [£(t;) — &(t; — tq)| for any j € [J;] and Ry = | ( 1) — £(0)|. We start by analyzing

Ry. First, note that §(t1) = £(t1—) + vp (U(f(tl—)) -w1> and = ¢y (0(0) - wy). Using (4.10), we
get |£(t1—)] < |z < e. As a result,

Ry < e+ ‘gab(a(f(tl—)) ~w1) — gab(o(()) 'wl)’

< e+ |o(€ttim) —o(0)] - |ppyelwr)|  using (3.23)
b bD
<e+De--=(1+ —) because of Assumption 2.
¢
We proceed with an induction argument. Suppose that for some j = 0,1,---, 7, — 1, we have

R; < pj+1 - € with
bD
p = exp(DT) - (1 + —)
c
Then by applying Gronwall’s inequality for u € [t;,t;41), we get

sup  |&(u) — é(u —t1)] < Rj -exp (D(tj+1 — tj)) < exp(DT)R;.

u€lt;,tjt1)
Then at ¢t = t;41 we have (set {11 = t;11 —t1)
R = E(ij41) = £(t50)]
= [€tEss1) + n (o €E10) ) = [el6501-) + (o€l i)
< |élE1-) = €tia)| + [en (o (EE1-)) - win) = @0 (€lts41-)) - wyn )|
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<exp(DT)R; + ‘gob (J(f(tj+1—)) 'ijrl) — ¥ (U(E(tjﬂ—)) '%‘H)‘

< exp(DT)R; + ‘U(é(fﬁl—)) - U(f(tj+1_))’ “|@pse(wier)|  using (3.23)

< exp(DT)R; + D|£(tj+1—) - §(tj+1—)’ b due to Assumption 2
&

< exp(DT)R; + 2 - exp(DT)R, — (1 + @) exp(DT)R; < pi*2 - e.
& &

By arguing inductively we conclude the proof.
(e) Note that the statement is not affected by the values of £ outside of [0,%7:] or the values of

¢ outside of [0,t7+ — t1]. Therefore, without loss of generality we set T' = ¢z~ + 1. Suppose we can

show that

bD )} Ty +1

‘g(tjb*) - é(tjb* - t1)| < [2 exp (D({"f' 1)) : (1 + €0 Veo € (O,E]. (411)

(>

p*

Then one can see that part (e) holds for any €y € (0,€) small enough such that p*eg < A.
Now it remains to prove claim (4.11). From observation (4.10), we get |£(t1—)| < |£(0)] = |z| < €.
This allows us to apply results in part (d) and get (recall our choice of T' =t 7~ + 1)

|§(tjb*) _é(tjb* —t)] < {Qexp (D<tjb* it + 1)) ) (1 n %)}Jb +1 .

Lastly, note that if |£(tjb* —t1)| >0 >r—¢thentz —t; < t from part (c). Likewise, from part (c),
|€(t7x)| > 0 > 7 — ¢, then t 7+ < t. Therefore, in either case, t 7+ —t; +1 <+ 1. This concludes the
proof. O

The following lemmas reveal important properties of the measure CWb,

Lemma 4.3. For any |y| > (J; — 1)b+ € such that v/b ¢ Z,
({1} =0.

Proof. First, consider the case where J," = 1. COb({y}) = Va<{w : op(0(0) - w) = 7}) Since
v # b, we know that {w : ¢u(c(0) - w) =~} C {%} The absolute continuity of v, (w.r.t the

Lebesgue measure) then implies that (v)(l)“’({v}) =0.
Now we focus on the case where J, > 2. Observe that

S ((a})

= /H<H{g(‘7§_1)|b(%(0(0) W), wa, e yWgr—2, Wy, tge o, tge o +t*) = 7}
X ya(dw*)z:(dt*))ygb*‘l(dwl,.-. Jdwgs_1) % £Z =ty - Jdt 7 _2)
- / ( / ya(dw*)z:(dt*))ygf‘l(dw) x L2772 (dt)
(t*,w*)EE(w,t)

where

Bluw,t) = {00 € Rx 0,50 1w (3(w.0) + (@00, ) =+ .

Z(w,t) = V(Jb*,z)lb(%(g(o) .w1>,w2, W gty ’tJJ*Z)'

61



Here y;(x) is the ODE defined in (2.32). Furthermore, we claim that for any w,t, there exist some
continuous function w* : (0,00) — R and some t* € (0, 00) such that

E(w,t) C {(w,t) € R x (0,00) : w = w*(t) or t = t*}. (4.12)

Then set E(w,t) charges zero mass under Lebesgues measure on R x (0,00). From the absolute
continuity of 4 x £ (w.r.t. Lebesgues measure on R x (0,00)) we get CWIb({y}) = 0.

Now it only remains to prove claim (4.12). Henceforth in this proof we fix some w € R7> ~! and
t € (0,00)7» ~21. We first note that due to |y| > (J — 1)b + ¢, it follows from part (a) of Lemma
4.2 that |#(w,t)| < (JF —1)b+ € < 7. If Z(w,t) = 0, then a(0) = 0 implies that y, (T(w,t)) = 0
for all ¢ > 0. Due to the assumption that v b, in this case we have |y, (Z(w,t)) — | = # b for
all t > 0. Otherwise, Assumption 6 implies that |y, (i(w,t))| is monotone decreasing w.r.t. t. Since
|Z(w, t)| < 7, we must also have |y, (@(w,t))| < for all t > 0. As a result, for |y, (Z(w,t)) —y|=b
to hold, we need y; (Z(w, t)) = y for some |y| <, |[y—~| = b. There exists at most one y that satisfies
this condition: that is, y =y — b if v > b, and no solution if v < b. Due to the strict monotonicity of
Y (T(w,t)) w.r.t. ¢, there exists at most one t* = ¢*(w, t) such that |y, (T(w,t)) — | =b.

Now for any t > 0,t # t*, we know that |y, (Z(w,t)) — 7| # b. If there is some w € R such that

©b (yt(i('w,t)) + 0<yt(5(w,t)))w) = 1, then from the fact that |y, (Z(w,t)) — | # b, the only

possible choice for w is w = M (Note that this quantity is well-defined due to o(z) >
oly: (Z(w,

1

0 Va € R; see Assumption 3.) By setting w*(t) = M we conclude the proof. O
oy (#(w,

[I>

Lemma 4.4. CW)(1¢) € (0,00).

Proof. Let £, be the constants characterized in Lemma 4.2. We start with the proof of finiteness.
Recall that r = | S| A Sright, and observe

é(Jb*)lb <(*OO, Sleft] U [Srighta OO))

< CUDM(R\ [~ (r—e),r )

-/ 11{ G (0 (0(0) - wss ), (wis- - swgsa)s (brs- ot 1)) | > 7€}
X ng* (dwla e adwjb*) X ﬁgg*_llr(dtlﬂ e adtjb*_l)
Tr=1)|b _
= Rl o) ). nse ) ) )| - )

X ng* (dwla T 7dwjb*) X ‘ng*_lT(dtlﬂ e 7dt~7b**1)
< /]I<|wj| >0VjelT]; tgr1 < t> g (dw) x C‘O@*_lT(dt) using part (c) of Lemma 4.2
< 5‘7’:71/5‘1‘7; < 00.

Next, we move onto the proof of the strict positivity. Without loss of generality, assume that
Svight < |Steft|. Then due to /b ¢ Z, we have (J,; —1)b < syignt < J,'b. First, consider the case where
J; = 1. Then for all w > = we have ¢, (0(0) - w) = b > syigni. Therefore,

7(0)
Vo (dw) = <J(O)>a > 0.

(\j(l)lb([srightaoo)) = /]I{gob(a(O) “W) > Spight [V (dw) > / b

wE| 75y .00)
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Now consider the case where J;* > 2. In particular, we claim the existence of some (wy,- - ,w jb*) €

R7 and t = (t,--- stre-1) € (0,00)7 ~'T such that
E(Jb*)\b(@b(a(o).wjb*)7w17... ,wjb*—l,t) ( |
4.13
T =1
= hfo,ijb*_)jﬂ] (%(0(0) “Wgp), Wi, ,wj,,*—ht) (tgy—1) > Sright-

(Fy—=1)Ib
[Ovtjb*—l‘f'l]

for all w} such that |w} —w;| < A and [t} —t;| < A, we have

Then from the continuity of mapping h (see Lemma 3.10), we can fix some A > 0 such that

\g/(jb*—l)lb<<pb(0(0) . wi7b*)aw/17 e ’w&b**l’tll’ e 715{7;71) > Sright-
Then we can conclude the proof with
é(Jb*)‘b([Srightvoo))
> /11{|w; g < AYVGE L 1t~y <A e [ -1}

X ugb*(dw'lw.. ,dwfﬁ;) X onci’*_l(dt/lv"' ’dt:ﬂi‘—l)
> 0.

It only remains to show (4.13). By Assumptions 2 and 3, we can fix some Cy > 0 such that

a(z)| < Cp for all z € [Sieft, Srignt|, as well as some ¢ > 0 such that inf g, . . j0(x) > c. Now
g €[S1eft ,Sright)

set wy = -+ = wg+ = b/c, Also, pick some A > 0 and set t, = kA (with convention t5 £ 0).
b
F—1)[b
For ¢ £ h&ﬁy;l“] ((pb(a(O) CWgr ), W, WgE 1yt ,tjb*_1>7 note that part (c) of Lemma 4.2

implies supejo;,. ) [€(1)] < (Fy" —1)b+€ so we must have {(t) € [Sieft, Srigne] for all t <tg- 1. This
-
implies |a(§(t))| < Cp for all t <tzr_1. Now we make a few observations. First, at ¢y = 0 we have
£(0) = ¢y (0 (0) 'Y,Ujb*) = b due to 0(0) -wy+ > c-2 =b. Also, note that (for any j =1,2,--- , J; — 1)
) =¢0+ [ alge)ds +plolelt-) w)
s€[tj—1,t5)

=b

ol

zf(tj_l)—&—/ a(é(s))ds+b  due to o(&(t;—)) - w; > c-
sE[tj—1,t5)
>&(tj—1) —Co- (tj —tj—1) +b because of a(z)z < 0 (see Assumption 6) and |a(¢(t))] < Co
=¢(tj-1) — CoA +0.
By arguing inductively, we get
E(jb*_l)‘b(%(a(o) TWgg), W, ,wjg—ht) =E(tgy-1) =2 Tyb— (T — 1DCoA.

Due to J,'b > Syight, it then holds for all A > 0 small enough that J;*b — (" — 1)CoA > Syight. This
concludes the proof. O

Lemma 4.5. Let £, be the constants characterized in Lemma 4.2. Given A € (0,€/2), there ewists
€0 > 0 such that for any € € (0,€], T > t, and measurable B C (I¢/2)°,

(T-8)-CV(Bs) < inf ]Cfg§f|b<(E(G,B,T)>o; x)

z€[—e,

< sup ]Cfggﬂ])lb<<E(E,B,T)), 1‘) ST-é(Jb*)lb(BA) + (.E/Sa)jb*.

r€[—e,e€

where E(e, B,T) 2 {g eD[0,T]: 3t <T st &(t) € B and £(s) € I, Vs € [O,t)}.
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Proof. Using part (e) of Lemma 4.2, for the fixed A > 0 we can fix some €y € (0, A/2) such that the
following claim holds (recall that 7 = |Siefe | ASrignt): For any T > 0, x € [—€, €], w = (wy, - ,wjb*) S
ij*v and t = (tla t atjb*) € (OvT]Jb*Tv

E(tg)IV ety —t)>r—e = [dltg; —t) —E(tgy) (4.14)
where § = h[oij]'b(ar w, t) and 7 DI (0 (0(0) - wr), wa, - - Wty — bty — by, tge — ).

Henceforth in the proof we fix some ¢ € (0, €] and B C (Iz/2)¢. To prove the upper bound, we
start with the following observation. For any £ € E(e, B,T) and any ¢’ such that dj, o.77(£,¢") < e
due to € < ey < A/2, we can find some ¢’ € [0,T] such that & () € BA/2. This implies

(E(e, B,T))” C (E(e, B,T))° C {g e D[0,T] : &(t) € BA/? for some t € [o,T]}.
By definition of the measure C* 0, T] in (2.9),

i) ((E.B,1)7; «)
/II{EIt €[0,7) st by (z,w, t)(t) € BM} v (dw) x £3° " (dt)
(by setting u; = t; —t; for all j =2,3,-- , ;)
- / (/H{Ht €[0,7) st by (w,w, b1ty 4+, by s, h +ugy)(E) € BM}
x v3" (dw) x £37, (dug, -+, duz: ))ﬁ(dtl)

_ / b(t1,2) Lo (dtr) (4.15)

where
b5t z) = /]I{Elt €[0,7) st b (@ w by by +ua, by s, b +ugy)(E) € BM}
x v (dw) x L37  (dug, -+, dug:).
For any = € [—eg, €g], note that y;(x) € [—€o, €] V& > 0. Also, note that due to B C (Iz/2)¢, we have

inf,ep |w| > r—€/2. Because of our choice of A € (0,€/2), we then have inf, cga/2 |w| > r—& Using
property (4.14), for all ¢; € (0,7] and = € [—¢p, €9] we have the upper bound

bp(t1,r) < /]I{E(Jb*,mlb(%(g(o).wl),wz’... W Uy ’“»7;‘> c BA}

*—1
X U3 (dwi, - dwge) x L3 (dug, -, dug:)

(4.16)

due to part (c) of Lemma 4.2. In particular, if we only consider t; € (0,7 —%), then for any x € [—ep, €]
it follows from (4.16) that

op(t1,r) < /H{g(J,,*,l)lb(%(g(o).wl),wz’... Wy Uy ’“JJ) c BA}

X V3" (dwy, - dwgy) x L8 (dug, -+, dugy)
due to T'—t; >t (from ¢, € (0,7 —¢)) and uy+ <t (see part (c¢) of Lemma 4.2)
= G (BA),
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On the other hand, for all t; € [T —¢,T) and = € [—ep, €], from (4.16) we get

op(t1,r) < /]1{5(\7,,*,1)%(%(0(0).wl),w%... W Uy ’“JJ) c BA}

X V3" (dwy, - dwge) x L35 (dug, -+, dugy)
< /H{g(jb*_l)lb(¢b(0(0)'w1)7'w2;"' W Uy ’ujzf> c BA}
X I/a (dwl, o dwgs) X E;Zb*_”(duz,~~ s dugs)

duetoT —t; <t

/ {‘ (T 1)\b( (0(0) - wy),wa, -+ wgs Uz, - WJJ)’ >r_€}
X l/gb* (dw17 - ’dwjb*) % E{jb*—lT(duQ’ e ’dujb*)
due to A < € and recall 7 = [Sieft| A Sright
N - * \71,* Jb*_lT
< I |w]‘>5v.7€[‘-7b] Va (dwlv"'adeb")X‘C{ (dUQ,"',dujb*)
due to part (¢) of Lemma 4.2
< (1/8)*%v T L, (4.17)

Therefore, in (4.15) we obtain (for all = € [—eg, €])

[ onttrortrian) = [ suttoCr(n)+ [ (L)
t1€(0,T—1) t1€[T—t,T)

< (T -1 CUIl(BA

) (15T
ST.C(JI;)“’(BA) + ()

*

+1-
5*) 7

and conclude the proof of the upper bound. B
The proof of the lower bound is almost identical. Specifically, let E = {f e D[0,7] : 3t €

[0,T] s.t. £(t) € Baja, &(s) € Ioe Vs € [0,t)}. For any & € E and any ¢ with dy, 01 ¢) <e due
to € < eg < A/2 there must be some ¢’ € [0,T] such that &'(¢') € B and &'(s) € I. Vs € [0,t'). This
implies

{g €D[0,T): 3t € [0,T] s.t. £(t) € Baja, &(s) € Ine Vs € [o,t)} C (E(e, B,T)), C (E(e, B,T))".
As a result,

CEg%'b((E(e7B7T))O; ac)

> / H{at €(0,7) s.t. hiy )" (a,w, 8)(t) € Baya and i) (2, w,8)(s) € Lo Vs € [O,t)} v (dw) x L3* " (dt)
= /aB(tlam)ET(dtl)
where

o5t z) = /H{Elt € [0, 7] s.t. hf{;f‘b(x,w,tl,tl +ug,ty +us, ot +uge)(t) € Bage

and h[g”T])lb(as,w,tl,tl +ug,ty +uz, o t+ugs)(s) € Iae Vs € [O,t)}
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x 3 (dw) x L7, (dus, -+, dug:).

Analogous to the argument for (4.16), using property (4.14) we yield that for all ¢t € (0,T — ?):

¢p(t1,7) > /H{E(jb*_l)lb(sﬁb(U(O)'wl),wza"' S W7, U,y -+ ﬂU;) € BA}

x V7 (dwy, -y dwge) x L35, N (dug, -+, dugy)
= CWUIP(B,).

due to part (c) of Lemma 4.2 again. To avoid repetitions we omit the details here. O

Lemma 4.6. Let € € (0,b) be defined as in (4.7). Let positive integer k, open interval S C R, and
b > 0 be such that ds > k and rs — (ds — 1) - b > € where

re 2inf{lz|: z €8},  ds2 [rg/bl.
Then
C®Ib(g) > 0 — ds = k.

Proof. We first prove that Cv)(’“)‘b(S) > 0 = dg = k. By definition of C®® in (2.34), there must
be some wy € R, w = (wy,--+ ,wx_1) € RF 1 and t = (t1,--- ,tx_1) € (0,00)*~DT such that (let
T=tr1+1)

By (0u(0(0) - wo),w, ) (tes) € 8. (4.18)

However, part (a) of Lemma 4.2 implies that |hf§;]1)|b(cpb(a(0) cwo), w, t)(t)| < (k—1)-b+Eé for all
t €[0,t5_1). Therefore,
rs < [y (9u(0(0) - wo), w, )(ts-1)| < iy 21" (¢6(0(0) - wo), w, ) (tx—1—)| + b

<k-b+e

This leads to 7s/b < k + 1, and hence dg = k or k + 1. Furthermore, suppose that dg = k+ 1. Then
rs < k-b+ € immediately contradicts the assumption rg — (dg — 1) -b = rg — kb > € This concludes
the proof of dg = k. _

Next, we prove that dg = k — C(k)“’(S) > 0. In particular, suppose that we can find some
wy € R, w = (wy, - ,wr_1) € R*1 and t = (t1,--- ,tx_1) € (0,00)* DT such that (4.18) holds
under the choice of T'=t;_1 + 1. Then from the continuity of mapping hfg’)Tll]’ (see Lemma 3.10), one
can find some A > 0 small enough such that

S2 {(wé,w’,t’) ER X R¥ 1 x (0,1)* : |w) — wo| < A; max, |w] — w;| V|t —t] < A}.
ielk—1

Note that for A > 0 small enough, we can ensure that t' = (¢},--- ¢, ;) € (0,T)F=DTif max;er—1] [t;—
t;| < A (that is, ' is still strictly increasing). Therefore, C®)I?(§) > (Hz‘e[kq] Jo )L(dt)) :

(Hi:O,l,m b1 S At ) Va(dw)) > 0.

Now, it suffices to find some wy € R, w = (wy,--- ,wr_1) € R¥ "1 and t = (t1,--- ,t_1) €
(0,00)*=D7T such that (4.18) holds. Due to rg — (dg — 1) - b > & we know that rg > 0, which implies
0 ¢ S. Wlo.g. we assume that the open interval S is on the R.H.S. of the origin. First, due to
ds = k, we can find some § > 0 and « € S such that x < kb+ §. Next, let t; = A -4 for some A > 0.

— At +A
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By Assumption 3, we can fix some constant ¢ > 0 such that inf (s s, 7(7) > ¢ Also, we set
w; =b/cfor all i =0,1,--- , k — 2. By picking A > 0 small enough we can ensure that

2 2 WP (0 (0(0) - wo) w, 8) (11 —) > (k — 1) -b— 6.

Lastly, note that h[gT]l)lb(npb(U(O) cwp), W, ) (th—1) = xp—1 + wp(o(g—1) - Wg—1), and x —xp_1 < b
due to 21 > (k—1)-b— 39 and < kb — J. By setting wy_1 = (x — x—1)/0(xk_1), we yield
hfk })‘b(wb( (0) - wo), w, t)(tx—1) = « € S and conclude the proof. O

4.3 Proof of Theorem 2.6

In this section, we apply the framework developed in Section 2.3.2. and prove Theorem 2.6. Analogous
to Section 4.2, we impose Assumptions 1, 2, 3, and 6 and adopt the choices of € > 0, r > 0, and t(¢)
n (4.7), (4.8), and (4.8) throughout this section.

Let us consider a specialized version of Condition 1 where S = R, A(e) = (—¢,€), I = (Siett; Sright )

and I(e) is set to be I = (Sief; + €, Sright — €). Let V}'(z) = X;Ib(a:). Meanwhile, recall that C} =
CWlb(1¢), and it has been established in Lemma 4.4 that Cf € (0,00). Now, recall that H(-) =
P(|Z1| > ) and A(n) =n~ H(n™!), and set

é(jb*)lb . I N T
) 2 % v(m) = Cpon - (Am)) ™"
b
Note that O = {sieft, Sright } and recall our assumption Siefe /b ¢ Z and syignt /b ¢ Z. Also, our choice of
constant  in (4.7) ensures that [sjes| A syight > (J; —1)-b+€ Lemma 4.3 then verifies C(75)1*(9T) = 0
and hence C'(9I) = 0. Besides, note that v(n)T/n = C;T - ()\(77))“7*’ .
We start by establishing conditions (2.37) and (2.38). First, given any B C R we specify the choice

of function ép(€,T) in Condition 1. From the continuity of measures, we get lima o (vj(jb*)“’((BA N

I\ (BN IC)) =0 and lima o é(Jb*)“’((BO NI°\(Ban Ic)) = 0. This allows us to fix a sequence
(AM),>; such that A+ € (0, A /2) and

é(Jb")'b((BA NI\ (B~ NI°) ) v G W’( B°NI%\ (Ban IC)) <1/2" (4.19)

in Lemma 4.5, and let B(e) 2 B 1.
T)

for each n > 1. Next, recall the definition of set E(e,
e (e ))n>1 such that €™ € (0,€ Vn > 1 and for

Using Lemma 4.5, we are able to fix another sequenc
any n > 1, € € (0,€e™)], we have

s C[{;])'b((é(e,é(e),T))‘; a:) §T~(VJ(~7b*)|b((B\I€)A(n)) + (£, (4.20)
Lt ]cf{;f'b((E(@E(e),T))"; x) > (T —17)- é<~7b*>lb((B\IE)A<n>). (4.21)

Given any € € (0,¢™], there uniquely exists some n = n. > 1 such that e € (e (™)]. This

allows us to set
5 — 7. QI gAM™\ p— (TN (o (T b e+ A
(e T) =T -G gB \B )vc_b *(B \Ba ) v G (ar)+a™) w22
+&- CUII(BoNT) + (£/6%)7

and 6p(e,T) = 513(6,T)/(C’,;k -T). First, due to (4.19), we get

hm dp(e,T) < 1* . [i v é(Jb*)lb(((?I)E*A("‘))}

cylane
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where n. is the unique positive integer satisfying e € (e(”‘“)7 e(”)]. Moreover, as € | 0 we get n, — oo.
Since 01 is closed, we get Ny50(0I)" = 91, which then implies lim, o CWlb ((8[)’") = CWlb (8]) =

0 due to continuity of measures. In summary, we have verified that lim. o limy_,o d5(¢,T) = 0.
Now, we are ready to verify conditions (2.37) and (2.38). Specifically, we introduce stopping times

m(z) 2 min {j > 0: X’(z) ¢ L.}. (4.23)

Lemma 4.7 (Verifying conditions (2.37) and (2.38)). Let t be characterized as in Lemma 4.2. Given
any measurable B C R, any € > 0 small enough, and any T > t,

P(w"(@) <T/us X", (x) € B)
C(B°) —ép(e, T) <liminf inf Te T
( ) B( ) nl0  z€(—e,e) y(mT/n
P(w" (@) <T/m X1, (@) € B)

<limsup sup
nl0  ze(—ee) y(mT/n

< C(B™)+6p(e,T).

Proof. Recall that v(n)T/n = C;T-(A(n)) 7", C(-) = CUDI(\T)/Cy, and 8 (e, T) = 85 (e, T)/(Cy - T).
By rearranging the terms, it suffices to show that

P(r"@) < T/ X', (@ €B) .
limsup sup = <T-CYUINB=\T)+d5(e,T), (4.24)
nd0  z€(—e€) ()\(77)) b
P(r"(@) < T/m X, («) € B)

>T-CUDI(BN\ I) = 85(e, T). (4.25)

liminf inf 7=
0 z€(—ee€) ()\(,,7)) b

To proceed, recall the definition of set E(e, B,T) in Lemma 4.5. Let B(e) 2 B\ I.. Note that

{r@) <Tjm X7, (@) € By = {z"(@) < T/ X7, (@) € Ble)} = { X[ () € B(e. B(o),T) .

() ()

For any € € (0,€) and ¢ € E(e, B(e),T), there is t € [0,T] such that £(t) ¢ I. and hence |£(t)] >
r—e > r— & On the other hand, using part (b) of Lemma 4.2, it holds for all £ € DE‘Z’E’ ;1)“)[0, T] that
supyepo, 7] [§(f)] <7 — 2€. In summary, we have established that

d;, jo,1] (E(Gaé(G)vT), DE_J:;]I)Ib[O’TD >0

for all € > 0 small enough. Now let n = n. be the unique positive integer such that € € (e(”“), e(")].
It follows from Theorem 2.3 that

(z) € B .
limsup sup = (z) ) < sup C(Jb)‘b((E(G,B(6)7T))_§$)
70 zel—cd (A(m)7" we€l—e,d (4.26)

<T-CUII((B\I)A™ ) + (8/5%)%

P(TZ’“’(I) <T/p; X",

here the last inequality we applied property (4.20). Furthermore,
ool ((B \ Ie)A“”) < QWb (BA“” U (Ig)A“”) due to (EUF)A C EBAUFA

= CUDI(BA™ U (192" 1) + VIR (BT U 192" )
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IN

(vj(Jb*)\b(BA(m \I) n (\j(Jb*)Ib<(IEC)A(n) ﬂI)
é(J;)\b(BA(m \I) n é(jb*)w((aI)GJer)

CUDI(B=\1) + CUDP((BY™ N 1)\ (B7 017 ) + CUDP((an) ")

IN

IN

Considering the definition of 85 in (4.22), one can plug this bound back into (4.26) and yield the
upper bound (4.24). Similarly, by applying Theorem 2.3 and property (4.21), we obtain

(z) € B) *
.. . (z) . (T = > o,
hI?ilOnf mel[rif;,e] ()\(77))‘7; > .’L'el[Iif;,e] C[Ofp] ((E(e, B(e), T)) ,x)

> (T =1)- S ((B\ L)am)-

P(r"(@) < T/m XN,

(4.27)

Furthermore, from the preliminary bound (E N F)a 2 Ea N Fa we get
é(jb*)‘b((B \ Ie)mn)) > é(jb*)lb((B \ I)A(")) > é(jb*)‘b(an) N IZ(n))
Together with the fact that Ba \ I = Ba N I¢ C (BA N (IC)A) U (IC \ (IC)A), we yield
é(j”*)‘b((B \ IE)A<7L)) > é(‘jb*)lb(an) \ I) - éwb*)‘b(fc \ IZ(n))
> é(JJ)lb(BA(n) \I) _ é(J;)\b((aI)AW))

EJ(Jb*)lb(BO \1) - c“:Ub*)\b((Bo AT\ (Baw N IC)) - cv:Ub*)\b((aI)A(”)).

v

Plugging this bound back into (4.27), we establish the lower bound (4.25) and conclude the proof. [

The next two results verify conditions (2.39) and (2.40). Let
R™(z)2min{j>0: X/"(z) € (—e,€)} (4.28)

be the first time X;’lb(x) returned to the e-neighborhood of the origin. Under our choice of A(e) =
(—¢,€) and I(€) = I = (Sieft €, Sright —€), the event {T("I(E)\A(e))c(x) > T'/n} in condition (2.39) means

that X;"b(x) € I\(—e,¢) for all j < T/n. Also, recall that v(n)T'/n = C;T - ()\(77))‘71’*. Therefore, to
verify condition (2.39), it suffices to prove the following result.

Lemma 4.8 (Verifying condition (2.39)). Given any k > 1 and € € (0,€), it holds for all T > k-t(e/2)
that

lim sup ———
70 z€ll )\’“’1(77)

P(X;?"’(x) eI\ (—c6) Vi< T/n) —0.
Proof. First, {X;’lb(x) €l \ (—€¢) Vi< T/n} = {X[’y’bﬂ (z) € E(e)} where
E(e) 2 {€ €D[0,T]: &(t) € I\ (—e,€) Vt€[0,T]}.

Recall the definition of ]D)Ef)‘b[O, T] in (2.18). We claim that F(e) is bounded away from ]D)(Ik__l)‘b[O, T].
This allows us to apply Theorem 2.3 and conclude that '

sup P(X[%l’bT] () € E(e)) = O()\k(n)) = o()\kfl(n)) asn 0.

zels
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Now it only remains to verify that E(e) is bounded away from D(kal)‘b[Q T, which can be established
if we show that for any £ € ]D)(k 1)“7[ 0,7] and & € E(e),

dj, 01m(&¢) > (4.29)

l\D\m

—

First, if £(t) ¢ I/2 for some t < T, then by definition of E(e) we get d, j0,77(£,§") > 5. Now suppose
that £(t) € I.jp for all t < T. Let @g € I, (w1, -+ ,wp—1) € R and (t1, -+, tp—1) € (0,T]""!" be
such that & = h[gT]l)lb(xo,wl, cee  Wg—1,t1, 0+ ,tg—1). With the convention that tx = 0 and tx, = T,

we have

§(t) = yi—t,_, (E(tj—1)) V€ [tj—1,t)). (4.30)

for each j € [k]. Here y.(z) is the ODE defined in (2.32). Also, note that due to the assumption
T > k- t(e/2), there exists some j € [k] such that t; —t;_1 > t(e/2). However, note that we have

assumed that £(t;_1) € I./. Combining (4.30) along with property (4.9), we get limsyy; £(t) € [-5, 5]

On the other hand, £'(t) ¢ (—e,¢€) for all £ € [0,7], which implies that dj, jo,71(§,¢") > 5. This
concludes the proof. O

Lastly, we establish condition (2.40). Note that the first visit time TZ(E) (x) therein coincides with
Rglb(x) defined in (4.28) due to our choice of A(e) = (—¢,€).

Lemma 4.9 (Verifying condition (2.40)). Let t(-) be defined as in (4.8) and

t(¢/2)

E(ne,2) 2 { R (@) < 2= X @) € Lz ) < Rl (@) }.

For each € € (0,€) we have lim, g SUP,c /- P((E(n’ 67]:))6) =0.

Proof. First, note that ( (n,e,x ) {X nlb

0,¢(c/2) () € E1(€) U E3(e) U E3 (€)} where

Ei(e) £ {€ €D[0,t(e/2)] : &(t) ¢ (—e€,€) Yt € [0, 8(e/2)]},
E3(e) £ {€€D[0,t(e/2)] : 30 <5<t <t(e/2) s.t. £(t) € (—€,€), &(s) ¢ Lepa}

Recall the definition of fo)“’[o, T] in (2.18). We claim that both Ef(e) and E3(e) are bounded away
from

D [0, t(e/2)] = {{yt(x) L te[0,t(e/2)]}: x e 1;}.

To see why, note that from Assumption 6 and property (4.9), we get Yi(e/2) () € [-5, 5] and y; () € I,
ly:(z)| < |z| for all ¢ and x such that ¢ € [0,¢(¢/2)] and € I . Therefore,
€
A, o.t(e/2)] (D( [0, 2(e/2)], Bi(e )) > 5 >0, (4.31)
N €
d7,.[0,t(e/2) (D§; "0, t(e/2)], E2(6)) >3 >0 (4.32)

This allows us to apply Theorem 2.3 and obtain sup ;- P ((E(n, € 3:)) ) <sup,.,- P (X[%“;(e/z)]( ) €

Ei(e) U E3(e)) = O(A(n)) as n | 0. To conclude the proof, one only needs to note that A(n) €
RVa-1(n) (with a > 1) and hence lim, o A(n) = 0. O

Now we are ready to provide the proof of Theorem 2.6.
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Proof of Theorem 2.6. (a) Since Lemmas 4.7-4.9 have verified Condition 1, part (a) of Theorem 2.6
follows immediately from Theorem 2.7.

(b) Note that the value of o(-) and a(-) outside of I~ = [Sieft, Sright] has no impact on the first
exit time problem. Therefore, by modifying the value of o(-) and a(-) outside of I~, we can assume
w.l.o.g. that there is some C' > 0 such that 0 < o(z) < C and |a(z)| < C for all x € R We start
with a few observations. First, note that under any n € (0, 5), on the event {n|Z;| < & Vj < t}
the step-size (before truncation) na(X;-]Lbl(m)) + no (X;E)1 (2))Z; of X]m is less than b for each j<t.
Therefore, X"‘b(x) and X7 (z) coincide for such j’s. In other words, for any 7 € (0, 2% ), on event
{nlZ;| < & Vj <t} we have

nbN — xm ;

XM () =X](z) Vj <t (4.33)

Second, note that for any b > |sief| V Sright We have J; = 1. More importantly, given any measurable
A C R such that r4 = inf{|z|: = € A} > 0, we claim that

lim CWI(4) = C(A). (4.34)

b—oo

This claim follows from a simple application of the dominated convergence theorem Indeed by
definition of CMIP we get CWIb(A4) = JI{s(c(0) ) € A}ya (dw). For fy(w) = H{(pb( w)),
we first note that given w € R, we have fj(w) = f £ 1{o(0) - w) for all b > |w| (0). Therefore,
limp 00 fo(w) = f(w) holds for all w € R. Next, due to r4 > 0, we have f(w) < H{|w| > rA/U(O)} for
allb > 0 and w € R. Meanwhile, note that [ I{|w| > ra/o(0)}va(dw) = (¢(0)/ra)® < co. This allows
us to apply dominated convergence theorem and establish (4.34). Similarly, for all b > |sief| V Srignt,
we have

Cp = CWIb(fe) = /]I{gob(a(O) ‘w) € Ic}ya(dw) - /1{0(0) we Ic}z/a(dw) = C(I°) 2 ¢~
(4.35)
To see why, it suffices to notice that for such b,
op(c(0) - w) ¢ I = o(0)-w ¢ I.

Now, we fix t > 0 and B C I°. Also, henceforth in the proof we only consider b > |Sies;| V Sright
large enough such that C* = Cj. An immediate consequence of this choice of b is that 7, = [r/b] = 1.
First, note that A(n) =~ H(n~" and hence n-\(n) = H(n~'). To analyze the probability of event
A(n,x) = {C*H(n=1)r"(x) > t, XT,,(x)( x) € B}, we arbitrarily pick some T' > ¢ and observe that

A, w) = {C HO )@)€ (1LT), XD, () € BYU{C HO)r(@) > T, X1, (@) € B}.

A A
=A1(n,z,T) =Az(n,x,T)

(4.36)

Let Ey(n,T) = {77|Z | < 5% V] < %} To analyze the probability of A;(n,z,T), we further
decompose the event as Al(n,x,T) = (Ai(n,z, )N Ey(n,T)) U (A1(n,2,T) \ Ey(n,T)). First, for all
ne (Oa 20)

P (A1 (0., 7) 0 Ey(n.T))

Tnlb(z)

:P({C;n~/\(n)7"7|b(x)e(t,T] XM () e B}ﬁEb(n,T)) due to (4.33) and (4.35)
< P(Gon X)) € (T, Xl (o) € B)
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Tnlb(z)

= P(C;;n )T (2) > ¢, Xf,lﬁb(w)(x) € B) - P(an AT (z) > T, x b (z) € B).
Using part (a) of Theorem 2.6 and observation (4.35), we get
é(l)\b(Bf) é(mb(BO)

limsup sup P (41 (n, 2,7) 1 Ey(,T) ) < -

Sup sur -exp(—t) —
n zele

-exp(—T). (4.37)

On the other hand, sup,¢; P(Ai(n,z,T)\ Ey(n,T)) < P((Ey(n,T))¢) = P(n|Z;] > 5% for some j <
%) Applying Lemma 3.1 (i), we get

b T b T
li P(nZ;| > — & < —— )| =1—liminf P H
m;foup (77| il > 50 for some j < C*H(n—l)) im i (Geom( (77'20)) > C*H(n—1)>

. T-H " 55)
<1_ _ N 2ec
=1 %exl’( C*H(n ) )

T ,20\e
—1—exp<—C*~(b) ) (4.38)

Similarly,

As(n,z,T) C {C’*H(?fl)T”(x) > T}
- ({C*H(n_l)T"(x) > T} n Eb(n,T)> U ({C*H(n_l)T"(m) > T} \ Eb(n,T)>.

On {C*H(n~")7"(z) > T} N Ey(n, T), due to (4.33) we have 77(z) = 77°(x). Also, from (4.35) we
get C* = C}. Using part (a) of Theorem 2.6 again, we get

limsupP({C’*H(n_l)T"(x) > T} N Eb(n,T)> < lim supP(C{fn M) (z) > T) < exp(—T).
70 nd0

(4.39)

Meanwhile, the limit of sup,c; P(C*H(n~')r"(z) > T} N Ey(n,T)) as n | 0 is again bounded by
(4.38). Collecting (4.37), (4.38), and (4.39), we have shown that for all b > 0 large enough and all
T >t

Cb g- CMbgo
T gy - S0

vafiee (- 2 (29))]

lim sup sup P(A(n, a:)) <

5 ! -exp(—T) +exp(-T)
n xel,

. . . N C(B~
In light of Slalm (4.34), we can drive b — oo and obtain limsup, osup,c; P(A(n,z)) < % .
exp(—t) — C(CB* ). exp(—T) + exp(—T). Letting T tend to oo, we conclude the proof of the upper
bound.

The lower bound can be established analogously. In particular, from the decomposition in (4.36),
we get

inf P(A(n,z))

x€l,

> inf P(Ay(n,z,T)) > xiglfeP(/h(n,:mT) NEy(n,T))

xzel,

= 121f P({C’gn M) (z) € (t,T7, Xf‘n?b(w) (z) € B} N Eb(n,T)) due to (4.33) and (4.35)
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> zig"P(C;n.)\(n)T"b(x) € (1], X, (@) € B) —P((Eb(n,T))C)

> inf P(Cin AT (0) > 1, Xy 0 € B) = sup P (G An)rw) > T, X, (o) € B)
z€l. z€l.

fP((Eb(n,T))C).

Using part (a) of Theorem 2.6 and the limit in (4.38), we yield (for all b > 0 large enough and all
T >t)

CIbgeo Clb g- T 20\ @
it inf P (Al.0)) < S o) - S o) - 1o (- 2 (7))
Sending b — oo and then T' — oo, we conclude the proof of the lower bound. O

5 Sample-Path Convergence of Global Dynamics

5.1 Law of the Limiting Markov Chains in Theorems 2.9 and 2.10

Consider some b € (0,00) such that |s; —m;|/b ¢ Z for all i € [nyiy] and j € [min — 1]. This allows
us to fix some € € (0,1 A b) such that

r, > (jb*(l) — ].)b + 3¢, [ml — €, m; + €] - [81'71 +€,8; — E] Vi € [nmin] (51)

with r; and J;*(¢) defined in (2.41) and (2.42), respectively. Recall the definition of C®Ib( . . 2) in
(2.34), and define (for ¢, € [nmin] with ¢ # j)

@(i,§) 2 CT O (amy), g(i) 2 G D1 my), (5.2)

First, note that ¢y(i) = > i 7220 B 0) + 2 jcnmm—1] (v](Jb*(i)”b({sj};mi). From (5.1), we have
|sj —m;| > (J (i) — 1) - b. By assumption |s; —m;|/b ¢ Z for all j € [nmin — 1], one can then apply
Lemma 4.3 to show that > ., é(Jb*(imb({sj};mi) = 0. Together with Lemma 4.4, we yield
that q(i) = > jcpnm): j2i (i, J) € (0,00). Furthermore, based on our choice of € of (5.1) in (5.1),
we can Lemma 4.6 and yield

@(i,5) >0 = Fy(i,5) = Ty (@)

First, we detail the law of Y*I* and m,. Given any mini; € V, consider a ((Uj)jZM (Vj)j21> jump
process Yt*lb(minit) defined as follows. Set Vi = myni; and Uy = 0, and (for any ¢ > 0, I > 1, and
i,J € [nini¢] with i # j)

P(U1+1 <t, Viq1=m; ’ Vi =my, (Vj)é_:lp (Uj)é‘=1) = P(Ul+1 <t, Vigz1=m; ‘ Vi= mi)

% . (1 —exp(— qb(i)t)) if m; € Vi©.
In other words, conditioning on V; = m;, the law of U1 and Vj; are independent: we have Vi1 = m;
with probability ¢y (i,7)/qs(7); as for Upyq, we set Uiy = 0 if m; ¢ V)" (i.e., the current value m; is
not a widest minimum), and set U4 as an Exponential RV with rate ¢,(¢) otherwise.
We make two observations. First, if miye € V", then Y:Ib(minit) is a continuous-time Markov
chain that only visits V}* due to the fact that any jump at m ¢ V,* is instantaneous. Second, if
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Minit ¢ V', then a series of instantaneous jumps will immediately send Y:‘b(minit) to some m € V'
at time ¢ = 0. This procedure is summarized by the random mapping 7. In particular, consider a
discrete-time Markov chain Ykﬂb() on V where the one-step transition probability from m; to m; is

av(4,5)/qv(4). Let

ino(m) Emin{k > 0: Pm) e Vi w2 PV m)=mi). (5.4)

Tormc (M

Here, we can view any m € V;* as an absorbing state, and p,(i, ) is the absorption probability at
m; under initial condition m;. Returning to the continuous-time jump process Yt*lb, one can see that
Yo*lb(mi) = m; with probability py(4, j). Therefore, under the definition

mp(m;) = m; w.p. pp(%,7), (5.5)

the inclusion of random mapping 7 in the initial value of Yt*‘b(m(mi)) only serves to capture all the
instantaneous jumps at ¢ = 0 before the first visit to some m € V.

Recall the definition of measure C( - ;z) in (2.35). For i,j € [Pmin] With @ # j, let
a(i,j) & C(Ij;my). (5.6)

Let Y;*(+) be a continuous-time Markov chain over states {m; : i € [nmin]} With generator characterized
by q(i,j) and initial condition Y;(m) = m.

5.2 Proof of Theorem 2.10

Proof of Theorem 2.10. For any b > MaX;en,..], j€nmm—1] M — 55|, by definitions in (2.42) we have
T (t,7) = T (i) =1 for all i € [nmin] and j € [nmin — 1]. Therefore, for such b > 0 large enough, we
also have A} (n) =n-A(n) = H(n™'). Henceforth in this proof, we only consider such large b.

Fix some i € [Nmin), © € I;, and 0 < t; < ty < --- < t;. Also, pick some closed set A C R*.
Observe that

n n
P( (Xt @+ Xy @) € 4) &)
< P((X@'ZHM () XU gy () € Ay X]P(0) = X)) < uk/mn—m)
+ P((X[]tl/H(nl)J @), X 1)) (33)) € A,X;ﬂb(gc) # X7 (2) for some j < Ltk/H(n_l)J>

<P ((Xft'f’/,ﬂnl)J @), X0 ) (x)) € A) +P (X;Yb(x) # X(x) for some j < Ltk/H(n‘l)O .

) (IT)

For term (I), it follows from Theorem 2.9 that limsup,, , (I) < P((Ytjlb(mi), e ,Ytjb(mi)) € A).

Here, the process Yt*‘b(mi) defined in Section 5.1 is simply an irreducible continuous-time Markov
chain with generator g,(é,7). Indeed, any pair of nodes m; and m; would communicate with each
other on the b-typical transition graph G, (see Definition 2.3) due to J;"(i,7) = J; (1) = 1 for all
i € [Nmin] and j € [nmin — 1], which implies m; € V,* for all i € [nyyin).

For term (II), we make two observations. First, recall that C € [1, 00) is the constant in Assumption
4 such that sup,eg |a(z)| V o(z) < C. Under any € (0,5%), on the event {n|Z;| < = Vj <
ltx/H(n~1)]} the step-size (before truncation) na(X;-ﬂbl (z)) + na(X?lbl(x))Zj of X;-”b is less than b
for each j < |tr,/H(n™')]. Therefore, X;’lb(x) and X7 () coincide for such j’s. In other words, for
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CW§WMWﬂBgm¢m=
P(Zi|> )

X () ¥j < [t/H(n™ Y]}

any 1 € (0, 5%), we have {n|Z;| <
which leads to (recall that H(-) =

b
lim sup (IT) < hmsupP(Elj < |te/H(n™Y)| st.n|Z;| > 20)
10

7.0
b 20\
< limsup Hip™ - 55) :t’“'( b )

w0 H(n™1) .

due to H(z) € RV_,(x) as ¢ — oo. In summary,

. " " 20\ @
hmsupP<(X[]t1/H(n*1)J ((5)7 ’X[]tk/H(nfl)j ((E)) c A) < P((y;1|b(mz), ’thk‘b(mz>) e A)"‘V‘tk(T) .
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Furthermore, note that for all b large enough, we have q;(4,7) = q(4,7) for all 4,j € [nmin] with
i # j. To see why, we fix some %, j € [nmin] With ¢ # j. For all b large enough, we have J;*(4,5) = 1,
and hence (see (5.2) and (5.6) for definitions of ¢,(i, ) and ¢(4, 7))

q(i,j):ya<{w€R: m; + o(m;) - wel}) qbZ])—I/a({’LUGR mz+<pb( (m;) - w)EIj}>.

Suppose that I; has bounded support (i.e., j = 2,3, ,nmin — 1 so that I; is not the leftmost or
the rightmost attraction field), then it holds for all b large enough that m; —b ¢ I; and m; + b ¢ I;.
Under such large b, for m; + ¢, (0(m;) - w) € I; to hold we must have |o(m;) - w| < b, thus implying
m; + ¢y (o(m;) - w) = m; + o(m;) - w and hence q,(i,j) = q(i,j). Next, consider the case where
j=1s01I; =1 = (—00,s1) is the leftmost attraction field. For any b large enough we must have
m;—z € (—00,s1) = I for all z > b. This also implies mi—i—gob(a(mi)-w) €l < mi+o(m;)we I.
The same argument can be applied to the case with j = nmin (that is, I; = (sp,,,—1,00) is the
rightmost attraction field).

Now that we know ¢, (4, j) = q(4, j) for all b large enough, the claim Y;*lb(m,») =Y (m;) Vt > 0 must
hold for all b large enough as both CTMCs have the same generator. Therefore, for the closed set A C
R, limy o0 P((Yt*llb(mi), Y ) € A) - P((Y;; (my), -, Y (my)) € A). Together with the
fact that limp_, o0 (%) = 0, in (5.7) we obtain lim sup, o P((Xl_tl/H(n 1)J( x),-- 7X7L7tk/H(n*1)J (z)) €
A) < P((Ytj (mi), -, Y (my)) € A). From the arbitrariness of the closed set A, we conclude the

proof with Portmanteau theorem. O

5.3 Proof of Lemmas 2.12 and 2.13

Proof of Lemma 2.12. Fix some kK > 1 and 0 < t; < t3 < --- < ti. Pick some open set G C Sk
where S* is the k-fold product space of S with uniform metric d(k)((on,“' k), (Y1, ayk)) =

max;e(x) d(x;,y;). By Portmanteau theorem, it suffices to show that lim 1nf,,¢0P((Ytl7~-~ Y1) e
G) > P((Y;;,.-. Vi) € G).

By part (ii) of Condition 2, lim, P(d(k)(f”“, Y") > e) = 0 holds for all € > 0 small enough
where Y€ = (Y7, ,Y;Z’E) and Y = (Y/7,---,Y]7). Meanwhile,

p((ytﬂ..

>P

Y eG) =P
(Ve

(
- p((7

Y1) EG, dP (YT YT < e)

V) € G, dN (@Y <)

V) € Ge) - P(d(k)(Y"’E,Y") > e).
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Here, G, is the e-shrinkage of set G and note that G, is open. By part (i) of Condition 2, we get
hminfan((ﬁ?’E, e ,ﬁ’;’é) € GE) > P((Yt’;, -, Yr) € Ge). In summary, we have shown that

liminfmoP((Y;Z, Y e G) > P((Y;’;, Y € G6>. Let € | 0 and we conclude the proof due

to continuity of measures and U.~oG. = G for the open set G. O

Proof of Lemma 2.13. Fix some k£ € N and 0 < t; < t3 < -+ < t < oo. Set t = t;. Pick
some ¢ > 0. By assumption, one can fix some J(¢) > 0 such that P(ijl) Ui <t) < e as wel
as N(e) such that P(ijl) Up <t) <eforall n > N(e). Also, we can fix A(e) > 0 such that
P(Zgzl Ui € Uieplti = Ale), ti + A(e)] for some j < J(e)) < €. Throughout the proof, we may
abuse the notation slightly and write N = N(e), J = J(¢) and A = A(e) when there is no ambiguity.

For any probability measure y, let .Z,(X) be the law of the random element X under p. Due to S
being separable, we can apply Skorokhod’s representation theorem and construct a probability space
(Q, F, Q) that supports random variables (U7, V", U3, V5* - -+ )>1 and (Uy, Vi, Us, Va, - - - ) such that
the following conditions hold:

o Lp(UP ViU, Vy', ) = Zo(Up, Vi, U Vg ) for all m > 1
o gP(UlaV17U27‘/2a'”) :zQ(ﬁl"Z7[727"72"“);
. (Z”M(}j andf/]”ﬂ)f/jasn—)ooforallje[ﬂ.

This allows us to construct a coupling between processes Y; and Y;” on (ﬁ, F , Q) by setting Y; as the
((ﬁj)th (YN/j)jZl) jump process and (for each n > 1) Y;* as the ((ﬁ]ﬂ)th (f/j")jzl) jump process.

Furthermore, define processes

n,lJ _ yn LI -
Y N YSAZ}Z:l oy’ Y= YSAZ}JZI U

We make a few observations under Q. First, on event {Z}]:1 [7]‘ > t, Z;-le ﬁj” > t}, we have
Y =Y+ and Y, = Y for all s € [0,¢]. Next, for each i € [k] we define

ZE(A)=max{j > 0: Uy +---U; <t; —A},  I7(A)=min{j >0: Uy +---U; >t; + A}.

K2 3

On event Ay (A) = {37_, Ui ¢ Ujeplti— At + A VG < J3N{Y7_, U; > ¢, 37, Ul > t}, we have
I7(A) =Z7 (A) + 1 for all i € [k]. Therefore, on this event it holds Q-a.s. that (for all i € [k])

I (8) I(8) I (A)+ i (8)+1
lm Y Up= > Up<sti=4A,  lim Y Ur= Y Ui2ti+4,
j=1 j=1 j=1 j=1

Jim Vi a) = Vi)

Therefore, on this event it holds Q-a.s. that lim,_~ Y;" = lim,_ 00 ‘Z?(A) = ﬁjf(A) =Y;, for all

i € [k]. As a result, for any g : S* — R that is bounded and continuous, note that (let Y" =
(}/;7117 o 7}/;2)7 Y = (3/;1’ e 75/;%)7 and ||g|| = SupyESk |g(y)|)

limsup |Eg(Y"™) — Eg(Y)| < limsup Eq|g(Y™") — Q(Y)‘

n— oo n—oo

=limsupEq|g(Y") — g(Y))]IAn(A) +limsup Eq|g(Y™) — g(Y) Ta,(a))e
n—oo

n—oo

<0+ ||g|l lim supQ((An(A))c> due to Y™ F*4 ¥ on Ap(A)
n—oo
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J J
< llgll - <11H1jup Q) U; <t)+limsupQ(> UJ < 1)
n—00 i—1 P

= n— oo
j ~
+limsupQ<ZUi € U [t — A, t; + A] for some j < J))
n—o00 i—1 1€ k]

< lgll - 3e.

The last inequality follows from our choice of J = J(¢), N = N(¢), and A = A(e) at the beginning of
the proof. From the arbitrariness of the mapping g and € > 0, we conclude the proof with Portmanteau
theorem. O

5.4 Proof of Propositions 2.14 and 2.15

In this section, we fix some b € (0, 00) be such that |s; —m;|/b ¢ Z for all i € [nyiy] and § € [Nyin — 1].
This allows us to fix some € € (0,1 A b) such that (5.1) holds.

In our proof of Propositions 2.14 and 2.15, the key tools are the first exit analysis results, i.e.,
Theorem 2.6 and technical lemmas developed in Section 4.3. Note that Theorem 2.6 is applied on some
open interval I with bounded support. Returning to the potential U characterized in Assumption 7,
while for all ¢ = 2, -+ | nyi, the attraction field I; does have bounded support, for i = 1 or npy;, (that
is, the leftmost or the rightmost attraction field) note that I; = (—o00,s1) and I,,_,, = (8n,.,,—1,00) are
not bounded. Besides, for technical reasons, in our analysis below we will bound the probability that
the heavy-tailed dynamics visit S(5) £ Ui pnmm—1)[5i — 9, 8i +6] (i-e., the union of the d-neighborhood

of any the boundary point s;) and show that X]mb(x) is almost always outside of S(4). As a result,
we will frequently apply results such as Theorem 2.6 onto sets of form

Lisr = (sic1 + 0,8 —0) N (=M, M) = (I;)s N (=M, M)

for some 6, M > 0. For any M > 0 large enough such that —M < m; <51 <+ < sy -1 < My <
M, we have Ii;(;,M = (Si—l + (5, S; — 5) N (—]\47 M) = (Si—l —|—5, S; — 5) for all i = 2,37 oty Mmin — 1 (i.e.,
any attraction field that is not the leftmost or the rightmost one); also, we have I1.s pr = (so + 6, 51 —
NN(—=M,M) = (—M,s1—9) (due to sg = —o0) and I, .54 = (Snpn—1+ 0, Snpi —0) N (=M, M) =
(Snpin—1 + 0, M) (due to s,,, = o0).

We first prepare a technical lemma and show that, during any transition between the attraction
fields, X;"b(x) is unlikely to get too close to any of the boundary points s;’s or exit a wide enough
compact set. Let

UZLb(x) 2 min {j >0: X;’”’(x) € U(ml —e,my + e)}, (5.8)
I
TZJSZ,)M(x) 2 min {j >0: X;’lb(x) ¢ Ii;[;,M}. (5.9)
Lemma 5.1. Let Assumptions 1, 2, 3, 4 and 7 hold. Let b € (0,00) be such that |s; —m;|/b ¢ Z for
all i € [npin) and 5 =0,1,-+ ,nppin. There exists M > 0 such that
max CW (M, M)*;m;) =0, (5.10)
1€ [Nmin,

Furthermore, given any A > 0, it holds for all § > 0 small enough and all € > 0 small enough that

limsup max sup ]P(Hj < a”'b(x) s.t. X;ﬂb(x) € S(9) or ‘X;”b(xﬂ > M+ 1) < A. (5.11)

. i€
nl0 1€ [Mmin] TE€[m;—e,m;+e
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Proof. In light of Lemma 4.6, it holds for all M > 0 large enough such that
CW (=M, M)*;m;) =0 Vi € [nmin).

This concludes the proof of (5.10).

Henceforth in this proof, we fix such large M satistying |M — m;|/b ¢ Z Vi € [nmm] and M >
maX;ein,...] (Jy (i) — 1)b + € where € > 0 is the constant in (5.1). Also, we fix some € € (0,€), and
show that (5.11) holds for such e.

Recall the definition of Tf(lst(:L') in (5.9) and Lism = (si—1 + 9,8, — ) N (=M, M). We make
a few observations regarding the stopping time TZ‘;Z;’M(x) =min{j >0 : X;Ib(x) ¢ Iiasar ) with

0 > 0. First, due to I;;25,m C Ii;5,0m, we must have Tlnl;;M(m) < T;'J;M(:c) < JZLb(x) and X;’lb(x) ¢
S(9), |X;7‘b(:v)| < M for all j < TZ”;:;M(.T) Next, on event

Ao(n.b.0) & {X7, (@) € (~M, M); X,

Ti:26,M i;26,1v1(w)

(z) ¢ S(20) }.

there exists some j € [nmin|, J # @ such that X nlﬁb
7'1:;25,1\/1(1)

(x) € Ij25,m- Now define

1€

Ai(n,6,z) 2 {aj <ol(2) s.t. XP(x) € 5(5)}, As(n,z) 2 {Hj <o (@) st [X°(2)| > M + 1}.

Let R;’Jf(x) 2 min{k > 0 : XZlb(x) € (m; —e,m; +¢€)}. From the strong Markov property at
b (z)
4328, M ’

max sup | P ((A1 (n,6,2) U As(n, x)) N Ao(n, 0, x))

1€ [nrnin] x€ [m1 —€,m;+e

< max  swp P(A1<n,a,x>uA2<n,x>\Aom,a,x))

1€[nmin] z€[m;—e,m;+e|

< max sup P({X,Zb(x) €[sj—1+0,8, —0)N(—M —1,M +1) VIk < R;ﬂf(x)} > .
J€[Mmin] yE[s;j—14+268,s; —28]N(—M,M) ’

p;(n)
For any j € [nmin] and any 6 > 0 small enough, b y applying Lemma 4.9 onto I, N (—M — 1, M + 1)
(with parameter e therein set as 2J) we get lim,op;(n) = 0. In summary, we have shown that
lim sup,; | o MaXie [1n,1,] SUPzE [m; — e,mi+e] P((Al(n7 8, 2)UAs(n,2)) NAo(n, 9, x)) = 0. Meanwhile, to es-

tablish (5.11) it only remains to show that lim sup,)| o MaXie n,,;,] SUPze[m; —e,mi+c] P ((Ao(n, d, x))c) <
A. This can be proved if we show that for all 6 > 0 small enough,

. b
limsup max sup P (X "J”b
710 1€ [Nmin] z€[m;—e,mi+e] Ti:286, M (@)

(@) ¢ (-31.0)) =0,

. Ib
limsup max sup P <X n,,,‘b

b0 €[Mmin] ze[m;—e,mi+e] 726, a1 (T)

(z) € S(25)> <A.

To proceed, we fix some ¢ € [nyin]. Note that I;.5 ps C I; and hence If;é,M D I¢. First, our choice

of M at the beginning ensures (vj(jb*(i)”b((—M, M)¢ m;) = 0. By applying part (a) of Theorem 2.6
onto I;.5 v, we obtain

. b
lim sup sup P (Xnnb

nd0  z€[m;—e,m;+e| 7—i;26,M(I)

(@) ¢ (-M.00) =0,
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Next, recall the assumption |s; — m;|/b ¢ Z for all j € [nmin — 1]. From Lemma 4.3, we get
CI D ({51, 5. };mi) = 0, which then implies C7% DI (S(25);m;) < g,(i) - A for all § > 0
small enough. Meanwhile, due to I;;25,p C I;, we have If o5 5, O I and hence CW@)le (15;257M; mi) >
q»(2). Applying part (a) of Theorem 2.6 again, we yield (for all § > 0 small enough)

CT @) (5(25); mi)
lim sup sup P(X”,Ilbb (z) € S(Q(S)) < — < A.
m0 - w€fmi—e,mite] Tis2s,m () Clr @b (1525 M5 mi)
This concludes the proof of (5.11). O

The next result is an adaptation of the first exit time analysis in Section 2.3 to the current setup.

Proposition 5.2. Let Assumptions 1, 2, 8, 4 and 7 hold. Let b € (0,00) be such that |s; —m;|/b ¢ Z
for alli € npmn] and j = 0,1, ,Nypin. There exists € > 0 such that the following claims hold.

(i) Let R?Lb(ac) 2 min{j > 0: X;-”b(:v) € (my—e,m;+¢€)}. Foranye € (0,€), t >0 and i € [Nymin),

liminf  inf P(R?.'f(x) N <t X)) € [ V5 < RZLb(x)) -
0 xz€[s;i_1+€,5;—¢€] ’ 7

(#) Let i, € [Nmin] be such that i # j. Let UZLb(x)

2 min{j >0: X;’lb(x) € Ul#(ml —e,m;+¢)}.
If m; € Vif, then for any € € (0,€) and any t > 0,

lim inf inf }P(U"lb(x) -y (n) >t X:Lﬁb(z)(x) € Ij) > exp (— qu(i) - t) - qb(l’_]),

0 z€[m;—em;+e He

lim sup sup P(a?_leb(x) -y (n) > t, X"Lﬂ’b (x) € Ij) <exp(—q(i)-t)- qb(z,.]).
0 z€[m;—e,m;+e] ’ i (@)

If m; ¢ V¥, then for any € € (0,€) and any t > 0,

qb(z’.j) < liminf inf P<O’Z|€b(ﬂf) () <t, an’l‘)b(z) (x) € [j>

qb(l> nd0  z€[m; —e,m;+e| o
@ et) < 2.

i€

< limsup sup P <02Lb(g:) “Ai(n) < t, X”lﬁb
nd0  zE[m;—e,m;+e| o (@)

Proof. Throughout this proof, the constant € € (0,1 A b) is as specified in (5.1).
(i) Fix some € € (0,€). Pick some M > 0 large enough such that M| > sup,cp,, ,tes—¢ || + €
Let

ti(z,e) =inf{t >0: yi(z) € (m; —e,m; +€)} (5.12)

where y.(z) solves the ODE dy;(x)/dt = —U’(y:(x)) and initial condition yo(x) = x. Set

€

T = {ti £

sup | t;(z 5

By Assumption 7, we have t;(x, §) < oo for all x € [-M 4 ¢, M — €| N [s;_1 + €, 5; — €], with £;( -, §)

being continuous over x € [-M + €, M — €| N [s;—1 + €, ; — €]. This implies T' < co. Next, recall that

Ay (1) € RV 7+ (vy-(a—1)+1(n) as m | 0. Due to J; (V) > 1, we have J;"(V) - (o — 1) +1 > 1. This
implies %(n) > % for all n > 0 sufficiently small, and hence (for such small 7)

b

) xE[—M—l—e,M—e]ﬂ[si,l—l—gsi—d}

mt  P(RPW N0 <6 X)) € Lovi < RV))

TE[si—1+€,8;—¢€]
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. b b , b
> inf ]P<RZL (x) <T/n, X;I (x)eI; Vj < R?L (x))

x€E[si_1+€,5,—€

By applying Lemma 4.9 onto (—M, M) N I;, we conclude the proof of part (i).

(ii) Recall that A%,(n) £ n- A% () (n). To prove claims in part (ii), It suffices to establish the
following upper and lower bounds: for all 4, j € [nyn] such that i # j, all € € (0,€), and all ¢ > 0,

liminf  inf P <a”“’(x) () >t X, (2) € Ij) > exp (—qp(i) 1) - Qb(”_j), (5.13)

nd0  z€[m;—e,m;+e b€ ”Z;e (z)

lim sup sup P (J"lb(x) “Aip(n) > t, X"l (z) € Ij) <exp(—q(i)-t)- qb(l’,j). (5.14)

nd0  z€[m;—e,m;+e| e U?;Lb(QJ)
To see why, we first consider the case with m; € V", which implies J, (i) = J;5(V); see (2.44) for the
definition of J; (V). As a result, we have A}, (n) = Aj(n) = 7 - A7 (V) () and the upper and lower
bounds in part (ii) follow immediately from the (5.13) and (5.14).

Next, in case that m; ¢ V", we have 7" (i) < J;(V), and hence A)f;f(%) —ocasnl 0 Ift=0,
then the upper and lower bounds in part (ii) are still immediate consequences of (5.13) and (5.14).
Now, we focus on the case where ¢t > 0 and start from the lower bound. Given any T > 0, we have

/\f;b(”l)
t X

> T eventually for all 7 small enough. Therefore,

inf P(a"lb(x)-/\Z(n)gt, X" (m)ezj)

! b
zE€[m;—e,m;+e| ne UZL (z)

< inf }P(U”b(a:) A <T, XN, () € Ij)

T x€[mi—emite e oZLb(w)
. b b " b
= e P (X:Jn;,: o(®) € Ij> R P <a;§'6 (x) - Xjp(n) > T, X:J;Lb(x) (z) € 1j>.
Applying (5.13) and (5.14), we get
liminf  inf  P(o"P@) A <t, X el >qb(i’j).(1_ ) -7)).

Let T tend to co, and we conclude the proof of the lower bound in part (ii) for the case where m; ¢ V;*.
As for the upper bound, note that

sup P(anlb(x) A <t, X" () e Ij) < sup ]P<XZL_ZTb(x) () € Ij>~

;€ nlb
zE€[m; —e,m;+e| ’ Tise (2) z€[m;—e,m;+e

Applying (5.14) with ¢t = 0, we conclude the proof of the upper bound in the case where m; ¢ V.
The rest of this proof is devoted to establishing (5.13) and (5.14). Here, we state one fact that will
be applied in the analysis below. By assumption |s; — m;|/b ¢ Z for all j € [nmin — 1], one can apply

Lemma 4.3 and obtain é(jb*(i))‘b({sh “+ Snmm—1};mi) = 0. Due to I; = (s;_1,5;), we then have

é(%*“))‘b(lj;mi) - é%"(“)'b(lg;mi) Vi, 5 €[] with i # j. (5.15)

Proof of Lower Bound (5.13).
Recall that I;;s pr = (si—1 + 9,8, —0) N (=M, M) and T;'(l;{)M(w) =min{k > 0: X,Zlb(m) & Lis}-
Now, observe that (for any § > 0)

b * b
{1 X, )€1}
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(@) € Lsaea 0 { X2 @) € 1|

(M (11)

i:d,]vf(a:)

b % b
> {rtlt) it > 6 X7,

Given any T > 0, strong Markov property at TZZJ;{’M () implies that (for all > 0 small enough)

inf P((II) ‘ (D) > inf P<X;7£b(y)(y) € fj)

z€[m;—e,m;+e| yelj s M1

> nt PR < T X2 € 1y v < BG) ).
Y€l s M+1 Ji ’ 73
Recall the definition of ¢;(x,€) in (5.12), and set T' = sup {tj(x, S)rxe[-M—-1,M+1]N[sj_1+

9,85 — 5]} < 00. By applying Lemma 4.9 again, we yield

lminf  if  P(I)] @
Hv?&)n xe[m,-,l—ne,mz'-l-e] (( ) ’ ( )) (5 16)

> liminf  inf P(R;-];leb(y) <T/n; Xglb(y) €l; Vk < R?Jf(y)) =1.

0 yEljs,m+1

Next, we move onto the analysis of event (I). Let M € (0,00) be such that the claim (5.10) of
Lemma 5.1 holds. Fix some A > 0. Meanwhile, by assumption |s; —m;|/b ¢ Z for all j € [nmin — 1],
one can apply Lemma 4.3 and obtain (v?(jb*(i)”b({sl, e Snim—1) mi) = 0. Due to the continuity of
measures, it then holds for all § > 0 small enough that (recall that ¢, (i) = é(jb*(i))‘b(lf; m;); see (5.2))

CWIw (b ((si_l — 0,8, +9) mi>
< Cvl(jb*(i))lb(lf; m;) + Cvl(jb*(i))lb([si,l —0,8i-1+06]U[s; — 0,8 +0); mi)
<(Q+A)g2).
Therefore, for the set If; ), = ((—M7 M)N(sj—1+96,8 — 6))0, it holds for all § > 0 small enough that
é(J;m)w(I;&’M; mi) < é(Jm))w((_M M)e; mi) i éUJ(i))\b((si,l 48,8 — 8)S; mi)
=0+ CWT @b ((si_l + 0,8, —06)% ml) using (5.10) (5.17)
< (14 A)-gp(i).
On the other hand, recall the definition of ¢,(i,5) = (VJ(J;@)W’(IJ-; m;) in (5.2), and note that
(VJ(Jb*(i)”b(I;[;,M;mi) > é(Jb*(i))\b(]ic;mi) = q(i) (5.18)

due to I;;5» C I; and hence If;é,M D I7. Next, observe that

b * b b
) = {r @) Mg > 6 X7, @) e L} { XM, (@) € Lsar )

Tiss, M Tizs, M\ T

(I11) 1v)
By applying part (a) of Theorem 2.6 onto I;.5 ar, we yield (for any ¢ small enough)
(;(J;(i)nb(]j; mi)

' (Vj(Jb*(i))\b<]iC_6M;mi)

it (10 > (-8 sy
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exp ( —(1+A)g(9) 't) (i, )

> . .
1+ A qb(i)

In the last inequality, we applied (5.17) and (5.18). On the other hand, due to Tg(l;le(.’E) < O‘ZLb(:E),

we obtain lim sup,,| o SUP,em,; —e,m, 4] P((IV)C) < A for all § > 0 small enough by applying (5.11) of
Lemma 5.1. In summary, for all § > 0 small enough,

liminf  inf ]P<(1)) > exp (= 0+ a0 -) i)

- A. 5.19
nd0  z€[m;—em;+e - 1+ A qb(l) ( )

Combining (5.16) and (5.19), we yield lim inf, o infye[m, —c.m,+¢ P(amb(as) “Ai(m) > t, X:,‘ﬁb () €

i€ g ()

Ij) > eXp(_(ll':AA)qb(i)'t) . ‘“(é’g) — A. Let A | 0 and we conclude the proof of the lower bound.

v (2

Proof of Upper Bound (5.14).
Let () = {aZLb(x)-A;b(n) > ¢, x" (z) € Ij}. Given some M > 0 and § > 0, define event (II) =

ol (z)
{X:;ZbM ) (x) € (M -1, M+1)\S(9) } We start from the decomposition (I) = ((I)\ (II)) U ((I)N(IL)).

First, arbitrarily pick some A > 0, and let M € (0,00) be such that the claim (5.10) of Lemma 5.1
holds. The claim

lim sup sup P((I) \ (II)) < limsup sup P((II)C) <A (5.20)
nd0  z€[m;—e,m;+e] nd0  z€[m;—e,m;+e]

for all 6 > 0 small enough follows directly from (5.11) of Lemma 5.1. Next, on event (I) N (II), there
exists some K € [nmin], K # 4 such that xe (x) € (M -1, M+1)N(sg_1+9, sk —0) =I5 m+1-

b
T;,L‘M(LE)

For each k € [nmin] with k # 4, define event

(k) = ()N (I N {X’?'?N()

(x) € Ik;é,M-i—l}
and note that Uye, . 1. k2 (k) = (I) N (II). To proceed, consider the following decomposition

)= (00 { (o) = @) Nial > A} ) (00 { (7200 = 7)) - Nislo) < A} )

(k,1) (k,2)

We fix some k € [nmin] with & # ¢ and analyze the probability of events (k,1) and (k,2) separately.
First, recall that A}, (n) = n- A0 (n) € RY 7+ (i)-(a—1)+1(1), s0 given any T' > 0 it holds for all n > 0
small enough that ﬁ > % Now, we pick T' = sup {tk(a:, 5): we I,;é’MH} with ¢ (-,-) defined
in (5.12), and observe that

lim sup sup P((k,l))
nd0  z€[m;—e,m;+e]

<limsup  sup P((/f) n {Ug‘eb(x) = (@) > T/??})
| ; 5,

nd0  z€[m;—e,m;+e

(7) € Tni5, 01415 UZLb(l”) - TZ(lsl,)M(m) > T/ﬁ)

i (%)

< lim sup sup P (X "Jﬁb
nd0  z€[m;—e,m;+e]

<limsup sup P ("Zf(y) >T/ 77) due to strong Markov property at 715y, (x)
0 yE€lks,m+1 1 -
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< limsup  sup P<X;”b(y) ¢ (my —e,mp +¢) Vj < T/Tl)
nd0  yE€lk,s m+1

=0 due to Lemma 4.9. (5.21)
Next, for all k # 4,

sup ]P((k,2))

TE€[m;—e,m;+e

< swp P(T;?;’M< ) Ap(m) >t = A XM () € Dusarins X, (@) efj)
zE€[m; —e,m;+€| st(w) o (@)

< s Pl A > - A X, en)

TE€[m; —e,m;~+€| Tiss, M

s (X )€ | o) N > 1= 85 X (o) € e )

xE€[m;—e,m;+e

< sup P<TZ75bM( ) Aip(m) >t = A; X"Ll"b w)(x)elk>~ sup P(an (y)elj).

nlb
TE€[m; —e,m;~+€| Tiss,M YEIL.s, M+1 o (Y)

(k.,I) (k,IT)

In the last inequality we applied the strong Markov property at T, | v (). Applying part (a) of
Theorem 2.6 onto I;.s s and the bound (5.18), we yield (for any § small enough)

C(Ty ()b ([—; mi)

B <Z>>\b(105M,ml)

lirzlisoup ze[misllg’)m#e] P((k‘,l)) < exp ( cWr mlb( Lo m1> - (t— A))

Qb(ia k)
(i)

<exp(—q(i)- (t—A)) - (5.22)
Here, we also applied (5.15) to show that CVJ(Jb*(i)”b(I,;;mi) = é(Jb*(i)”b(Ik;mi) = qp(i, k). Next, we
analyze the probability of event (k,II). If k£ = j, we apply the trivial upper bound P((k,II)) < 1. If
k # j, recall that RZ“;(.I) =min{n >0: Xg‘b(x) € (my — €, my + €)} is the first time X:Zlb(x) visits
the e-neighborhood of my, and note that

sup  P((kI)) < sup P(Hn < RZ‘S(y) st XM(y) ¢ 1.5 M+2>

YEI K6, M+1 YEL ks, M+1 2
Indeed, on event (k,II), the first local minimum visited by X, ‘b(y) is m; even though the initial value
Xglb(y) = y belongs to Iy.s pr+1 C Ii; this implies that Xg‘b(y) must have left I;, (and hence I} 5 5/.5)
before visiting the neighborhood of my. Applying Lemma 4.9 onto I N (—M — 2, M + 2) (with the

parameter e therein set as ), we obtain limsup, osup,ey, ; ., P((k1I)) = 0 for all § > 0 small
enough in the case of k # j. Combining this result with (5.20), (5.21), and (5.22), we yield that

lim sup sup P(azeb(m) “Alp(n) >t anﬁb (x) € Ij>
nd0  z€[m;—e,m;+e€] ’ Tise ()

< lim sup sup P ((II)C>
0 z€[m;—e,m;+e]

+ Z lim sup sup P ((k’,l)) -limsup sup P ((k,H))

k€ [nmin]: ki nd0  z€[m;—e,m;+e] 0 yElks m

< lim sup sup P((H)C) + lim sup sup P((j,I))
nl0  z€[m;—e,m;+e| nd0  z€[m;—e,m;+e|
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<A+exp( () (t—A)) ) Qb(i,‘j).

Let A | 0 and we conclude the proof of the upper bound. O

Now, we are ready to prove Proposition 2.14.

Proof of Proposition 2.14. Recall that Y,;*‘b(mi) is a ((Uj)th (Vj)]Zl) jump process with U; = 0,

Vi = m;, and the law of ((U]—)jzg, (‘/j)]‘ZQ) specified in (5.3). To prove the weak convergence claim
in terms of finite dimensional distributions, it suffices to verify the conditions in Lemma 2.13. In
particular, since Y;*lb(mi) is a continuous-time Markov chain that is irreducible with finitely many
states, the only condition we need to check is the following: Given € > 0 and n > 0, let U} =
((?g’f\b(x) 7 E‘lb( )) - Ap(n) and V! = Mgn.elb (4 (for definitions, see (2.46)—(2.48)); it holds for all

€ > 0 small enough that (U}, V", U}, V,,-- ) converges in distribution to (U, Vi, Uz, Va,--+) asn | 0.
This is equivalent to proving that, for each N > 1, (U}, V]",--- U}, V) converges in distribution to
(Ul,th ,UN7VN) as U\LO

Fix some N =1,2,---. First, from part (i) of Proposition 5.2, we get (U{', V{") = (0, m;) = (U1, V1)
as n | 0. Next, for any n > 1, any ¢; € (0,00), any v; € {m; : i € [Nmin)}, and t > 0, 4, j € [Nmin] With
1 # j, it follows directly from part (ii) of Proposition 5.2 that

17%%P<Un+1 =t V”'H B
% (1—exp(—qz>(i)t)> if m; € V.

Vi=m;, V'=uVle[n-1], U[’gtl\ﬂe[no

This coincides with the conditional law of P(Un_H <t, Vog1 =m; | V,, = my, (Vj)?:_ll, (Uj)?zl)
specified in (5.3). By arguing inductively, we conclude the proof. O

Lastly, we give the proof of Proposition 2.15.

L nlb
Proof of Proposition 2.15. If XLt/A ()]

X;”E‘b(x) as the marker of the last visited local minimum (under time scaling of Aj(7n); see (2.46)-(2.48)
for the definition of the process X;"“*(z)), we must have |Xlt/>\ ) (@) — X% (2)| < €. Therefore, it
suffices to show that for any e € (0,€) (with € specified in (5. 1))

(@) € Uiepnu) (Mu — €,m1 + €), then due to the definition of

. nlb _
%ﬁ}P( @€ U ml—eml“))—

1€ [N min]

To proceed, pick some §; € (0,%), § > 0, and M > 0. Recall that H(-) = P(|Z1| > -) and S(§) =
Uiefnmn—1)[8i = 0, si + d]. Define event

(0= {Xttlfx s (n)) 126,/ H(n-1)) (@) € (=M, M)\5(5)}-
Let t1(n) = [t/ ;(n)] — |26:/H(n *1)J. On event (I), let R" A min{j > t1(n) : X;lb(x) c

q(my — 5,7 + 5)} and set zn by the rule In = j = X"‘b z) € I;. Now we can de-
1€ [Nmin] 2 J
fine event

(1) = {R"— ts(n) < 0/HG ) }.
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On event (I) N (II) we have [t/A\i(n)] — [26;/H(n~')| < R" < [t/A;(n)]. Let 77 £ min{j > R" :
X;ﬂb(x) ¢ (m4, —€,ms, + €)}, and define event

(IIT) = {Tﬂ ~R"> 25t/H(77*1)}.

On event (I) N (IT) N (III), we have 77 > |¢t/Af(n)| > R", and hence XLt‘//\*(n)J( ) € Urepns (M1 —

€, m; + €). Furthermore, we claim that for any A > 0 there exist ¢, € (0, ) 0 >0, and M > 0 such
that

11%10an((1)) >1- A, (5.23)
h%nfp((ﬂ) ’ (I)) > 1, (5.24)
li%ioan((HI) ‘ 1N (H)) >1-A. (5.25)

An immediate consequence is that lim inf, o P((I)N(II)N(III)) > (1—A)2. Let A | 0 and we conclude
the proof. Now it only remains to establish (5.23) (5.24) (5.25). Throughout the remainer of this
proof, we fix some € € (0,€) and A > 0.
Proof of (5.23).
Let Ing,s = (—M, M)\S(6). Recall the definition of 7/"*(x) in (2.46)(2.47). For any N € Z, on
event
N—-1

( N {7 (@) € Tars vi € [ El’(x),%&f’l”(x)]}) n{# @ <t {? > tam) ]

k=1

Ak (n) Bi(n) B2(n)

we have X]m (z) € Ings for all j € [F " (2), 7229 (2)] and #]7°(2) < t;(n) < #7°(x), thus implying

Xn\b

£ (n)( x) € Iprs. Therefore, it suffices to show the existence of some M, N, and J such that

lim sup [P (Bf(n)) +P (35(77)) +

N-1
740 k

3 P(Ai(n)ﬂ <AV, € (0,1/3). (5.26)
=1
Recall that t1(n) = [t/Ai(n)] — [26:/H(n™')|. Fix some u € (0,¢/3). First, due to \j(n) =
n- (n_lH(n_l))jb V) and T (V) > 1, if 6 € (0,t/3) then it holds eventually for all n small enough
that ¢1(n) > u/A:(n). Let @ € [nmin] be such that z € I; and let RZLb(x) =min{j > 0: X;Ilb(ac) €
[mi—e, mi+e€|}. Since 7% (2) is the first visit time to Ui ] (M1 —€, mi+e) (i.e., the e-neighborhood
of any local minima ml) we have 7" EIb( ) < RZLb(a:), and hence
limsup P(B5(7)) < limsup P(#1"(2) > u/Nj(n)) < lim sup P (N (n) - RIL () > u)
140 40 70 ’
=0 using Proposition 5.2 (i).

(5.27)

We move onto the analysis of event By (n) and the choice of N. Recall that Y;*‘b(a:) is the irreducible,
continuous-time Markov chain over V;* with law specified in (5.3). In particular, we can fix some N
large enough such that P(Uy + -+ + Uy < t) < A/2. Then from the weak convergence stated in
Proposition 2.14, we get

N
imsup P(550) < tmsup P(( 3 (70(e) ~ 72 ) - Xj00) < )

740 70 n=1
§P(U1+-~+UN §t) <A/2

(5.28)
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Meanwhile, recall that o) ‘ J(z) =min{j > 0: me( ) € Uiz (mu — €,y + €)} (Le., the first time

X;l (z) visits the e- nelghborhood of some m; that is different from my); also, for all k > 2, 7" 6“’( ) is

the first time since 7, ellb( ) that me( ) visits the e-neighborhood of some m; that is different from

the one visited at 7, Ellb( ). From the strong Markov property at 7, cle (z), we then get

supP(Ai(n)) < max sup P(Elj < J"‘b( ) s.t. X;'lb(y) € S(9) or |X;-’|b(y)’ > M)
k>1 l€[nmin] yE[mi—e,m+e|

Applying Lemma 5.1, we are able to fix some M > 0 and § € (0, €/2) such that limsup, o P(Af(n)) <
& Vk € [N —1]. Combining this bound with (5.27) and (5.28), we finish the proof of (5.26). As a
concluding remark, note that our proof of claim (5.23) relies on the specific choices of M and ¢ but

allows for arbitrary 6, € (0,¢/2). In the proof of claims (5.24) and (5.25) below, we adopt the same
choice of M and ¢ so these two parameters will be fixed henceforth in this proof.

Proof of (5.24).

We show that the claim holds for all 6; € (0,¢/3). Due to H(z) € RV_,(z) and a > 1, given
any T > 0 we have T/n < 6;/H(n~!) eventually for all n small enough. Recall that Iisvr =
(sj—1+0,8; —0)N (=M, M). By Markov property at ¢1(n), for any T > 0 it holds for all > 0 small
enough that

P((II)C

(I))< max  sup P<X77b ) ¢ U

k€[nmin] yelt.5 0 L€ [N min]
min

mz+ )V]<5f/H( ))

< max sup P<RZ|S/2( )>5t/H(77_1)>

k€ [nmin] y&€lp,s,m

< max sup P<RZ|§/2( ) > T/17>
k€ [nmin] yElp,s, M
where RZ' /2(y) =min{j >0: X;’lb(y) € (mp—5,mp+ 5)}.

Let t(z,€) = inf{t > 0: yt( ) € (Mg — €, my + €)}. By Assumption 7, t;(z, §) < oo for all z €
[~M—1, M+1]N[sp_1+3, s,—3], with (-, £) being continuous over [—~M—1, M+1]N[sp_1+3, si,—3].
As a result, we can fix T € (0, oo) large enough such that

€ ) é
T > sup {tk(:r, 1) cxe[-M—-1,M+1]N[sk-1+ 205k~ 5]} Yk € [nmin)-
For each k € [nmin], by applying Lemma 4.9 onto (=M — 1, M + 1) N (Sk—1, Sk), we are able to show
that limsup, ;o Supyep, ; ., (RZ'f/g( ) > T/n) = 0. This concludes the proof of claim (5.24).
Proof of (5.25).

We show that claim (5.25) holds for all §; € (0,¢/3) small enough. By strong Markov property at
R",

P <(IH)C

()N (H)) < max sup (Hj <

k€[nmin] ye[my, —e/2,mi+e/2]

20, ,
H(n ) s.t. X ‘b(il/) ¢ (my —e,my, + 6))

Also, note that € < € < b; see (5.1). For each k € [nmin], by applying part (a) of Theorem 2.6 onto
(my — €, my + €), we obtain some ¢, . € (0,00) such that for any u > 0,

lim sup sup P <3j <

s.t. X;Hb(y) ¢ (mk —€e,my + 6)) <1-— exp(_ch6 u)
0 yE[mr—e/2,mp+e/2]

H(n=1)

By picking ¢; small enough, we ensure that 1 —exp(—cg, -28;) < A for all k € [nyin], thus completing
the proof of claim (5.25). O
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5.5 Proof of Corollary 2.11

Proof of Corollary 2.11. For simplicity of notations we focus on the case where T' = 1, but the proof
below can be easily generalized for arbitrary 7" > 0.
Fix some b > 0 such that G, is irreducible and |sj —my|/b ¢ Z for all i € [Pmin] and j € [Nmin — 1].

Also, fix some x € Uie[n i and let TP, o fo ]I{X[’t% <o) (®) € U jevs I;}dt. The goal is

to show that 77 Ly 0asn | 0. To proceed, let K7, 2 NI (n) where I7(n) £ H{Elt €

narrow

n n+l ‘
(R 5] et X )

N=1 o(nt1)/N 1 = 1+ K

. B nlb A __ "N

Tnarrow_ § :/ N H{X\_t/k 5 ()] (.17) € U } - N Z N .
n=0“n/ j: ¢V n=1

€U jevy Ij}, and note that

The proof hinges on the following claims: there exist some C' € (0,00) and a family of events A%, such
that

(i) for all positive integer N large enough, lim,, o P(A?V) =1;

(ii) for all positive integer N large enough, there exists 7 = 77(N) > 0 such that under any n € (0,7),
) . 2C . )
P(Ky >j|AY) <P BanIn(N,W)Zj Vi=1,2,---,N.

Here, Binom(n, p) is the Binomial RV representing the number of successful trials among n Bernoulli
trials with success rate p. Then given any N large enough, n € (0,7(N)) and any 8 € (0, 1),

VNB
P (Tﬁamw > HQCNTN) < P(KY > 20 + VNP)
—_—
£5(N.8)
=P({K} >2C+v BYNAY) + P({K} > 2C + VNBY\ AY)
(Blnom ) >2C+ VN > + P((A%)°) by claim (ii)
2
P((Bmom —) - QC) > NB) +P((A%L)°)
var {Binom(N, %)}
< B +P((A})°) by Markov’s inequality
2C .
ST P((A%)).
Using claim (i) and by driving 7 | 0, we get limsup, ;o P(Tiow = 6(N,3)) < 2C/NP for all N

large enough. Lastly, note that C/Nﬁ — 0 as N — oo; also, under our choice of g € (0,1) we have

limy 00 6(N, B) = 0. This implies T7, 0w 2,0 as nd0.
Now, it only remains to verify claims (i) and (ii). First, we specify the choice of events A%;. Let
ty(n) =n/N. For some € > 0, let

b
AR (n) 2 {Xftlw( )/AZ(n)J(x) € U (m; —e,m; +€) Vk € [n]}
it m eV

and let A%, = A% (N). Note that A% (1) 2 A% (2) D --- D A% (N) = AY,. Furthermore, in Theorem

2.9 note that the limiting CTMC Yt*‘b only visits V;*. As a result, given any positive integer NV, one
can find € = ¢(N) > 0 small enough such that lim, o P(A%) = 1.
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Next, let (Z@(n))new_l] be a random vector with law ﬁ((I}{,(n))ne[N_l]

exists some C' € (0, 00) such that for all N large enough, there is 7 = 7j(N) > 0 for the following claim
to hold: Given any n € [N — 1] and sequence ¢; € {0,1} Vj € [n — 1],

‘ A’]\,) Suppose there

P(iﬁv(n) -1 ‘ T0(j) =i; Vj € [n— 1]) <20/N Ve (0,7). (5.29)

Then given any N sufficiently large and any n € (0,7(V)), there exists a coupling between iid Bernoulli
RVs (Zn(n))nev—1) with success rate 2C/N and (i’;’,(n))ngw_” such that Z7(n) < Zn(n) Vn €
[V —1] almost surely. This coupling between (Zn (n))ne[n—1] and (fﬁ, (n))ne[n—1) immediately verifies
claim (ii).

Lastly, we prove condition (5.29) under the choice of C' > max;. y,ev, q»(i) With g,(i) defined in
Section 5.1. Besides, due to lim,_,q k%p(*x) =1, it holds for all IV large enough that

1 — exp ( —C. %) < V2C/N. (5.30)

Henceforth in this proof, we fix such large N. Now, given any n € [N —1] and sequence i; € {0,1} Vj €
[n — 1], observe that

P(Zh(m) =1 | Th() =i Vi€ [~ 1))
P(T(n) = 15 T3 (5) = i; Vi € [n—1])
P(Z}() =i ¥j € [n—1])
P({Zh(n) =15 () = i; Vi € [n— 1]} 1 AL ) /P(AL)

P({Z}() =i Vi € [n =11} n A% ) /P(A})
P({Z}(n) = 1; T4() = i; ¥j € [n— 1]} N AL (n)
P({Z%() =is ¥ € [ — 1]} N A% )

due to A% (n) 2 A%

CP({ZRm =1 TG =i, Vi€ ln— U} N AK () P({ZRG) =45 Vi € [n— 1} N AR (n))

P({I}@(j):ijwe[n—1]}mA§7V(n)) ' P({I}VV( —i;Vjen—1]} mA”)
P({Z%() = i; ¥ € [ — 1]} N A%(n))
P({I}(,(j):ijVjEnfl}ﬂA">

= P(Thm) =1 (T () = i € In— 1} 1 A% ().

20
! NG
]
For term p!, by Markov property of X?lb(z) at j = tn(n)/ ()],
1/N
p < sup P<X]Tib(y) ¢ U (m; — €,m; + ¢) for some j < | */ J>
yeUi; ’"z‘EVb* (mi*E,mi*‘rE) i mievb* )\b(n)
1/N
< max sup P(me y) ¢ I; for some j < | )
i m eV, yE(mi—e,m;i+e) I ( )¢ LAb(n)J

By part (ii) of Proposition 5.2, there is some 77 = fj(N) > 0 such that for all n € (0,7), we have
p! <1—exp(—C-1/N) < +/2-C/N due to our choice of C' > max;. mieVy q»(7) and the choice of N
n (5.30). As for term pJ, note that for any event B, we have
P(BNAY(M) _  P(B)
P(BNAY) ~ P(B)—P((4%)°)

—1 as 1} 1 due to liﬁ)l P(AY) =1 (5.31)
n

88



In the definition of pJ, note that there are only finitely many choices of n € [N — 1] and finitely
many combinations for i; € {0,1} Vj € [n — 1]. By considering each of the finitely many choices for
B = {Z}(j) = i; Vj € [n — 1]} in (5.31), we can find some 7§ = f(N) such that pj] < /2 Vn € (0,7)
uniformly for all the choices of n € [N — 1] and sequence i;. Combining the bounds p] < v/2C/N and
pg < /2 (for all ) small enough), we verify condition (5.29) and conclude the proof. O
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