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Abstract

This paper proposes a general framework that integrates the large deviations and metastability
analysis of heavy-tailed stochastic dynamical systems. Employing this framework in the context
of heavy-tailed stochastic difference/differential equations, we first establish a locally uniform
sample path large deviations, and then translate the sample path large deviations into a sharp
characterization of the joint distribution of the first exit time and exit location. As a result, we
provide the heavy-tailed counterparts of the classical Freidlin-Wentzell and Eyring-Kramers the-
orems. Our findings also address an open question from [26], unveiling intricate phase transitions
in the asymptotics of the first exit times under truncated heavy-tailed noises. Furthermore, we
develop a set of machinery that elevates the first exit time analysis to the characterization of
global dynamics of stochastic dynamical systems. With the machinery, we uncover the global
behavior of the stochastic difference/differential equations and show that, after proper scaling,
they converge to continuous-time Markov chains that only visit the widest minima of the potential
function.

1 Introduction

The analysis of large deviations and metastability in stochastic dynamical systems has a rich history
in probability theory and continues to be a vibrant field of research. For instance, the classical
Freidlin-Wentzell theorem (see [51]) analyzed sample-path large deviations of Itô diffusions. Over
the past few decades, the theory has seen numerous extensions, including the discrete-time version
of Freidlin–Wentzell theorem (see, e.g., [39, 30]), large deviations for finite dimensional processes
under relaxed assumptions (see, e.g., [13, 16, 15, 1, 17]), Freidlin–Wentzell-type bounds for infinite
dimensional processes (see, e.g., [5, 6, 29]), and large deviations for stochastic partial differential
equations (see, e.g., [50, 9, 46, 38]), to name a few. On the other hand, the exponential scaling and the
pre-exponents in the asymptotics of first exit times under Brownian perturbations were characterized
in the Eyring–Kramers law (see [19, 32]). There have been various theoretical advancements since this
seminal work, such as the asymptotic characterization of the most likely exit path and the exit times
for Brownian particles under more sophisticated gradient fields (see [35]), results for discrete-time
processes (see, e.g., [31, 8]), and applications in queueing systems (see, e.g., [49]). For an alternative
perspective on metastability based on potential theory, which diverges from the Freidlin-Wentzell
theory, we refer the readers to [4].

In sharp contrast to the classical light-tailed analyses, stochastic dynamical systems exhibit fun-
damentally different large deviations and metastability behaviors under heavy-tailed perturbations.
As shown in [24, 25, 26, 28], when the stochastic processes are driven by heavy-tailed noises, the
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exit events are typically caused by large perturbations of a small number of components rather than
smooth tilting of the dynamics.

In this paper, we provide a general framework for heavy-tailed dynamical systems by develop-
ing a set of mathematical machinery that uncovers the interconnection between the large deviations,
local stability, and global dynamics of stochastic processes. Building upon this unified framework,
we characterize the sample-path large deviations and metastability of heavy-tailed stochastic differ-
ence and differential equations, thus offering the heavy-tailed counterparts of Freidlin–Wentzell and
Eyring–Kramers theorems. Specifically, the main contributions of this work can be summarized as
follows:

• For stochastic difference and differential equations with heavy-tailed increments, we establish a
version of sample-path large deviations that is uniform w.r.t. the initial values. This is accom-
plished by rigorously characterizing a uniform version of the M(S \ C)-convergence introduced
in [34]. In particular, this is the characterization of catastrophe principle, or principle of big
jumps, which was confirmed in the special cases of Lévy processes and random walks in [45]. By
extending the catastrophe principle to heavy-tailed stochastic difference/differential equations,
we reveal a discrete hierarchy governing the causes and probabilities of rare events in a wide
variety of heavy-tailed systems.

• We develop a framework for the first exit time analysis in heavy-tailed Markov processes. Central
to the development is the concept of asymptotic atom where the process recurrently enters and
(almost) regenerates. Leveraging the uniform version of sample-path large deviations over such
asymptotic atoms, we obtain the sharp asymptotics of the joint law of (scaled) exit times and exit
locations for heavy-tailed processes. Notably, we address an open question left in [26] and reveal
intricate phase transitions in the first exit times of heavy-tailed dynamics under truncation.

• Additionally, we develop a machinery that establishes sample-path convergence to Markov jump
processes building on the sharp first exit time and exit location analysis. As a direct application,
we study the global dynamics of heavy-tailed stochastic difference and differential equations
over a multi-well potential. Our findings systematically characterize an intriguing phenomena
that, under truncation, the heavy-tailed processes closely resemble Markov jump processes that
completely avoid narrow minima of the potential.

In this paper, we focus on the heavy-tailed phenomena captured by the notion of regular variation.
Specifically, let (Zi)i≥1 be a sequence of iid random variables such that EZ1 = 0 and P(|Z1| > x) is
regularly varying with index −α as x→ ∞ for some α > 1. That is, there exists some slowly varying
function ϕ such that P(|Z1| > x) = ϕ(x)x−α. For any η > 0 and x ∈ R, let

(
Xη

j (x)
)
j≥0 solves the

stochastic difference equation

Xη
0 (x) = x; Xη

j (x) = Xη
j−1(x) + ηa

(
Xη

j−1(x)
)
+ ησ

(
Xη

j−1(x)
)
Zj ∀j ≥ 1. (1.1)

Throughout the paper, we adopt the convention that the subscript denotes time and the superscript
η denotes the scaling parameter that tends to zero.

Another object of interest is the stochastic differential equation driven by heavy-tailed Lévy pro-
cesses. Let Lt be a one-dimensional Lévy process with Lévy measure ν. Suppose that EL1 = 0 and
ν
(
(−∞,−x) ∪ (x,∞)

)
is regularly varying with index −α as x → ∞ for some α > 1. For any η > 0

and x ∈ R, we define L̄η
t =∆ ηLt/η as the scaled version of Lt, and let Y η

t (x) be the solution of the
stochastic differential equation

Y η
0 (x) = x; dY η

t (x) = a
(
Y η
t−(x)

)
dt+ σ

(
Y η
t−(x)

)
dL̄η

t . (1.2)

At the crux of this study, there is a fundamental difference between light-tailed and heavy-tailed
stochastic dynamical systems. This difference lies in the mechanism through which system-wide rare
events arise. In light-tailed systems, the rare events exhibits the conspiracy principle where everything
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goes wrong a little bit at any moment. In contrast, the catastrophe principle governs the most-likely
cause of rare events in heavy-tailed systems, where a few catastrophes (i.e., extreme perturbations)
drive the system-wide rare events, while the system’s behavior is indistinguishable from the nominal
behavior most of the time.

As a preliminary version of the catastrophe principle, the well-known principle of a single big jump
characterizes the fact that extreme values in random walks and Lévy processes with regularly varying
increments are usually caused by a single large perturbation. This line of investigation was initiated
in [40, 41] and extended in [3, 14, 18, 21]. The principle of a single big jump has been derived at
the functional level for random walks in [23] and established in a wide variety of stochastic dynamics
with dependence structures; see, e.g., [7, 20, 22, 36, 37]. In contrast, the results for regularly varying
Lévy processes and random walks developed in [45] embody the more general catastrophe principle at
the sample-path level, addressing rare events that require multiple jumps to occur. See also [2] where
similar large deviation results were obtained under different scaling.

In comparison,a the study of sample-path large deviations of stochastic dynamical systems, such
as Xη

j (x) and Y
η
t (x) defined in (1.1) and (1.2) respectively, is still at an early stage. The only result

we are aware of is [53]. Their key idea is to transfer the sample-path large deviations developed in
[45] for Lévy processes onto stochastic differential equations through continuous mapping arguments.
However, this approach does not work in general unless the diffusion coefficient σ(·) is held constant.

Compared to previous works, this paper establishes the catastrophe principle at much greater
generality. In particular, we develop a uniform version of sample-path large deviations for heavy-tailed
stochastic dynamical systems, which significantly enhances the subsequent metastability analysis.
Take the stochastic difference equation Xη

j (x) in (1.1) for example. Let yt(x) be the solution to

the ordinary differential equation (ODE) dyt(x)/dt = a
(
yt(x)

)
with the initial condition y0(x) = x.

Let Xη(x) =∆
{
Xη
⌊t/η⌋(x) : t ∈ [0, 1]

}
be the time-scaled path of Xη

j (x), and note that Xη(x) is

a random element in D, the space of RCLL functions over [0, 1]. For a given compact set A ⊂ R
and non-negative integer k, let D(k)

A be the subset of D containing ODE paths y·(x) with exactly k
perturbations and initial value x ∈ A. See Section 2.2 the rigorous definition of the concepts involved.

Intuitively speaking, if B ∩ D(k−1)
A = ∅ for some B ∈ D, then it takes at least k perturbations for

any ODE path y·(x) with x ∈ A to enter set B. This index k plays a major role in our sample-path
large deviations results. Indeed, for any Borel measurable B ⊆ D that is bounded away from (i.e., has

a strictly positive distance from) D(k−1)
A under Skorokhod J1 metric, we obtain the following sharp

asymptotics that is uniform w.r.t. any initial value over A:

inf
x∈A

C(k)
(
B◦;x

)
≤ lim inf

η↓0

infx∈A P
(
Xη(x) ∈ B

)
(
η−1P(|Z1| > η−1)

)k
≤ lim sup

η↓0

supx∈A P
(
Xη(x) ∈ B

)
(
η−1P(|Z1| > η−1)

)k ≤ sup
x∈A

C(k)
(
B−;x

)
<∞.

(1.3)

Here, C(k)( · ;x) is a Borel measure supported on D(k)
A , and B◦, B− are the interior and closure

of B, respectively. See Theorem 2.2 for a formal statement of the results. As a manifestation of
catastrophe principle, our results show that the index k—the minimum number of jumps needed to
enter set B—dictates not only the most likely cause of events {Xη(x) ∈ B} (i.e., through at least
k large perturbations in Xη(x)) but also the polynomial rate of decay (η−1P(|Z1| > η−1))k of the
probability P(Xη(x) ∈ B). To establish uniform asymptotics of form (1.3), the key component is
a uniform version of the M(S \ C)-convergence introduced in [34]. In Section 2.1, we develop the
Portmanteau theorem for uniform convergence in M(S \ C), which is the backbone supporting our
proofs of the uniform sample-path large deviations of form (1.3).

Furthermore, the uniform asymptotics described in (1.3) extend to stochastic dynamical systems
beyond Xη

j (x). For instance, let φc(·) be the projection operator from R onto [−c, c]. Let b > 0 be

3



the truncation threshold, and define
(
X

η|b
j (x)

)
j≥0 through the recursion

X
η|b
0 (x) = x; X

η|b
j (x) = X

η|b
j−1(x) + φb

(
ηa
(
X

η|b
j−1(x)

)
+ ησ

(
X

η|b
j−1(x)

)
Zj

)
∀j ≥ 1. (1.4)

In other words, X
η|b
j (x) is the modulated version of Xη

j (x) where the distance traveled at each step is

truncated under b. Theorem 2.3 presents the uniform sample-path large deviations for X
η|b
j (x), which

admits the same form as result (1.3). Similar results can be developed for the stochastic differential
equation Y η

t (x) and its truncated counterpart, We collect the results in Section 2.2.3.
Next, we investigate the metastability of heavy-tailed stochastic dynamical systems with the drift

coefficient set as a(·) = −U ′(·) in (1.1) and (1.2) for some potential function U ∈ C1(R). Specifically,
let I = (sleft, sright) be some open interval containing the origin. Suppose that the entire domain I
falls within the attraction field of the origin in the following sense: for the ODE path dyt(x)/dt =
−U ′(yt(x)) with initial condition y0(x) = x, the limit limt→∞ yt(x) = 0 holds for all x ∈ I. As a
result, when initialized in I, the deterministic dynamical system will be attracted to and trapped
at the origin. In contrast, under the presence of random perturbations, the escape from I becomes
possible. The first exit time problem examines the law of the first time a stochastic dynamical system,
such as Xη

j (x) or Y
η
t (x), exits from I due to the random perturbations. Of particular interest are the

asymptotics of the first exit time as the noise magnitude decreases.
Originally motivated by the modeling of chemical reactions, the first exit time problem finds

applications in numerous contexts, including physics [10, 11], extreme climate events [42], mathe-
matical finance [48], and queueing systems [49]. The arguably best-known result in this field is the
Eyring–Kramers law, which characterizes the exit time of Brownian particles. For references, see,
e.g., [35]. Concerning Lévy-driven diffusions, [28, 24] derived the asymptotics of the first exit times
under regularly varying noises, and [25] extended the results to the multi-dimensional settings. Fur-
thermore, [26] investigated the case where the Lévy measure ν decays exponentially fast with speed
ν
(
(−∞,−u] ∪ [u,∞)

)
≈ exp(−uα). The results revealed a surprising phase transition in the asymp-

totics of first exit times based on the index α. The hierarchy of exit times of Lévy-driven Langevin
equations is summarized in [27].

Our approach to the first exit time problem relies on a general framework developed in Section 2.3.2.
This framework uplifts the sample-path large deviations to first exit time analysis for general Markov
chains. At the core of this framework lies the concept of asymptotic atoms, namely recurrent regions
at which the process (almost) regenerates upon each visit. Our uniform sample-path large deviations
then prove to be the right tool under this framework, empowering us to simultaneously characterize
the behavior of the stochastic processes under any initial values over the asymptotic atoms. As an
immediate application of the framework, we characterize the asymptotics of the joint law of first exit
time and exit locations for a variety of heavy-tailed processes. In essence, under truncation threshold

b > 0, it requires a minimum of J∗b = ⌈|sleft| ∨ sright/b⌉ jumps for the truncated dynamics X
η|b
j (x) to

exit from I = (sleft, sright) when initialized at the origin. Theorem 2.6 then implies that for the first

exit time τη|b(x) = min{j ≥ 0 : Xη
j (x) /∈ I} and the exit location X

η|b
τη|b(x)

(x), their joint law admits

the limit (for all x ∈ I)(
C∗b · η ·

(
λ(η)

)J∗b · τη|b(x), Xη|b
τη|b(x)

(x)
)
⇒ (E, Vb) as η ↓ 0. (1.5)

Here, E, Vb are two independent random variables, where E is Exponential with rate 1 and Vb is
generated under some probability measure Cb(·) supported on Ic. C∗b is a normalization constant,
and the scale function λ(η) = η−1 ·P(|Z1| > η−1) is roughly decaying at a polynomial rate ηα−1 for
small η with α > 1 being the heavy-tailed index for noises Zi. See Section 2.3.1 for definitions of the
concepts involved. Notably, Theorem 2.6 presents an even stronger result where the asymptotics in
(1.5) hold uniformly for initial values x over any compact set within I. Meanwhile, the first exit time
analysis for Xη

j (x) is obtained by sending the truncation threshold b to ∞. Similar first exit time
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analysis can be carried out for stochastic differential equations Y η
t (x) and the truncated counterparts,

and we summarize the results in Section 2.3.3.
Compared to existing works [28, 24] in the regularly varying cases, our results allow for non-

constant diffusion coefficient σ(·), analyze the impact of truncation, and eliminate the need for con-
ditions such as U ∈ C3(R) or non-degeneracy of U ′′(·) at the boundary of I. Additionally, our results
address an open question that was partially explored in [26] regarding the impact of truncation on
the first exit times. While [26] primarily focused on the truncation of Weibullian noises whose tail
probability decays at rate exp(−uα) for some α ∈ (0, 1), our work provides an important missing piece
to the puzzle and unveil the effect of truncation in the regularly varying cases. In particular, we char-
acterize an intricate phase transition in the asymptotics of τη|b(x) that was not observed in previous
works. To be specific, by virtue of result (1.5) we find that the first exit time τη|b(x) is roughly of
order 1/η1+J∗b ·(α−1) for small η. In other words, the order of the first exit time τη|b(x) does not vary
continuously with b; rather, it exhibits a discretized dependency on b through J∗b = ⌈|sleft| ∨ sright/b⌉,
i.e., the minimum number of jumps required for the exit. This phase transition phenomenon further
exemplifies the catastrophe principle under regularly varying noises, as the “cost” function J∗b dic-
tates not only the most likely cause (i.e., through J∗b large noises) but also the rarity of the exit (i.e.,
occurring roughly once every 1/η1+J∗b ·(α−1) steps).

In Section 2.4, we present a technical framework that connects the local stability and the global
dynamics of stochastic processes. Specifically, the framework allows us to uplift the first exit time
results to the sample-path convergence to jump processes. The power of this framework becomes
evident when combined with the first exit time analysis for heavy-tailed dynamical systems. Indeed,
consider a heavy-tailed stochastic process that traverses a multi-well potential U ; see Figure 2.1 for
an illustration of a potential U and the attraction fields therein. As a direct consequence of the

framework, Theorem 2.9 shows the existence, under suitable conditions, of a CTMC Y
∗|b
t only visiting

local minima in the widest attraction fields over U such that(
X

η|b
⌊t1/λ∗b (η)⌋

(x), · · · , Xη|b
⌊tk/λ∗b (η)⌋

(x)
)
⇒
(
Y
∗|b
t1 , · · · , Y ∗|btk

)
as η ↓ 0 (1.6)

for all k ≥ 1 and 0 < t1 < · · · < tk, under some time scaling of λ∗b(η). In particular, our result uncovers
an intriguing phenomenon that, under truncations, the heavy-tailed dynamics (asymptotically) avoid
any local minimum over U that is not wide enough. Regarding the concept of the widest attraction
fields and the associated local minima, we note that the width is measured by the number of jumps
(with sizes bounded by b) required to exit the attraction field, and we refer the readers to Section 2.4
for the rigorous definition.

Some of the results in Section 2.3 and Section 2.4 of this paper have been presented in a preliminary
form at a conference [52]. The main focus of [52] was the connection between the metastability analy-
sis of stochastic gradient descent (SGD) and its generalization performance in the context of machine
learning. Compared to the ad-hoc approach in [52], this paper provides a systematic framework to
study the global dynamics of significantly more general class of heavy-tailed dynamical systems. We
also note that (i) by sending the truncation threshold b to ∞ in (1.6), we recover the global dynamics
of Xη

j (x) in Theorem 2.10; (ii) metastability analysis can be conducted analogously for stochastic dif-
ferential equation Y η

t (x) and its corresponding truncated dynamics, which are summarized in Section
2.4.3.

The paper is structured as follows. Section 2.1 studies the uniform M(S \ C)-convergence, and
Sections 2.2–2.4 present the main results. Specifically, Section 2.2 develops the sample-path large
deviations, Section 2.3 carries out the first exit time analysis, and Section 2.4 presents the sample-
path convergence of the global dynamics. Proofs are collected in Sections 3–5.

2 Main Results

This section presents the main results of this paper and discusses the implications. All the proofs are
deferred to the later sections.
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2.1 Preliminaries

We start with setting frequently used notations and reviewing the concept ofM-convergence introduced
in [34]. Throughout the paper, we let [n] =∆ {1, 2, · · · , n} for any positive integer n. Let N =
{0, 1, 2, · · · } be the set of non-negative integers. Let (S,d) be a complete and separable metric space
with SS being the corresponding Borel σ-algebra. For any E ⊆ S, let E◦ and E− be the interior
and closure of E, respectively. For any r > 0, let Er =∆ {y ∈ S : d(E, y) ≤ r} be the r-enlargement
of a set E. Here for any set A ⊆ S and any x ∈ S, we define d(A, x) =∆ inf{d(y, x) : y ∈ A}.
Also, let Er =∆ ((Ec)r)c be the r-shrinkage of E. Note that for any E, the enlargement Er of E is
closed, and the shrinkage Er of E is open. We say that set A ⊆ S is bounded away from another set
B ⊆ S if infx∈A,y∈B d(x, y) > 0. For any Borel measure µ on (S,SS), let the support of µ (denoted
as supp(µ)) be the smallest closed set C such that µ(S \ C) = 0. For any function g : S → R, let
supp(g) =∆

(
{x ∈ S : g(x) ̸= 0}

)−
.

Given any Borel measurable subset C ⊆ S, let S \C be a subspace of S equipped with the relative
topology with σ-algebra SS\C =∆ {A ∈ SS : A ⊆ S \ C}. Let

M(S \ C) =∆
{
ν(·) is a Borel measure on S \ C : ν(S \ Cr) <∞ ∀r > 0

}
.

M(S\C) can be topologized by the sub-basis constructed using sets of form {ν ∈ M(S\C) : ν(f) ∈ G},
where G ⊆ [0,∞) is open, f ∈ C(S \ C), and C(S \ C) is the set of all real-valued, non-negative,
bounded and continuous functions with support bounded away from C (i.e., f(x) = 0 ∀x ∈ Cr for
some r > 0). Given a sequence µn ∈ M(S\C) and some µ ∈ M(S\C), we say that µn converges to µ in
M(S\C) as n→ ∞ if limn→∞ |µn(f)−µ(f)| = 0 for all f ∈ C(S\C). See [34] for alternative definitions
in the form of a Portmanteau Theorem. When the choice of S and C is clear from the context, we
simply refer to it as M-convergence. As demonstrated in [45], the sample path large deviations
for heavy-tailed stochastic processes can be formulated as M-convergence of scaled processes in the
Skorokhod space. In this paper, we introduce a stronger version of M-convergence, which facilitates
the metastability analysis in the later sections.

Definition 2.1 (Uniform M-convergence). Let Θ be a set of indices. Let µη
θ , µθ ∈ M(S \ C) for each

η > 0 and θ ∈ Θ. We say that µη
θ converges to µθ in M(S \ C) uniformly in θ on Θ as η → 0 if

lim
η↓0

sup
θ∈Θ

|µη
θ(f)− µθ(f)| = 0 ∀f ∈ C(S \ C).

If {µθ : θ ∈ Θ} is sequentially compact, a Portmanteau-type theorem holds. The proof of this
theorem is provided in Section 3.2.

Theorem 2.1 (Portmanteau theorem for uniform M(S \ C)-convergence). Let Θ be a set of indices.
Let µη

θ , µθ ∈ M(S\C) for each η > 0 and θ ∈ Θ. Suppose that for any sequence of measures (µθn)n≥1,
there exist a sub-sequence (µθnk

)k≥1 and some θ∗ ∈ Θ such that

lim
k→∞

µθnk
(f) = µθ∗(f) ∀f ∈ C(S \ C). (2.1)

Then the next two statements are equivalent.

(i) µη
θ converges to µθ in M(S \ C) uniformly in θ on Θ as η ↓ 0;

(ii) lim supη↓0 supθ∈Θ µ
η
θ(F )−µθ(F

ϵ) ≤ 0 and lim infη↓0 infθ∈Θ µ
η
θ(G)−µθ(Gϵ) ≥ 0 for all ϵ > 0, all

closed F ⊆ S that is bounded away from C, and all open G ⊆ S that is bounded away from C.

Furthermore, claims (i) and (ii) both imply the following.

(iii) lim supη↓0 supθ∈Θ µ
η
θ(F ) ≤ supθ∈Θ µθ(F ) and lim infη↓0 infθ∈Θ µ

η
θ(G) ≥ infθ∈Θ µθ(G) for all

closed F ⊆ S that is bounded away from C and all open G ⊆ S that is bounded away from
C.
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2.2 Sample-Path Large Deviations

2.2.1 The Untruncated Case

Let Z1, Z2, . . . be the iid copies of some random variable Z and F be the σ-algebra generated by
(Zj)j≥1. Let Fj be the σ-algebra generated by Z1, Z2, · · · , Zj and F0 =∆ {∅,Ω}. Let (Ω,F ,F,P)
be a filtered probability space with filtration F = (Fj)j≥0. The goal of this section is to study the
sample-path large deviations for

{
Xη

j (x) : j ≥ 0
}
, which is driven by the recursion

Xη
0 (x) = x; Xη

j (x) = Xη
j−1(x) + ηa

(
Xη

j−1(x)
)
+ ησ

(
Xη

j−1(x)
)
Zj , ∀j ≥ 1 (2.2)

as η ↓ 0. In particular, we are interested in the case where Zi’s are heavy-tailed. Heavy-tails are
typically captured with the notion of regular variation. For any measurable function ϕ : (0,∞) →
(0,∞), we say that ϕ is regularly varying as x → ∞ with index β (denoted as ϕ(x) ∈ RVβ(x) as
x → ∞) if limx→∞ ϕ(tx)/ϕ(x) = tβ for all t > 0. For details on the definition and properties of
regularly varying functions, see, for example, chapter 2 of [44]. Throughout this paper, we say that a
measurable function ϕ(η) is regularly varying as η ↓ 0 with index β if limη↓0 ϕ(tη)/ϕ(η) = tβ for any
t > 0. We denote this as ϕ(η) ∈ RVβ(η) as η ↓ 0. Let

H(+)(x) =∆ P(Z > x), H(−)(x) =∆ P(Z < −x), H(x) =∆ H(+)(x) +H(−)(x) = P(|Z| > x). (2.3)

We assume the following conditions regarding the law of the random variable Z:

Assumption 1 (Regularly Varying Noises). EZ = 0. Besides, there exist α > 1 and p(+), p(−) ∈ (0, 1)
with p(+) + p(−) = 1 such that

H(x) ∈ RV−α(x) as x→ ∞; lim
x→∞

H(+)(x)

H(x)
= p(+); lim

x→∞

H(−)(x)

H(x)
= p(−) = 1− p(+).

Next, we introduce the following assumptions on the drift coefficient a : R → R and diffusion
coefficient σ : R → R. Note that the lower bounds for C and D in Assumption 2 and 3 are obviously
not necessary. However we assume that C ≥ 1 and D ≥ 1 w.l.o.g. for the notation simplicity.

Assumption 2 (Lipschitz Continuity). There exists some D ∈ [1,∞) such that

|σ(x)− σ(y)| ∨ |a(x)− a(y)| ≤ D|x− y| ∀x, y ∈ R.

Assumption 3 (Nondegeneracy). σ(x) > 0 ∀x ∈ R.

Assumption 4 (Boundedness). There exists some C ∈ [1,∞) such that

|a(x)| ∨ |σ(x)| ≤ C ∀x ∈ R.

To present the main results, we set a few notations. Let (D[0, T ],dJ1,[0,T ]) be a metric space, where
D[0, T ] is the space of all RCLL functions on [0, T ] and dJ1,[0,T ] is the Skorodkhod J1 metric

dJ1,[0,T ](x, y) =
∆ inf

λ∈ΛT

sup
s∈[0,T ]

|λ(s)− s| ∨ |x(λ(s))− y(s)|. (2.4)

Here, ΛT is the set of all homeomorphism on [0, T ]. Given any A ⊆ R, let Ak↑ =∆
{
(t1, · · · , tk) ∈

Ak : t1 < t2 < · · · < tk
}
be the set of sequences of increasing real numbers with length k on A. For

any k ∈ N and T > 0, define mapping h
(k)
[0,T ] : R × Rk × (0, T ]k↑ → D[0, T ] as follows. Given any

x0 ∈ R, w = (w1, · · · , wk) ∈ Rk, and t = (t1, · · · , tk) ∈ (0, T ]k↑, let ξ = h
(k)
[0,T ](x0,w, t) ∈ D[0, T ] be

the solution to

ξ0 = x0 (2.5)
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dξs
ds

= a(ξs) ∀s ∈ [0, T ], s ̸= t1, · · · , tk (2.6)

ξs = ξs− + σ(ξs−) · wj if s = tj for some j ∈ [k]. (2.7)

Here for any ξ ∈ D[0, T ] and t ∈ (0, T ], we use ξt− = lims↑t ξs to denote the left limit of ξ at t, and

we set ξ0− = ξ0. In essence, the mapping h
(k)
[0,T ](x0,w, t) produces the ODE path perturbed by jumps

w1, · · · , wk (modulated by the drift coefficient σ(·)) at times t1, · · · , tk. We adopt the convention

that ξ = h
(0)
[0,T ](x0) is the solution to the ODE dξs/ds = a(ξs) ∀s ∈ [0, T ] under the initial condition

ξ0 = x0. For any α > 1, let να be the (Borel) measure on R with

να[x,∞) = p(+)x−α, να(−∞,−x] = p(−)x−α, ∀x > 0. (2.8)

where p(+), p(−) are the constants in Assumption 1. For any t > 0, let Lt be the Lebesgue measure
restricted on (0, t) and Lk↑

t be the Lebesgue measure restricted on (0, t)k↑. Given any T > 0, x ∈ R,
and k ≥ 0, let

C
(k)
[0,T ]( · ;x) =

∆

∫
I

{
h
(k)
[0,T ]

(
x,w, t

)
∈ ·
}
νkα(dw)× Lk↑

T (dt) (2.9)

where νkα(·) is the k-fold product measure of να. For
{
Xη

j (x) : j ≥ 0
}
, we define the time-scaled

version of the sample path as

Xη
[0,T ](x) =

∆
{
Xη
⌊t/η⌋(x) : t ∈ [0, T ]

}
, ∀T > 0 (2.10)

with ⌊x⌋ =∆ max{n ∈ Z : n ≤ x} and ⌈x⌉ =∆ min{n ∈ Z : n ≥ x}. Note that Xη
[0,T ](x) is a

D[0, T ]-valued random element. For any k ∈ N and A ⊆ R, let

D(k)
A [0, T ] =∆ h

(k)
[0,T ]

(
A× Rk × (0, T ]k↑

)
, ∀T > 0 (2.11)

as the set that contains all ODE paths with k perturbations by time T . We adopt the convention

that D(−1)
A [0, T ] =∆ ∅. Also, for any η > 0, let

λ(η) =∆ η−1H(η−1).

From Assumption 1, one can see that λ(η) ∈ RVα−1(η) as η ↓ 0. In case T = 1, we suppress the time

horizon [0, 1] and write D, dJ1
, h(k), C(k), D(k)

A , and Xη(x) to denote D[0, 1], dJ1;[0,1], h
(k)
[0,1], C

(k)
[0,1],

D(k)
A [0, 1], and Xη

[0,1](x), respectively.

Now we are ready to state the main results. First, Theorem 2.2 establishes the uniform M-
convergence of (the law of) Xη

[0,T ](x) to C(k)( · ;x) and a uniform version of the sample-path large

deviation for Xη
[0,T ](x). The proof is given in Section 3.3.

Theorem 2.2. Under Assumptions 1, 2, 3, and 4, it holds for any k ∈ N, T > 0, and any compact

A ⊆ R that λ−k(η)P
(
Xη

[0,T ](x) ∈ ·
)
→ C

(k)
[0,T ]( · ;x) in M

(
D[0, T ] \ D(k−1)

A [0, T ]
)
uniformly in x on

A as η → 0. Furthermore, for any B ∈ SD[0,T ] that is bounded away from D(k−1)
A [0, T ],

inf
x∈A

C
(k)
[0,T ]

(
B◦;x

)
≤ lim inf

η↓0

infx∈A P
(
Xη

[0,T ](x) ∈ B
)

λk(η)

≤ lim sup
η↓0

supx∈A P
(
Xη

[0,T ](x) ∈ B
)

λk(η)
≤ sup

x∈A
C

(k)
[0,T ]

(
B−;x

)
<∞.

(2.12)
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2.2.2 The Truncated Case

Interestingly enough, the sample-path large deviations for Xη
j (x) are obtained by first studying its

truncated counterpart of Xη
j (x). Specifically, for any x ∈ R, b > 0, and η > 0, on the filtered

probability space (Ω,F ,F,P), we define

X
η|b
0 (x) = x, X

η|b
j (x) = X

η|b
j−1(x) + φb

(
ηa
(
X

η|b
j−1(x)

)
+ ησ

(
X

η|b
j−1(x)

)
Zj

)
∀j ≥ 1, (2.13)

where the truncation operator φ·(·) is defined as

φc(w) =
∆ (w ∧ c) ∨ (−c) ∀w ∈ R, c > 0. (2.14)

Here u ∧ v = min{u, v} and u ∨ v = max{u, v}. For any T, η, b > 0, and x ∈ R, let X
η|b
[0,T ](x) =∆{

X
η|b
⌊t/η⌋(x) : t ∈ [0, T ]

}
be the time-scaled version of X

η|b
j (x) embedded in the continuous-time space,

and note that X
η|b
[0,T ](x) is a random element taking values in D[0, T ].

For any b, T ∈ (0,∞) and k ∈ N, define the mapping h
(k)|b
[0,T ] : R×Rk× (0, T ]k↑ → D[0, T ] as follows.

Given any x0 ∈ R, w = (w1, · · · , wk) ∈ Rk, and t = (t1, · · · , tk) ∈ (0, T ]k↑, let ξ = h
(k)|b
[0,T ](x0,w, t) be

the solution to

ξ0 = x0; (2.15)

dξs
ds

= a(ξs) ∀s ∈ [0, T ], s ̸= t1, t2, · · · , tk; (2.16)

ξs = ξs− + φb

(
σ(ξs−) · wj

)
if s = tj for some j ∈ [k] (2.17)

The mapping h
(k)|b
[0,T ] can be interpreted as a truncated analog of the mapping h

(k)
[0,T ] defined in (2.5)–

(2.7). Here, h
(k)|b
[0,T ](x0,w, t) also return an ODE path with k jumps, but the size of each jump is

truncated under b. For any b, T > 0, A ⊆ R and k = 0, 1, 2, · · · , let

D(k)|b
A [0, T ] =∆ h

(k)|b
[0,T ]

(
A× Rk × (0, T ]k↑

)
(2.18)

be the set of all ODE paths with k jumps, where the size of each jump is modulated by the drift

coefficient σ(·) and then truncated under threshold b. We adopt the convention that D(−1)|b
A [0, T ] =∆ ∅.

Given any x ∈ R, k ≥ 0, b > 0, and T > 0, let

C
(k)|b
[0,T ]( · ;x) =

∆

∫
I

{
h
(k)|b
[0,T ]

(
x,w, t

)
∈ ·
}
νkα(dw)× Lk↑

T (dt). (2.19)

Again, in case that T = 1, we set Xη|b(x) =∆ X
η|b
[0,1](x), h

(k)|b =∆ h
(k)|b
[0,1] , D(k)|b

A =∆ D(k)|b
A [0, 1], and

C(k)|b =∆ C
(k)|b
[0,1] . Now, we are ready to state the main result. See Section 3.3 for the proof.

Theorem 2.3. Under Assumptions 1, 2, and 3, it holds for any k ∈ N, any b, T > 0, and any compact

A ⊆ R that λ−k(η)P
(
X

η|b
[0,T ](x) ∈ ·

)
→ C

(k)|b
[0,T ]( · ;x) in M

(
D[0, T ] \D(k−1)|b

A [0, T ]
)
uniformly in x on

A as η → 0. Furthermore, for any B ∈ SD[0,T ] that is bounded away from D(k−1)|b
A [0, T ],

inf
x∈A

C
(k)|b
[0,T ]

(
B◦;x

)
≤ lim inf

η↓0

infx∈A P
(
X

η|b
[0,T ](x) ∈ B

)
λk(η)

≤ lim sup
η↓0

supx∈A P
(
X

η|b
[0,T ](x) ∈ B

)
λk(η)

≤ sup
x∈A

C
(k)|b
[0,T ]

(
B−;x

)
<∞.

(2.20)
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Here, we provide a high-level description of the proof strategy for Theorems 2.2 and 2.3. Specifi-
cally, the proof of Theorem 2.3 consists of two steps.

• First, we establish the asymptotic equivalence between X
η|b
[0,T ](x) and an ODE perturbed by

the k “largest” noises in (Zj)j≤T/η, in the sense that they admit the same limit in terms of
M-convergence as η ↓ 0. The key technical tools are the concentration inequalities we developed

in Lemma 3.4 that tightly control the fluctuations in X
η|b
j (x) between any two “large” noises.

• Then it suffices to study the M-convergence of this perturbed ODE. The foundation of this
analysis is the asymptotic law of the top-k largest noises in (Zj)j≤T/η studied in Lemma 3.5.

See Section 3.3 for the detailed proof and the rigorous definitions of the concepts involved. Regarding

Theorem 2.2, note that for b sufficiently large it is highly likely that Xη
j (x) coincides with X

η|b
j (x)

for the entire period of j ≤ T/η (that is, the truncation operator φb did not come into effect for a
long period due to the truncation threshold b > 0 being too large). By sending b → ∞ and carefully
analyzing the limits involved, we recover the results for Xη

j (x) and prove Theorem 2.2.

2.2.3 Results for Stochastic Differential Equations

Lastly, we collect the results for the sample-path large deviations of stochastic differential equations
driven by heavy-tailed Lévy processes. Recall that any one-dimensional Lévy process L = {Lt : t ≥ 0}
can be characterized by its generating triplet (cL, σL, ν) where cL ∈ R is the drift parameter, σL ≥ 0
is the magnitude of the Brownian motion term in Lt, and ν is the Lévy measure of the Lévy process
Lt characterizing the intensity of jumps in Lt. More precisely, we have the following representation

Lt =
d cLt+ σLBt +

∫
|x|≤1

x
[
N([0, t]× dx)− tν(dx)

]
+

∫
|x|>1

xN([0, t]× dx) (2.21)

where B is a standard Brownian motion, the measure ν satisfies
∫
(|x|2 ∧ 1)ν(dx) < ∞, and N is a

Poisson random measure independent of B with intensity measure L∞ × ν. See chapter 4 of [47] for
details. We impose the following assumption that characterizes the heavy-tailedness in the increments
of Lt.

Assumption 5. EL1 = 0. Besides, there exist α > 1 and p(−), p(+) ∈ (0, 1) such that for H
(+)
L (x) =∆

ν(x,∞), H
(−)
L (x) =∆ ν(−∞,−x) and HL(x) =

∆ ν
(
(∞,−x) ∪ (x,∞)

)
,

• HL(x) ∈ RV−α(x) as x→ ∞;

• limx→∞H
(+)
L (x)/HL(x) = p(+), limx→∞H

(−)
L (x)/HL(x) = p(−).

Consider a filtered probability space
(
Ω,F ,F = (Ft)t≥0,P

)
satisfying usual hypotheses stated

in Chapter I, [43] and supporting the Lévy process L, where F0 = {∅,Ω} and Ft is the σ-algebra
generated by {Ls : s ∈ [0, t]}. For η ∈ (0, 1], define the scaled process

L̄η =∆
{
L̄η
t = ηLt/η : t ∈ [0, 1]

}
,

and let Y η
t be the solution to SDE

Y η
0 (x) = x, dY η

t (x) = a
(
Y η
t−(x)

)
dt+ σ

(
Y η
t−(x)

)
dL̄η

t . (2.22)

Recall the definitions of the mapping h
(k)
[0,T ] in (2.5)-(2.7) as well as the measure C

(k)
[0,T ]( · ;x) in (2.9).

Also, recall the notion of uniform M-convergence introduced in Definition 2.1. Define Y η
[0,T ](x) =

{Y η
t (x) : t ∈ [0, T ]} as a random element in D[0, T ]. In case that T = 1, we suppress [0, 1] and write

Y η(x). The next result characterizes the sample-path large deviations for Y η
[0,T ](x) by establishing
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M-convergence that is uniform in the initial condition x. The proofs are almost identical to those of
Xη

j (x) and hence omitted to avoid repetition. Let

λL(η) =
∆ η−1HL(η

−1).

Theorem 2.4. Under Assumptions 2, 3, 4, and 5, it holds for any T > 0, k ∈ N, and any compact

set A ⊆ R that λ−kL (η)P
(
Y η
[0,T ](x) ∈ ·

)
→ C

(k)
[0,T ]( · ;x) in M

(
D[0, T ] \ D(k−1)

A [0, T ]
)
uniformly in x

on A as η → 0. Furthermore, for any B ∈ SD[0,T ] that is bounded away from D(k−1)
A [0, T ],

inf
x∈A

C
(k)
[0,T ]

(
B◦;x

)
≤ lim inf

η↓0

infx∈A P
(
Y η
[0,T ](x) ∈ B

)
λkL(η)

≤ lim sup
η↓0

supx∈A P
(
Y η
[0,T ](x) ∈ B

)
λkL(η)

≤ sup
x∈A

C
(k)
[0,T ]

(
B−;x

)
<∞.

Analogous to the truncated dynamics X
η|b
j (x), we introduce processes Y

η|b
t (x) that can be seen

as a modulated version of Y η
t (x) where all jumps are truncated under the threshold value b. More

generally, we consider the construction of a sequence of stochastic processes
(
Y

η|b;(k)
t (x; f, g)

)
k≥0 given

any f : R → R and g : R → R that are Lipschitz continuous. First, for any x ∈ R and t ≥ 0, let

dY
η|b;(0)
t (x; f, g) =∆ f

(
Y

η|b;(0)
t− (x; f, g)

)
dt+ g

(
Y

η|b;(0)
t− (x; f, g)

)
dL̄η

t (2.23)

and set Y η|b;(0)(x; f, g) =∆
{
Y

η|b;(0)
t (x; f, g) : t ∈ [0, 1]

}
) for any b > 0. As an immediate result of this

construction, we have Y
η|b;(0)
t (x; a, σ) = Y η

t (x) and Y η|b;(0)(x; a, σ) = Y η(x). Next, building upon

the process Y
η|b;(0)
t (x; f, g), we define

τ
η|b;(1)
Y (x; f, g) =∆ min

{
t > 0 :

∣∣∣g(Y η|b;(0)
t− (x; f, g)

)
·∆L̄η

t

∣∣∣ = ∣∣∣∆Y η|b;(0)
t (x; f, g)

∣∣∣ > b
}
, (2.24)

W
η|b;(1)
Y (x; f, g) =∆ ∆Y

η|b;(0)
τ
η|b;(1)
Y (x;f,g)

(x; f, g) (2.25)

as the arrival time and size of the first jump in Y
η|b;(0)
t (x; f, g) that is larger than b. Furthermore, by

proceeding recursively, we define (for any k ≥ 1)

Y
η|b;(k)
τ
η|b;(k)
Y (x;f,g)

(x; f, g) =∆ Y
η|b;(k)
τ
η|b;(k)
Y (x;f,g)−

(x; f, g) + φb

(
W

η|b;(k)
Y (x; f, g)

)
, (2.26)

dY
η|b;(k)
t (x; f, g) =∆ f

(
Y

η|b;(k)
t− (x; f, g)

)
dt+ g

(
Y

η|b;(k)
t− (x; f, g)

)
dL̄η

t ∀t > τ
η|b;(k)
Y (x; f, g), (2.27)

τ
η|b;(k+1)
Y (x; f, g) =∆ min

{
t > τ

η|b;(k)
Y (x; f, g) :

∣∣∣g(Y η|b;(k)
t− (x; f, g)

)
·∆L̄η

t

∣∣∣ > b
}
, (2.28)

W
η|b;(k+1)
Y (x; f, g) =∆ ∆Y

η|b;(k)
τ
η|b;(k+1)
Y (x;f,g)

(x; f, g) (2.29)

Lastly, for any t ≥ 0, b > 0 and x ∈ R, we define (under convention τ
η|b
Y ;f,g(0;x) = 0)

Y
η|b
t (x) =∆

∑
k≥0

Y
η|b;(k)
t (x; a, σ) · I

{
t ∈

[
τ
η|b;(k)
Y (x; a, σ), τ

η|b;(k+1)
Y (x; a, σ)

)}
(2.30)

and let Y
η|b
[0,T ](x) =

∆
{
Y

η|b
t (x) : t ∈ [0, T ]

}
. By definition, for any t ≥ 0, b > 0, k ≥ 0 and x ∈ R,

Y
η|b
t (x) = Y

η|b;(k)
t (x; a, σ) ⇐⇒ t ∈

[
τ
η|b;(k)
Y (x; a, σ), τ

η|b;(k+1)
Y (x; a, σ)

)
. (2.31)

Again, in case that T = 1 we suppress [0, 1] and write Y η|b(x). The next result presents the sample-

path large deviations for Y
η|b
t (x). Once again, the proof is omitted as it closely resembles that of

X
η|b
j (x).
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Theorem 2.5. Under Assumptions 2, 3, and 5, it holds for any b, T > 0, k ∈ N, and any compact

set A ⊆ R that λ−kL (η)P
(
Y

η|b
[0,T ](x) ∈ ·

)
→ C

(k)|b
[0,T ]( · ;x) in M

(
D[0, T ] \ D(k−1)|b

A [0, T ]
)
uniformly in x

on A as η → 0. Furthermore, for any B ∈ SD[0,T ] that is bounded away from D(k−1)|b
A [0, T ],

inf
x∈A

C
(k)|b
[0,T ]

(
B◦;x

)
≤ lim inf

η↓0

infx∈A P
(
Y

η|b
[0,T ](x) ∈ B

)
λkL(η)

≤ lim sup
η↓0

supx∈A P
(
Y

η|b
[0,T ](x) ∈ B

)
λkL(η)

≤ sup
x∈A

C
(k)|b
[0,T ]

(
B−;x

)
<∞.

2.3 First Exit Time Analysis

2.3.1 Results for Stochastic Difference Equations

In this section, we address the first exit time analysis of Xη
j (x) and X

η|b
j (x), defined in (2.2) and (2.13),

from an attraction field of some potential with a unique local minimum at the origin. Specifically,
throughout Section 2.3.1, we fix an open interval I =∆ (sleft, sright) where sleft < 0 < sright, and impose
the following assumption on a(·).

Assumption 6. a(0) = 0. Besides, it holds for all x ∈ I \ {0} that a(x)x < 0.

Consider the case where a(·) = −U ′(·) for some potential U ∈ C1(R). Assumption 6 then implies
that U has a unique local minimum at x = 0 over the domain I. Moreover, since U ′(x)x = −a(x)x > 0
for all x ∈ I \ {0}, we know that the domain I is a subset of the attraction field of the origin in the
following sense: the limit limt→∞ yt(x) = 0 holds for all x ∈ I where yt(x) is the solution of ODE

y0(x) = x,
dyt(x)

dt
= a

(
yt(x)

)
∀t ≥ 0. (2.32)

It is worth noticing that Assumption 6 is more flexible than standard assumptions in related works.
For instance, [28, 24] required the second-order derivative U ′′(·) to be non-degenerate at the origin as
well as the boundary points of I, with an extra condition of U ∈ C3 over a wide enough compact set,
and held the drift coefficient σ(·) as constant. In contrast, we conduct a first exit time analysis with
significantly relaxed assumptions.

Define

τη(x) =∆ min
{
j ≥ 0 : Xη

j (x) /∈ I
}
, τη|b(x) =∆ min

{
j ≥ 0 : X

η|b
j (x) /∈ I

}
,

as the first exit time of Xη
j (x) and X

η|b
j (x) from I, respectively. To facilitate the presentation of the

main results, we introduce a few concepts. Define qg(k)|b : R × Rk × (0,∞)k↑ → R as the location of
the perturbed ODE at the last jump time:

qg(k)|b(x,w, t) =∆ h
(k)|b
[0,tk+1](x,w, t)(tk) (2.33)

where t = (t1, . . . , tk) ∈ (0,∞)k↑, w = (w1, . . . , wk) ∈ Rk, and h
(k)|b
[0,T ] : R × Rk × (0, T ]k↑ → D[0, T ] is

as defined in (2.15)-(2.17). For k = 0, we adopt the convention that qg(0)|b(x) = x. This allows us to
define Borel measures (for each k ≥ 1 and b > 0)

qC(k)|b( · ;x) =∆
∫

I

{
qg(k−1)|b

(
x+ φb

(
σ(x) · w0

)
,w, t

)
∈ ·

}
να(dw0)× νk−1α (dw)× Lk−1↑

∞ (dt) (2.34)

with Lk↑
∞ being the Lebesgue measure restricted on {(t1, · · · , tk) ∈ (0,∞)k : 0 < t1 < t2 < · · · < tk}.

Also, define

qC( · ;x) =∆
∫

I

{
x+ σ(x) · w ∈ ·

}
να(dw). (2.35)
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In case that x = 0, we write qC(k)|b(·) =∆ qC(k)|b( · ; 0). and qC(·) =∆ qC( · ; 0). Also, let

r =∆ |sleft| ∧ sright, J ∗b =∆ ⌈r/b⌉. (2.36)

Here, r is the distance between the origin and Ic, and J ∗b is the number of jumps required to exit
from I if the size of each jump is bounded by b.

Recall that H(·) = P(|Z1| > ·) and λ(η) = η−1H(η−1). For any k ≥ 1 we write λk(η) =
(
λ(η)

)k
.

As the main result of this section, Theorem 2.6 provides sharp asymptotics for the joint law of

first exit times and exit locations in X
η|b
j (x) and Xη

j (x). The results are obtained through the general
framework developed in Section 2.3.2. Specifically, the uniform sample-path large deviations developed
in Section 2.2 prove to be the right tool in the first exit time analysis, allowing us to verify Condition
1 uniformly for all initial values over the asymptotic atoms A(ϵ) = (−ϵ, ϵ). See Section 2.3.2 for the
general framework and Section 4.3 for the detailed proof of Theorem 2.6.

Theorem 2.6. Let Assumptions 1, 2, 3, and 6 hold.

(a) Let b > 0 be such that sleft/b /∈ Z and sright/b /∈ Z. For any ϵ > 0, t ≥ 0, and measurable set
B ⊆ Ic,

lim sup
η↓0

sup
x∈Iϵ

P

(
C∗b η · λJ

∗
b (η)τη|b(x) > t; X

η|b
τη|b(x)

(x) ∈ B

)
≤

qC(J ∗b )|b(B−)

C∗b
· exp(−t),

lim inf
η↓0

inf
x∈Iϵ

P

(
C∗b η · λJ

∗
b (η)τη|b(x) > t; X

η|b
τη|b(x)

(x) ∈ B

)
≥

qC(J ∗b )|b(B◦)

C∗b
· exp(−t)

where C∗b =∆ qC(J ∗b )|b(Ic).

(b) For any t ≥ 0 and measurable set B ⊆ Ic,

lim sup
η↓0

sup
x∈Iϵ

P

(
C∗η · λ(η)τη(x) > t; Xη

τη(x)(x) ∈ B

)
≤

qC(B−)

C∗
· exp(−t),

lim inf
η↓0

inf
x∈Iϵ

P

(
C∗η · λ(η)τη(x) > t; Xη

τη(x)(x) ∈ B

)
≥

qC(B◦)

C∗
· exp(−t)

where C∗ =∆ qC(Ic).

2.3.2 General Framework

This section proposes a general framework that allows the analysis of the metastability and global
dynamics of stochastic systems based on the sample path large deviations. Consider a general metric
space S and a family of S-valued Markov chains

{
{V η

j (x) : j ≥ 0} : η > 0
}

parameterized by η,

where x ∈ S denotes the initial state and j denotes the time index. We use the notation V η
[0,T ](x) =

∆

{V η
⌊t/η⌋(x) : t ∈ [0, T ]} to denote the scaled version of {V η

j (x) : j ≥ 0} as a D[0, T ]-valued random

variable. For a given set E, let τηE(x) =
∆ min{j ≥ 0 : V η

j (x) ∈ E} denote {V η
j (s) : j ≥ 0}’s first hitting

time of E. We consider an asymptotic domain of attraction I ⊆ S, within which V η
[0,T ](x) typically

(i.e., as η ↓ 0) stays throughout any given time horizon [0, T ] as far as x ∈ I. We will make these
informal descriptions precise in Condition 1. In many cases, however, V η

· (x) is bound to escape I
eventually due to the stochasticity if we do not constrain the time horizon. The goal of this section is
to establish an asymptotic limit of the joint distribution of the exit time τηIc(x) and the exit location
V η
τη
Ic

(x)
(x). Throughout this section, we will denote V η

τη
I(ϵ)c

(x)
(x) and V η

τη
Ic

(x)
(x) with V η

τϵ(x) and V
η
τ (x),

respectively, for notation simplicity.
We introduce the notion of asymptotic atom to facilitate the analyses. Let {I(ϵ) ⊆ I : ϵ > 0} and

{A(ϵ) ⊆ S : ϵ > 0} be collections of subsets of I such that
⋃

ϵ>0 I(ϵ) = I and
⋂

ϵ>0A(ϵ) ̸= ∅. Let C(·)
is a probability measure on S \ I satisfying C(∂I) = 0.
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Definition 2.2. We say that
{
{V η

j (x) : j ≥ 0} : η > 0
}

possesses an asymptotic atom {A(ϵ) ⊆
S : ϵ > 0} associated with the domain I, location measure C(·), scale γ : (0,∞) → (0,∞), and
covering {I(ϵ) ⊆ I : ϵ > 0} if the following holds: For each measurable set B ⊆ S, there exist
δB : (0,∞)× (0,∞) → (0,∞), ϵB > 0, and TB > 0 such that

C(B◦)− δB(ϵ, T ) ≤ lim inf
η↓0

infx∈A(ϵ) P
(
τηI(ϵ)c(x) ≤ T/η; V η

τϵ(x) ∈ B
)

γ(η)T/η
(2.37)

≤ lim sup
η↓0

supx∈A(ϵ) P
(
τηI(ϵ)c(x) ≤ T/η; V η

τϵ(x) ∈ B
)

γ(η)T/η
≤ C(B−) + δB(ϵ, T ) (2.38)

lim sup
η↓0

supx∈I(ϵ) P
(
τη(I(ϵ)\A(ϵ))c(x) > T/η

)
γ(η)T/η

= 0 (2.39)

lim inf
η↓0

inf
x∈I(ϵ)

P
(
τηA(ϵ)(x) ≤ T/η

)
= 1 (2.40)

for any ϵ ≤ ϵB and T ≥ TB, where γ(η)/η → 0 as η ↓ 0 and δB’s are such that

lim
ϵ→0

lim
T→∞

δB(ϵ, T ) = 0.

Condition 1. A family
{
{V η

j (x) : j ≥ 0} : η > 0
}
of Markov chains possesses an asymptotic atom

{A(ϵ) ⊆ S : ϵ > 0} associated with the domain I, location measure C(·), scale γ : (0,∞) → (0,∞),
and covering {I(ϵ) ⊆ I : ϵ > 0}.

The following theorem is the key result of the general framework. See Section 4.1 for the proof of
the theorem.

Theorem 2.7. If Condition 1 holds, then the first exit time τηIc(x) scales as 1/γ(η), and the distri-
bution of the location V η

τ (x) at the first exit time converges to C(·). Moreover, the convergence is
uniform over I(ϵ) for any ϵ > 0. That is, for each ϵ > 0, measurable B ⊆ Ic, and t ≥ 0,

C(B◦) · e−t ≤ lim inf
η↓0

inf
x∈I(ϵ)

P
(
γ(η)τηIc(x) > t, V η

τ (x) ∈ B
)

≤ lim sup
η↓0

sup
x∈I(ϵ)

P
(
γ(η)τηIc(x) > t, V η

τ (x) ∈ B
)
≤ C(B−) · e−t.

2.3.3 Results for Stochastic Differential Equations

Define stopping times

τηY (x) =
∆ inf

{
t ≥ 0 : Y η

t (x) /∈ I
}
, τ

η|b
Y (x) =∆ inf

{
t ≥ 0 : Y

η|b
t (x) /∈ I

}
.

as the first exit times of Y η
t (x) or Y

η|b
t (x) from I = (sleft, sright). Analogous to Theorem 2.6, the

following result characterizes the asymptotic law of the first exit times τηY (x) and τ
η|b
Y (x) using the

measures qC(k)|b(·) defined in (2.34) and qC(·) defined in (2.35). We omit the proof due to its similarity
to that of Theorem 2.6.

Theorem 2.8. Let Assumptions 2, 3, 5, and 6 hold.

(a) Let b > 0 be such that sleft/b /∈ Z and sright/b /∈ Z. For any ϵ > 0, t > 0, and measurable set
B ⊆ Ic,

lim sup
η↓0

sup
x∈Iϵ

P

(
C∗b λ

J ∗b
L (η)τ

η|b
Y (x) > t; Y

η|b
τ
η|b
Y (x)

(x) ∈ B

)
≤

qC(J ∗b )|b(B−)

C∗b
· exp(−t),
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lim inf
η↓0

inf
x∈Iϵ

P

(
C∗b λ

J ∗b
L (η)τ

η|b
Y (x) > t; Y

η|b
τ
η|b
Y (x)

(x) ∈ B

)
≥

qC(J ∗b )|b(B◦)

C∗b
· exp(−t)

where C∗b =∆ qC(J ∗b )|b(Ic).

(b) For any t > 0 and measurable set B ⊆ Ic,

lim sup
η↓0

sup
x∈Iϵ

P

(
C∗λL(η)τ

η
Y (x) > t; Y η

τη
Y (x)

(x) ∈ B

)
≤

qC(B−)

C∗
· exp(−t),

lim inf
η↓0

inf
x∈Iϵ

P

(
C∗λL(η)τ

η
Y (x) > t; Y η

τη
Y (x)

(x) ∈ B

)
≥

qC(B◦)

C∗
· exp(−t)

where C∗ =∆ qC(Ic).

2.4 Sample-Path Convergence of Global Dynamics

2.4.1 Problem Setting and Main Results

Throughout Section 2.4, we set a(·) = −U ′(·) for some potential function U : R → R satisfying the
following assumption.

Assumption 7. Let U : R → R be a function in C1(R). Besides, there exist a positive integer nmin ≥ 2
and an ordered sequence of real numbers −∞ < m1 < s1 < m2 < s2 < · · · < snmin−1 < mnmin < ∞
such that (under the convention s0 = −∞ and snmin = ∞)

(i) U ′(x) = 0 iff x ∈ {m1, s1, · · · , snmin−1,mnmin};

(ii) U ′(x) < 0 for all x ∈
⋃

j∈[nmin]
(sj−1,mj);

(iii) U ′(x) > 0 for all x ∈
⋃

j∈[nmin]
(mj , sj).

See Figure 2.1 (Left) for an illustration of such function U with nmin = 3. According to Assump-
tion 7, the potential function U has finitely many local minima mi. Meanwhile, the local maxima
s1, · · · , snmin−1 partition R into different regions Ii =

∆ (si−1, si). Such regions are viewed as the at-
traction fields of the local minima mi’s: as the name suggests, any ODE dyt(x)/dt = −U ′(yt(x)) with
initial condition y0(x) = x ∈ Ii admits the limit limt→∞ yt(x) = mi. Building upon the first exit

time analysis in Section 2.3, we characterize the global dynamics of Xη
j (x) and X

η|b
j (x). Note that we

impose the condition nmin ≥ 2 simply to avoid the trivial case of nmin = 1: in this case, no transition
between different attraction fields will be observed due to the simple fact that there only exists one
attraction field over potential U .

In order to present the main results, we introduce some concepts to help characterize the geometry
of U . First, for each attraction field Ii, let

ri =
∆ |mi − si−1| ∧ |si −mi| (2.41)

be the effective radius of Ii, i.e., the minimum distance required to exit from Ii when starting from
mi. Next, for any i ∈ [nmin] and j ∈ [nmin] with j ̸= i, let

J ∗b (i) =
∆ ⌈ri/b⌉, J ∗b (i, j) =

∆

{
⌈(sj−1 −mi)/b⌉ if j > i,

⌈(mi − sj)/b⌉ if j < i.
(2.42)

Here J ∗b (i) can be interpreted as the minimum number of jumps (with sizes bounded by b) required to
escape from Ii, which also reflects the the width of Ii relative to the truncation threshold b. Besides,
J ∗b (i, j) is the distance from mi to Ij when measured against the truncation threshold b > 0. By
definition, we must have J ∗b (i, j) ≥ J ∗b (i). Furthermore, the introduction of J ∗b (i) and J ∗b (i, j) allows
us to formally develop the concept of typical transition graph.
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Figure 2.1: Typical transition graphs Gb under different gradient clipping thresholds b. (Left) The
potential function U illustrated here has 3 attraction fields. For the second one I2 = (s1, s2), we have
s2 −m2 = 0.9,m2 − s1 = 0.6. (Middle) The typical transition graph induced by b = 0.5. The entire
graph Gb is irreducible since all nodes communicate with each other. (Right) The typical transition
graph induced by b = 0.4. When b = 0.4, since 0.6 < 2b and 0.9 > 2b, we have J ∗b (2, 1) = 2 and
J ∗b (2, 3) = 3, and hence J ∗b (2) = 2 = J ∗b (2, 1) < J ∗b (2, 3). Therefore, the graph Gb does not contain
the edge m2 → m3 and there are two communication classes: G1 = {m1,m2}, G2 = {m3}.

Definition 2.3 (Typical Transition Graph). Given a function U satisfying Assumption 7 and some
b > 0, the b-typical transition graph is a directed graph Gb = (V,Eb) such that

• V = {m1, · · · ,mnmin
};

• An edge (mi → mj) is in Eb iff J ∗b (i, j) = J ∗b (i).

The graph Gb can be decomposed into different communication classes that are mutually exclusive.
Specifically, for mi,mj ∈ V with i ̸= j, we say that mi and mj communicate if and only if there exists
a path (mi → mk1 → · · · → mkn → mj) as well as a path (mj → mk′1

→ · · · → mk′
n′

→ mi) on Gb. In
this section we focus on the case where Gb is irreducible, i.e., all nodes communicate with each other
on graph Gb. See Figure 2.1 (Middle) and (Right) for the illustration of irreducible and reducible
cases, respectively.

Now, we are ready to present Theorem 2.9 and show that, under proper time scaling, X
η|b
j (x)

converges (in terms of finite dimensional distributions) to a continuous-time Markov chain that only
visits the widest attraction fields over U . Here, the width of each attraction field Ii is characterized
by the relative width metric J ∗b (i) defined in (2.42). We use

J ∗b (V ) = max
i∈[nmin]: mi∈V

J ∗b (i) (2.43)

to denote the largest width (relative to the truncation threshold b > 0) among all attraction fields.
Next, define

V ∗b =∆ {mi : i ∈ [nmin], J ∗b (i) = J ∗b (V )} (2.44)

as the set that contains all the widest local minima (when measured against the truncation threshold
b > 0). Recall that H(·) = P(|Z1| > ·) and λ(η) = η−1H(η−1) ∈ RVα−1(η). Define scale function

λ∗b(η) =
∆ η ·

(
λ(η)

)J ∗b (V ) ∈ RVJ ∗b (V )·(α−1)+1(η). (2.45)

We note that the condition |sj −mi|/b /∈ Z ∀i ∈ [nmin], j ∈ [nmin − 1] in Theorem 2.9 is a mild one
as it holds almost everywhere but countably many b > 0.

Theorem 2.9. Let Assumptions 1, 2, 3, 4 and 7 hold. Let b ∈ (0,∞) be such that |sj −mi|/b /∈ Z for
all i ∈ [nmin] and j ∈ [nmin−1]. Suppose that Gb is irreducible. There exist a continuous-time Markov

chain Y ∗|b with state space V ∗b , as well as a random mapping πb independent of Y
∗|b
t satisfying
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• πb(m) ≡ m if m ∈ V ∗b

• πb(m) is a random variable that only takes value in V ∗b if m /∈ V ∗b

such that the following claim holds: given any i ∈ [nmin], x ∈ Ii, and 0 < t1 < t2 < · · · < tk,(
X

η|b
⌊t1/λ∗b (η)⌋

(x), · · · , Xη|b
⌊tk/λ∗b (η)⌋

(x)
)
⇒
(
Y
∗|b
t1 (π(mi)), · · · , Y ∗|btk

(π(mi))
)

as η ↓ 0.

Theorem 2.9 will be established through an abstract framework developed in Section 2.4.2, which
uplifts the first exit time analysis results to the sample-path convergence of global dynamics. The
laws of Y ∗|b and πb are specified in Section 5.1.

The next result studies the sample-path convergence of Xη
j (x) (i.e., without truncation). The

intuition is that, given any T > 0, there is a high chance that Xη
j (x) coincides with the truncated

X
η|b
j (x) for all j ≤ T , especially when the truncation threshold b is large. Therefore, by sending the

truncation threshold b in X
η|b
j (x) to ∞, we recover the results for Xη

j (x). We specify the law of the
limiting CTMC Y ∗t (·) in Section 5.1 and detail the proof in Section 5.2.

Theorem 2.10. Let Assumptions 1, 2, 3, 4 and 7 hold. Given any i ∈ [nmin], x ∈ Ii, and 0 < t1 <
t2 < · · · < tk,(

Xη
⌊t1/H(η−1)⌋(x), · · · , X

η
⌊tk/H(η−1)⌋(x)

)
⇒
(
Y ∗t1(mi), · · · , Y ∗tk(mi)

)
as η ↓ 0

where H(·) = P(|Z1| > · ) and Y ∗t (·) is a CTMC with state space {m1, · · · ,mnmin}.

Finally, we state a direct corollary of Theorem 2.9 that highlights the elimination of sharp minima
under truncated heavy-tailed dynamics. Theorem 2.9 reveals that, under small η, the sample path

of the truncated dynamics X
η|b
j (x) closely resembles that of an CTMC that completely avoids all

the narrower attraction fields of the potential U . Corollary 2.11 then further demonstrates that the

fraction of time X
η|b
j (x) spends around sharp minima converges in probability to 0 as η ↓ 0, thus

verifying the elimination effect under truncated heavy-tailed dynamics. See Section 5.5 for the proof.

Corollary 2.11. Let Assumptions 1, 2, 3, 4 and 7 hold. Let b ∈ (0,∞) be such that |sj −mi|/b /∈ Z
for all i ∈ [nmin] and j ∈ [nmin− 1]. Suppose that Gb is irreducible. Then given any i ∈ [nmin], x ∈ Ii,
and any T > 0,

1

T

∫ T

0

I

{
X

η|b
⌊t/λ∗b (η)⌋

(x) ∈
⋃

j: mj /∈V ∗b

Ij

}
dt

P−→ 0 as η ↓ 0.

2.4.2 General Framework

Consider a general metric space (S,d). Let Y η
t , Ŷ

η,ϵ
t , and Y ∗t be S-valued stochastic processes sup-

ported on the same probability space, Inspired by the approach in [28], we focus on the following
condition that characterizes a type of asymptotic equivalence between processes Y η

t and Ŷ η,ϵ
t .

Condition 2. Given any 0 < t1 < t2 < · · · < tk = t, the following claims hold for all ϵ > 0 small
enough:

(i)
(
Ŷ η,ϵ
t1 , Ŷ η,ϵ

t2 , · · · , Ŷ η,ϵ
tk

)
⇒
(
Y ∗t1 , Y

∗
t2 , · · · , Y

∗
tk

)
as η ↓ 0;

(ii) For any i ∈ [k], limη↓0 P
(
d(Ŷ η,ϵ

ti , Y η
ti ) ≥ ϵ

)
= 0.
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As shown in Lemma 2.12 below, Condition 2 establishes a type of asymptotic equivalence between
two families of stochastic processes Y η

t and Ŷ η,ϵ
t such that they admit the same limit Y ∗t in terms of

finite dimensional distributions. See Section 5.3 for the proof of Lemma 2.12.

Lemma 2.12. Suppose that Condition 2 holds. Given any k ≥ 1 and 0 < t1 < t2 < · · · < tk,(
Y η
t1 , · · · , Y

η
tk

)
⇒
(
Y ∗t1 , · · · , Y

∗
tk

)
as η ↓ 0.

Naturally, the plan is to prove Theorem 2.9 via Lemma 2.12 by setting Y η
t = X

η|b
⌊t/λ∗b (η)⌋

(x) and

Y ∗t = Y
∗|b
t (π(mi)). To identify the right choice of process Ŷ η,ϵ

t and facilitate the verification of
sample-path convergence characterized in Condition 2, (i), we introduce the second key component of
our framework, i.e., a technical tool for establishing the weak convergence at the sample-path level.
Specifically, the following definition encapsulates the class of jumps processes considered in this paper.

Definition 2.4. Let random variables
(
(Uj)j≥1, (Vj)j≥1

)
be such that Vj ∈ S ∀j ≥ 1 for some general

metric space S, Uj ∈ [0,∞) for all j ≥ 1, and limi→∞P(
∑

j≤i Uj > t) = 1 ∀t > 0. A continuous-time

process Yt on R is a
(
(Uj)j≥1, (Vj)j≥1

)
jump process if (under the convention V0 ≡ 0)

Yt = VJ (t) ∀t ≥ 0, J (t) = max{J ≥ 0 :

J∑
j=1

Uj ≤ t}.

We add two remarks regarding this definition. First, (Uj)j≥1 and (Vj)j≥0 can be viewed as the
inter-arrival times and destinations of jumps in Yt, respectively. It is worth noticing that we allow for
instantaneous jumps, i.e., Uj = 0. Nevertheless, the condition limi→∞P(

∑
j≤i Uj > t) = 1 ∀t > 0

prevents the concentration of infinitely many instantaneous jumps before any finite time t ∈ (0,∞),
thus ensuring that the process Yt = VJ (t) is almost surely well defined. In case that Uj > 0 ∀j, the
jump process Yt admits the more standard expression Yt = Vi ⇐⇒ t ∈ [

∑i
j=1 Uj ,

∑i+1
j=1 Uj). Second,

to account for the scenario where the process Yt stays constant after a (possibly random) timestamp
T , one can introduce dummy jumps that keep landing at the same location. For instance, suppose that
after hitting w ∈ S the process Yt is absorbed at w, then a representation compatible with Definition
2.4 is that, conditioning on Vj = w, we set Uk as iid Exp(1) RVs and Vk ≡ w for all k ≥ j + 1.

As the second key component of the framework, Lemma 2.13 states that, in order to establish
the convergence of jump processes, it suffices to verify the convergence of the inter-arrival times and
destinations of jumps therein.

Lemma 2.13. Let the metric space (S,d) be separable. Let Yt be a
(
(Uj)j≥1, (Vj)j≥1

)
jumps process

and, for each n ≥ 1, Y n
t be a

(
(Un

j )j≥1, (V
n
j )j≥1

)
jump process. Suppose that

• (Un
1 , V

n
1 , U

n
2 , V

n
2 , · · · ) converges in distribution to (U1, V1, U2, V2, · · · ) as n→ ∞;

• For any u > 0 and any j ≥ 1, P(U1 + · · ·+ Uj = u) = 0;

• For any u > 0, limj→∞P(U1 + U2 + · · ·Uj > u) = 1.

Then for any k ≥ 1 and 0 < t1 < t2 < · · · < tk <∞,
(
Y n
t1 , · · · , Y

n
tk

)
⇒
(
Yt1 , · · · , Ytk

)
as n→ ∞.

The verification of Condition 2, (i) hinges on the chioce of the approximator Ŷ η,ϵ
t . To this end, we

construct a process X̂
η,ϵ|b
t (x) as follows. Let (under convention τ̂

η,ϵ|b
0 (x) ≡ 0)

τ̂
η,ϵ|b
1 (x) =∆ min

{
j ≥ 0 : X

η|b
j (x) ∈

⋃
i∈[nmin]

(mi − ϵ,mi + ϵ)
}
, (2.46)
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τ̂
η,ϵ|b
k (x) =∆ min

{
j ≥ τ̂

η,ϵ|b
k−1 (x) : X

η|b
j (x) ∈

⋃
i̸=Îη,ϵ|b

k−1 (x)

(mi − ϵ,mi + ϵ)
}

∀k ≥ 2. (2.47)

Also, define Îη,ϵ|b
k (x) by the rule

Îη,ϵ|b
k (x) = i ⇐⇒ X

η|b
τ̂
η,ϵ|b
k (x)

(x) ∈ Ii. (2.48)

Essentially, τ̂
η,ϵ|b
k (x) records the k-th time X

η|b
j (x) visits (the ϵ-neighborhood of) a local minimum and

Îη,ϵ|b
k (x) denotes the index of the visited local minimum. Let X̂

η,ϵ|b
t (x) be the

(((
τ̂
η,ϵ|b
k (x)− τ̂

η,ϵ|b
k−1 (x)

)
·

λ∗b(η)
)
k≥1

,
(
mÎη,ϵ|b

k (x)

)
k≥1

)
jump process. By definition, X̂

η,ϵ|b
t (x) keeps track of how X

η|b
j (x) tra-

verses the potential U and makes transitions between the different local minima (under time scaling
with λ∗b(η)).

Using Lemma 2.13, the convergence of the jump process X̂
η,ϵ|b
t (x) follows directly from the con-

vergence of τ̂
η,ϵ|b
k (x)− τ̂

η,ϵ|b
k−1 (x) and mÎη,ϵ|b

k (x)
, i.e., the inter-arrival times and destinations of the

transitions in X
η|b
j (x) between different attraction fields of U . This is exactly the content of the first

exit time analysis. In particular, based on a straightforward adaptation of the first exit time analysis
in Section 2.3.1 to the current setup, we obtain Proposition 2.14. The proof is detailed in Section 5.4.

Proposition 2.14 (Verifying Condition 2, (i)). Let Assumptions 1, 2, 3, 4 and 7 hold. Let b ∈ (0,∞)
be such that |sj −mi|/b /∈ Z for all i ∈ [nmin] and j ∈ [nmin−1]. Suppose that Gb is irreducible. Given
any ϵ > 0 small enough and any i ∈ [nmin], x ∈ Ii,(
X̂

η,ϵ|b
t1 (x), · · · , X̂η,ϵ|b

tk
(x)
)
⇒
(
Y
∗|b
t1

(
πb(mi)

)
, · · · , Y ∗|btk

(
πb(mi)

))
as η ↓ 0 ∀k ≥ 1, 0 < t1 < · · · < tk.

Meanwhile, Proposition 2.15 verifies Condition 2, (ii) and confirms the equivalence between X̂
η,ϵ|b
t (x)

and X
η|b
j (x) in the asymptotic sense. We give the proof in Section 5.4.

Proposition 2.15 (Verifying Condition 2, (ii)). Let Assumptions 1, 2, 3, 4 and 7 hold. Let b ∈ (0,∞)
be such that |sj −mi|/b /∈ Z for all i ∈ [nmin] and j ∈ [nmin − 1]. Suppose that Gb is irreducible. Let
x ∈

⋃
i∈[nmin]

Ii. Given any t > 0, it holds for all ϵ > 0 small enough that

lim
η↓0

P

(∣∣∣Xη|b
⌊t/λ∗b (η)⌋

(x)− X̂
η,ϵ|b
t (x)

∣∣∣ ≥ ϵ

)
= 0.

Now, we are ready to prove Theorem 2.9.

Proof of Theorem 2.9. Fix some i ∈ [nmin] and x ∈ Ii. Applying Propositions 2.14 and 2.15, we

verify the conditions in Lemma 2.12 (under the choice of Y η
t = X

η|b
⌊t/λ∗b (η)⌋

(x), Ŷ η,ϵ
t = X̂

η,ϵ|b
t (x), and

Y ∗t = Y
∗|b
t (πb(mi))) and conclude the proof.

2.4.3 Results for Stochastic Differential Equations

To conclude, we collect the sample-path convergence results for Y
η|b
t (x) and Y η

t (x). We skip the proof

as they are almost identical to those of X
η|b
j (x) and Xη

j (x). Recall the definition of V ∗b in (2.44) as the
set that contains all the widest local minima mi over U (when measured by the truncation threshold
b > 0). Also, recall that λL(η) = η−1HL(η

−1) and HL(x) = HL(x) = ν
(
(∞,−x) ∪ (x,∞)

)
, where ν

is the Lévy measure of the Lévy process Lt. Define scale function

λ∗b;L(η) =
∆
(
λL(η)

)J ∗b (V ) ∈ RVJ ∗b (V )·(α−1)(η). (2.49)
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Theorem 2.16. Let Assumptions 2, 3, 4, 5, and 7 hold. Let b ∈ (0,∞) be such that |sj −mi|/b /∈ Z
for all i ∈ [nmin] and j ∈ [nmin − 1]. If Gb is irreducible, then given any i ∈ [nmin], x ∈ Ii, and
0 < t1 < t2 < · · · < tk,(

Y
η|b
⌊t1/λ∗b;L(η)⌋(x), · · · , Y

η|b
⌊tk/λ∗b;L(η)⌋(x)

)
⇒
(
Y
∗|b
t1 (πb(mi)), · · · , Y ∗|btk

(πb(mi))
)

as η ↓ 0

where the continuous-time Markov chain Y
∗|b
t and the random mapping πb(·) are characterized in

Theorem 2.9.

Theorem 2.17. Let Assumptions 2, 3, 4, 5, and 7 hold. Given any i ∈ [nmin], x ∈ Ii, and 0 < t1 <
t2 < · · · < tk,(

Y η
⌊t1/λL(η)⌋(x), · · · , Y

η
⌊tk/λL(η)⌋(x)

)
⇒
(
Y ∗t1(mi), · · · , Y ∗tk(mi)

)
as η ↓ 0

where the continuous-time Markov chain Y ∗t is characterized in Theorem 2.10.

3 Uniform M-Convergence and Sample Path Large Deviations

3.1 Technical Lemmas

Straightforward as they are, the proofs of the next two lemmas are provided for the sake of complete-
ness.

Lemma 3.1. Let a : (0,∞) → (0,∞), b : (0,∞) → (0,∞) be two functions such that limϵ↓0 a(ϵ) =
0, limϵ↓0 b(ϵ) = 0. Let {U(ϵ) : ϵ > 0} be a family of geometric RVs with success rate a(ϵ), i.e.
P(U(ϵ) > k) = (1− a(ϵ))k for k ∈ N.

(i) For any c > 1, there exists ϵ0 > 0 such that

exp
(
− c · a(ϵ)

b(ϵ)

)
≤ P

(
U(ϵ) >

1

b(ϵ)

)
≤ exp

(
− a(ϵ)

c · b(ϵ)

)
∀ϵ ∈ (0, ϵ0).

(ii) Suppose that, in addition, limϵ↓0 a(ϵ)/b(ϵ) = 0. For any c > 1, there exists ϵ0 > 0 such that

a(ϵ)

c · b(ϵ)
≤ P

(
U(ϵ) ≤ 1

b(ϵ)

)
≤ c · a(ϵ)

b(ϵ)
∀ϵ ∈ (0, ϵ0).

Proof. (i) Note that P
(
U(ϵ) > 1

b(ϵ)

)
=
(
1−a(ϵ)

)⌊1/b(ϵ)⌋
. By taking logarithm on both sides, we have

lnP
(
U(ϵ) >

1

b(ϵ)

)
= ⌊1/b(ϵ)⌋ ln

(
1− a(ϵ)

)
=

⌊1/b(ϵ)⌋
1/b(ϵ)

ln
(
1− a(ϵ)

)
−a(ϵ)

−a(ϵ)
b(ϵ)

.

Since limx→0
ln(1+x)

x = 1, we know that for ϵ sufficiently small, we will have −ca(ϵ)b(ϵ) ≤ lnP
(
U(ϵ) >

1
b(ϵ)

)
≤ − a(ϵ)

c·b(ϵ) . By taking exponential on both sides, we conclude the proof.

(ii) To begin with, from the lower bound of part (i), we have

P
(
U(ϵ) ≤ 1

b(ϵ)

)
= 1−P

(
U(ϵ) >

1

b(ϵ)

)
≤ 1− exp

(
− c · a(ϵ)

b(ϵ)

)
≤ c · a(ϵ)

b(ϵ)
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for sufficiently small ϵ > 0. For the lower bound, recall that 1 − exp(−x) ≥ x√
c
holds for x > 0

sufficiently close to 0. Since we assume limϵ↓0 a(ϵ)/b(ϵ) = 0, applying this bound with x = a(ϵ)√
c·b(ϵ)

along with the upper bound of part (i), we get

P
(
U(ϵ) ≤ 1

b(ϵ)

)
≥ 1− exp

(
− 1√

c
· a(ϵ)
b(ϵ)

)
≥ a(ϵ)

c · b(ϵ)

for sufficiently small ϵ.

Lemma 3.2. Suppose that a function g : R → R is Lipschitz continuous with L < ∞ such that
|g(x)− g(y)| ≤ L|x− y| for all x, y ∈ R. Given real numbers x, x̃ ∈ R, and η > 0, and a sequence of
real numbers (zi)

n
i=1, let {xk}k=0,...,n and {x̃k}k=0,...,n be constructed by

x0 = x, xk = xk−1 + ηg(xk−1) + ηzk for k = 1, 2, · · · , n;
x̃0 = x̃, x̃k = x̃k−1 + ηg(x̃k−1) for k = 1, 2, · · · , n.

If there exists some c̃ ∈ (0,∞) such that maxk≤n η|z1 + · · ·+ zk|+ |x− x̃| ≤ c̃, then

max
k≤n

|xk − x̃k| ≤ c̃ · exp(ηLn).

Proof. Let ak =∆ xk− x̃k and note that ak = η
∑k

j=1

(
g(x̃j−1)−g(xj−1)

)
+η(z1+ · · ·+zk)+x− x̃. Due

to the Lipschitz continuity of g(·), this yields |ak| ≤ ηL(|a0|+ · · · |ak−1|) + c̃. It then follows from the
discrete version of Gronwall’s inequality (see, for example, Lemma A.3 of [33]) that |ak| ≤ c̃ ·exp(ηLk)
for any k = 0, 1, · · · , n.

Let xη
j (x) be the solution to

xη
0(x) = x, xη

j (x) = xη
j−1(x) + ηa

(
xη
j−1(x)

)
∀j ≥ 1. (3.1)

After proper scaling of the time parameter, xη
j approximates yt with small η. In the next lemma, we

bound the distance between xη
⌊t/η⌋(x) and yt(y).

Lemma 3.3. Let Assumptions 2 and 4 hold. For any η > 0, t > 0 and x, y ∈ R,

sup
s∈[0,t]

|ys(y)− xη
⌊s/η⌋(x)| ≤ (ηC + |x− y|) exp(Dt)

where D,C ∈ [1,∞) are the constants in Assumptions 2 and 4 respectively.

Proof. For any s ≥ 0 that is not an integer, we write xη
s(x) =

∆ xη
⌊s⌋(x). Also, we set yη

s (y) =
∆ ysη(y)

for any s ≥ 0. Now observe that (for any s ≥ 0)

yη
s (y) = yη

⌊s⌋(y) + η

∫ s

⌊s⌋
a(yη

u(y))du

yη
⌊s⌋(y) = y + η

∫ ⌊s⌋
0

a(yη
u(y))du

xη
⌊s⌋(y) = x+ η

∫ ⌊s⌋
0

a(xη
u(y))du.

Let b(u) =∆ yη
u(y)−xη

u(x). It suffices to show that supu∈[0,t/η] |b(u)| ≤ (ηC + |x− y|) exp(Dt). To this
end, we observe that (for any s > 0)

|b(s)| ≤ |b(⌊s⌋)|+
∣∣η ∫ s

⌊s⌋
a
(
yη
u(y)

)
du
∣∣ ≤ |b(⌊s⌋)|+ ηC
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≤ η

∫ ⌊s⌋
0

∣∣a(yη
u(y)

)
− a
(
xη
u(x)

)∣∣du+ |x− y|+ ηC

≤ ηD

∫ s

0

|b(u)|du+ |x− y|+ ηC due to Assumption 4.

Apply Gronwall’s inequality (see Theorem V.68 of [43]) to b(·) on interval [0, t/η] and we conclude the
proof.

Our analysis hinges on the concept of the large noises among (Zj)j≥1, i.e., some Zj large enough
such that η|Zj | is larger than some prefixed threshold level δ > 0. To be more concrete, for any i ≥ 1
and η, δ > 0, define the ith arrival time of “large noises” and its size as

τ>δ
i (η) =∆ min{n > τ>δ

i−1(η) : η|Zn| > δ}, τ>δ
0 (η) = 0 (3.2)

W>δ
i (η) =∆ Zτ>δ

i (η). (3.3)

For any δ > 0 and k = 1, 2, · · · , note that

P
(
τ>δ
k (η) ≤ ⌊1/η⌋

)
≤ P

(
τ>δ
j (η)− τ>δ

j−1(η) ≤ ⌊1/η⌋ ∀j ∈ [k]
)

=
[ ⌊1/η⌋∑

i=1

(
1−H(δ/η)

)i−1
H(δ/η)

]k
≤
[ ⌊1/η⌋∑

i=1

H(δ/η)
]k

≤
[
1/η ·H(δ/η)

]k
. (3.4)

Recall the definition of filtration F = (Fj)j≥0 where Fj is the σ-algebra generated by Z1, Z2, · · · , Zj

and F0 = {∅,Ω}. In the next lemma, we establish a uniform asymptotic concentration bound for
the weighted sum of Zi’s where the weights are adapted to the filtration F. For any M ∈ (0,∞),
let ΓM denote the collection of families of random variables, over which we will prove the uniform
asymptotics:

ΓM =∆
{
(Vj)j≥0 is adapted to F : |Vj | ≤M ∀j ≥ 0 almost surely

}
. (3.5)

Let ρ(t) =∆ exp(Dt) for any t > 0 where D <∞ is the Lipschitz constant in Assumption 2.

Lemma 3.4. Let Assumption 1 hold.

(a) Given any M > 0, N > 0, t > 0, and ϵ > 0, there exists δ0 = δ0(ϵ,M,N, t) > 0 such that

lim
η↓0

η−N sup
(Vi)i≥0∈ΓM

P

(
max

j≤⌊t/η⌋∧
(
τ>δ
1 (η)−1

) η∣∣ j∑
i=1

Vi−1Zi

∣∣ > ϵ

)
= 0 ∀δ ∈ (0, δ0).

(b) Furthermore, let Assumption 4 hold. For each i, define

Ai(η, b, ϵ, δ, x) =
∆

{
max

j∈Ii(η,δ)
η
∣∣∣ j∑
n=τ>δ

i−1(η)+1

σ
(
X

η|b
n−1(x)

)
Zn

∣∣∣ ≤ ϵ
}
; (3.6)

Ii(η, δ) =
∆
{
j ∈ N : τ>δ

i−1(η) + 1 ≤ j ≤
(
τ>δ
i (η)− 1

)
∧ ⌊1/η⌋

}
. (3.7)

Here we adopt the convention that (under b = ∞)

Ai(η,∞, ϵ, δ, x) =∆
{

max
j∈Ii(η,δ)

η
∣∣∣ j∑
n=τ>δ

i−1(η)+1

σ
(
Xη

n−1(x)
)
Zn

∣∣∣ ≤ ϵ
}
.
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For any k ≥ 0, N > 0, ϵ > 0 and b ∈ (0,∞], there exists δ0 = δ0(ϵ,N) > 0 such that

lim
η↓0

η−N sup
x∈R

P
(( k⋂

i=1

Ai(η, b, ϵ, δ, x)
)c)

= 0 ∀δ ∈ (0, δ0).

Proof. (a) Choose some β such that 1
2∧α < β < 1. Let

Z
(1)
i =∆ ZiI

{
|Zi| ≤

1

ηβ

}
, Ẑ

(1)
i =∆ Z

(1)
i −EZ

(1)
i , Z

(2)
i =∆ ZiI

{
|Zi| ∈ (

1

ηβ
,
δ

η
]
}

∀i ≥ 1.

Note that
∑j

i=1 Vi−1Zi =
∑j

i=1 Vi−1Z
(1)
i +

∑j
i=1 Vi−1Z

(2)
i on j < τ>δ

1 (η), and hence,

max
j≤⌊t/η⌋∧

(
τ>δ
1 (η)−1

) η∣∣∣ j∑
i=1

Vi−1Zi

∣∣∣
≤ max

j≤⌊t/η⌋∧
(
τ>δ
1 (η)−1

) η∣∣∣ j∑
i=1

Vi−1Z
(1)
i

∣∣∣+ max
j≤⌊t/η⌋∧

(
τ>δ
1 (η)−1

) η∣∣∣ j∑
i=1

Vi−1Z
(2)
i

∣∣∣
≤ max

j≤⌊t/η⌋
η
∣∣∣ j∑
i=1

Vi−1Z
(1)
i

∣∣∣+ max
j≤⌊t/η⌋

η
∣∣∣ j∑
i=1

Vi−1Z
(2)
i

∣∣∣.
≤ max

j≤⌊t/η⌋
η
∣∣∣ j∑
i=1

Vi−1EZ
(1)
i

∣∣∣+ max
j≤⌊t/η⌋

η
∣∣∣ j∑
i=1

Vi−1Ẑ
(1)
i

∣∣∣+ max
j≤⌊t/η⌋

η
∣∣∣ j∑
i=1

Vi−1Z
(2)
i

∣∣∣.
Therefore, it suffices to show the existence of δ0 such that for any δ ∈ (0, δ0),

lim
η↓0

η−N sup
(Vi)i≥0∈ΓM

P
(

max
j≤⌊t/η⌋

η
∣∣ j∑
i=1

Vi−1EZ
(1)
i

∣∣ > ϵ

3

)
= 0, (3.8)

lim
η↓0

η−N sup
(Vi)i≥0∈ΓM

P
(

max
j≤⌊t/η⌋

η
∣∣ j∑
i=1

Vi−1Ẑ
(1)
i

∣∣ > ϵ

3

)
= 0, (3.9)

lim
η↓0

η−N sup
(Vi)i≥0∈ΓM

P
(

max
j≤⌊t/η⌋

η
∣∣ j∑
i=1

Vi−1Z
(2)
i

∣∣ > ϵ

3

)
= 0. (3.10)

For (3.8), first recall that EZi = 0, and hence,

|EZ(1)
i | =

∣∣EZiI{|Zi| > 1/ηβ}
∣∣ ≤ E|Zi|I{|Zi| > 1/ηβ}

= E
[
(|Zi| − 1/ηβ)I{|Zi| − 1/ηβ > 0}

]
+ 1/ηβ ·P(|Zi| > 1/ηβ),

and since (|Zi| − 1/ηβ)I{|Zi| − 1/ηβ > 0} is non-negative,

E(|Zi| − 1/ηβ)I{|Zi| − 1/ηβ > 0} =

∫ ∞
0

P
(
(|Zi| − 1/ηβ)I{|Zi| − 1/ηβ} > x

)
dx

=

∫ ∞
0

P(|Zi| − 1/ηβ > x)dx =

∫ ∞
1/ηβ

P(|Z1| > x)dx.

Recall that H(x) = P(|Z1| > x) ∈ RV−α as x→ ∞. Therefore, from Karamata’s theorem,

|EZ(1)
i | ≤

∫ ∞
1/ηβ

P(|Z1| > x)dx+ 1/ηβ ·P(|Zi| > 1/ηβ) ∈ RV(α−1)β(η) (3.11)
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as η ↓ 0. Therefore, there exists some η0 > 0 such that for any (Vi)i≥0 ∈ ΓM and η ∈ (0, η0),

max
j≤⌊t/η⌋

η

∣∣∣∣∣
j∑

i=1

Vi−1EZ
(1)
i

∣∣∣∣∣ ≤ tM ·
∣∣EZ(1)

i

∣∣ < ϵ/3,

from which we immediately get (3.8).
Next, for (3.9), fix a sufficiently large p satisfying

p ≥ 1, p >
2N

β
, p >

2N

1− β
, p >

2N

(α− 1)β
>

2N

(2α− 1)β
. (3.12)

Note that for (Vi)i≥0 ∈ ΓM and η > 0, since {ηVi−1Ẑ(i)
i : i ≥ 1} is a martingale difference sequence,

E

( max
j≤⌊t/η⌋

η
∣∣∣ j∑
i=1

Vi−1Ẑ
(1)
i

∣∣∣)p


≤ c1E


⌊t/η⌋∑

i=1

(
ηVi−1Ẑ

(1)
i

)2p/2
 ≤ c1M

pE


⌊t/η⌋∑

i=1

(
ηẐ

(1)
i

)2p/2


≤ c1c2M
pE

( max
j≤⌊t/η⌋

∣∣∣ j∑
i=1

ηẐ
(1)
i

∣∣∣)p
 ≤ c1c2

(
p

p− 1

)p

MpE


∣∣∣∣∣∣
⌊t/η⌋∑
i=1

ηẐ
(1)
i

∣∣∣∣∣∣
p
 (3.13)

for some c1, c2 > 0 that only depend on p and won’t vary with (Vi)i≥0 and η. The first and third
inequalities are from the uppper and lower bounds of Burkholder-Davis-Gundy inequality (Theorem
48, Chapter IV of [43]), respectively, and the fourth inequality is from Doob’s maximal inequality. It
then follows from Bernstein’s inequality that for any η > 0 and any s ∈ [0, t], y ≥ 1

P
(∣∣∣ ⌊s/η⌋∑

j=1

ηẐ
(1)
j

∣∣∣p > η2Ny
)
= P

(∣∣∣ ⌊s/η⌋∑
j=1

ηẐ
(1)
j

∣∣∣ > η
2N
p y1/p

)

≤ 2 exp
(
−

1
2η

4N
p p
√
y2

1
3η

1−β+ 2N
p p
√
y + t

η · η2 ·E
[
(Ẑ

(1)
1 )2

]). (3.14)

Our next goal is to show that t
η · η2 ·E

[
(Ẑ

(1)
1 )2

]
< 1

3η
1−β+ 2N

p for any η > 0 small enough. First, due

to (a+ b)2 ≤ 2a2 + 2b2,

E
[
(Ẑ

(1)
1 )2

]
= E

[(
Z

(1)
i −EZ

(1)
i

)2] ≤ 2E
[(
Z

(1)
i

)2]
+ 2
[
EZ

(1)
i

]2 ≤ 2E
[(
Z

(1)
i

)2]
+ 2
[
E|Z(1)

i |
]2
.

Also, it has been shown earlier that E|Z(1)
i | ∈ RV(α−1)β(η), and hence

[
E|Z(1)

i |
]2 ∈ RV2(α−1)β(η).

From our choice of p in (3.12) that p > 2N
(2α−1)β , we have 1 + 2(α− 1)β > 1− β + 2N

p , thus implying

t
η · η2 · 2

[
E|Z(1)

i |
]2
< 1

6η
1−β+ 2N

p for any η > 0 sufficiently small. Next, E
[
(Z

(1)
1 )2

]
=
∫∞
0

2xP(|Z(1)
1 | >

x)dx =
∫ 1/ηβ

0
2xP(|Z1| > x)dx. If α ∈ (1, 2], then Karamata’s theorem implies

∫ 1/ηβ

0
2xP(|Z1| >

x)dx ∈ RV−(2−α)β(η) as η ↓ 0. Given our choice of p in (3.12), one can see that 1−(2−α)β > 1−β+ 2N
p .

As a result, for any η > 0 small enough we have t
η · η2 · 2E

[
(Z

(1)
1 )2

]
< 1

6η
1−β+ 2N

p . If α > 2, then

limη↓0
∫ 1/ηβ

0
2xP(|Z1| > x)dx =

∫∞
0

2xP(|Z1| > x)dx <∞. Also, (3.12) implies that 1− β + 2N
p < 1.

As a result, for any η > 0 small enough we have t
η · η2 · 2E

[
(Z

(1)
1 )2

]
< 1

6η
1−β+ 2N

p . In summary,

t

η
· η2 ·E

[
(Ẑ

(1)
1 )2

]
<

1

3
η1−β+

2N
p (3.15)
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holds for any η > 0 small enough. Along with (3.14), we yield that for any η > 0 small enough,

P
(∣∣∣ ⌊t/η⌋∑

j=1

ηẐ
(1)
j

∣∣∣p > η2Ny
)
≤ 2 exp

( − 1
2y

1/p

2
3η

1−β− 2N
p

)
≤ 2 exp

(
− 3

4
y1/p

)
∀y ≥ 1,

where the last inequality is due to our choice of p in (3.12) that 1 − β − 2N
p > 0. Moreover, since∫∞

0
exp

(
− 3

4y
1/p
)
dy <∞, one can see the existence of some C

(1)
p <∞ such thatE

∣∣∣∑⌊t/η⌋j=1 ηẐ
(1)
j

∣∣∣p/η2N <

C
(1)
p for all η > 0 small enough. Combining this bound, (3.13), and Markov inequality,

P
(

max
j≤⌊t/η⌋

∣∣∣ j∑
i=1

ηVi−1Ẑ
(1)
i

∣∣∣ > ϵ

3

)
≤

E
[
max

j≤⌊t/η⌋

∣∣∣∑j
i=1 ηVi−1Ẑ

(1)
i

∣∣∣p]
ϵp/3p

≤
c′MpE

∣∣∣∑⌊s/η⌋j=1 ηẐ
(1)
i

∣∣∣p
ϵp/3p

≤ c′Mp · C(1)
p

ϵp/3p
· η2N

for any (Vi)i≥0 ∈ ΓM and all η > 0 sufficiently small. This proves (3.9).
Finally, for (3.10), recall that we have chosen β in such a way that αβ − 1 > 0. Fix a constant

J = ⌈ N
αβ−1⌉ + 1, and define I(η) =∆ #

{
i ≤ ⌊t/η⌋ : Z

(2)
i ̸= 0

}
. Besides, fix δ0 = ϵ

3MJ . For any

δ ∈ (0, δ0) and (Vi)i≥0 ∈ ΓM , note that on event {I(η) < J}, we must have max
j≤⌊t/η⌋

η
∣∣∑j

i=1 Vi−1Z
(2)
i

∣∣ <
η ·M · J · δ0/η < MJδ0 < ϵ/3. On the other hand,

P
(
I(η) ≥ J

)
≤
(
⌊t/η⌋
J

)
·
(
H
(
1/ηβ

))J
≤ (t/η)J ·

(
H
(
1/ηβ

))J
∈ RVJ(αβ−1)(η) as η ↓ 0.

Lastly, the choice of J = ⌈ N
αβ−1⌉+ 1 guarantees that J(αβ − 1) > N , and hence,

lim
η↓0

sup
(Vi)i≥0∈ΓM

P
(

max
j≤⌊t/η⌋

η
∣∣ j∑
i=1

Vi−1Z
(2)
i

∣∣ > ϵ

3

)/
ηN ≤ lim

η↓0
sup

(Vi)i≥0∈ΓM

P(I(η) ≥ J)
/
ηN = 0.

This concludes the proof of part (a).
(b) To ease notations, in this proof we write Xη|b = Xη when b = ∞. Due to Assumption 4, it

holds for any x ∈ R and any η > 0, n ≥ 0 that σ
(
X

η|b
n (x)

)
≤ C. Therefore, {σ(Xη|b

i (x))}i≥0 ∈ ΓC .

From the strong Markov property at stopping times
(
τ>δ
i (η)

)
j≥1,

sup
x∈R

P
(( k⋂

i=1

Ai(η, b, ϵ, δ, x)
)c) ≤

k∑
i=1

sup
x∈R

P
((
Ai(η, b, ϵ, δ, x)

)c)
≤ k · sup

(Vi)i≥0∈ΓC

P
(

max
j≤⌊1/η⌋∧

(
τ>δ
1 (η)−1

) η∣∣ j∑
i=1

Vi−1Zi

∣∣ > ϵ/2
)

where C <∞ is the constant in Assumption 4 and the set ΓC is defined in (3.5). Thanks to part (a),
one can find some δ0 = δ0(ϵ, C,N) ∈ (0, δ̄) such that

sup
(Vi)i≥0∈ΓC

P
(

max
j≤⌊1/η⌋∧

(
τ>δ
1 (η)−1

) η∣∣ j∑
i=1

Vi−1Zi

∣∣ > ϵ/2
)
= o(ηN )

(as η ↓ 0) for any δ ∈ (0, δ0), which concludes the proof of part (b).
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Next, for any c > δ > 0, we study the law of
(
τ>δ
j (η)

)
j≥1 and

(
W>δ

j (η)
)
j≥1 conditioned on event

Eδ
c,k(η) =

∆

{
τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η); η|W
>δ
j (η)| > c ∀j ∈ [k]

}
. (3.16)

The intuition is that, on event Eδ
c,k(η), among the first ⌊1/η⌋ steps there are exactly k “large” jumps,

all of which has size larger than c. Next, define random variable W ∗(c) with law

P
(
W ∗(c) > x

)
= p(+)

( c
x

)α
, P

(
−W ∗(c) > x

)
= p(−)

( c
x

)α
∀x > c, (3.17)

and let
(
W ∗j (c)

)
j≥1 be a sequence of iid copies of W ∗(c). Also, for (Uj)j≥1, a sequence of iid copies

of Unif(0, 1) that is also independent of
(
W ∗j (c)

)
j≥1, let U(1;k) ≤ U(2;k) ≤ · · · ≤ U(k;k) be the order

statistics of (Uj)
k
j=1. For any random variable X and any Borel measureable set A, let L (X) be the

law of X, and L (X|A) be the conditional law of X given event A.

Lemma 3.5. Let Assumption 1 hold. For any δ > 0, c ≥ δ and k ∈ Z+,

lim
η↓0

P
(
Eδ

c,k(η)
)

λk(η)
=

1/cαk

k!
,

and

L
(
ηW>δ

1 (η), ηW>δ
2 (η), · · · , ηW>δ

k (η), ητ>δ
1 (η), ητ>δ

2 (η), · · · , ητ>δ
k (η)

∣∣∣Eδ
c,k(η)

)
⇒L

(
W ∗1 (c),W

∗
2 (c), · · · ,W ∗k (c), U(1;k), U(2;k), · · · , U(k;k)

)
as η ↓ 0.

Proof. Note that
(
τ>δ
i (η)

)
i≥1 is independent of

(
W>δ

i (η)
)
i≥1. Therefore, P

(
Eδ

c,k(η)
)
= P

(
τ>δ
k (η) ≤

⌊1/η⌋ < τ>δ
k+1(η)

)
·
(
P(η

∣∣W>δ
1 (η)

∣∣ > c)
)k
. Recall that H(x) = P(|Z1| > x). Observe that

P
(
τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η)
)
= P

(
#
{
j ≤ ⌊1/η⌋ : η|Zj | > δ

}
= k

)
=

(
⌊1/η⌋
k

)
︸ ︷︷ ︸
=∆ q1(η)

(
1−H(δ/η)

)⌊1/η⌋−k
︸ ︷︷ ︸

=∆ q2(η)

(
H(δ/η)

)k︸ ︷︷ ︸
=∆ q3(η)

. (3.18)

For q1(η), note that

lim
η↓0

q1(η)

1/ηk
=

(
⌊1/η⌋

)(
⌊1/η⌋ − 1

)
· · ·
(
⌊1/η⌋ − k + 1

)/
k!

1/ηk
=

1

k!
. (3.19)

Also, since (⌊1/η⌋ − k) ·H(δ/η) = o(1) as η ↓ 0, we have that limη↓0 q2(η) = 1. Lastly, note that

P
(
η
∣∣W>δ

1 (η)
∣∣ > c

)
= H(c/η)

/
H(δ/η),

and hence,

lim
η↓0

q3(η) ·
(
P
(
η
∣∣W>δ

1 (η)
∣∣ > c

))k
(
H(1/η)

)k = lim
η↓0

(
H(δ/η)

)k ·
(
H(c/η)

/
H(δ/η)

)k
(
H(1/η)

)k = lim
η↓0

(
H(c/η)

)k(
H(1/η)

)k = 1/cαk

(3.20)

Plugging (3.19) and (3.20) into (3.18), we yield

lim
η↓0

P
(
Eδ

c,k(η)
)

λk(η)
=
q1(η) · q2(η) · q3(η) ·

(
P
(
η
∣∣W>δ

1 (η)
∣∣ > c

))k
1/ηk

(
H(1/η)

)k =
1/cαk

k!
.
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Next, we move onto the proof of the weak convergence. For any x > c,

lim
η↓0

P
(
ηW>δ

1 (η) > x
)

P
(
η|W>δ

1 (η)| > c
) = p(+)

( c
x

)α
, lim

η↓0

P
(
ηW>δ

1 (η) < −x
)

P
(
η|W>δ

1 (η)| > c
) = p(−)

( c
x

)α
.

As a result, we must have L
(
ηW>δ

1 (η), ηW>δ
2 (η), · · · , ηW>δ

k (η)
∣∣∣Eδ

c,k(η)
)
⇒ L

(
W ∗1 (c), · · · ,W ∗k (c)

)
.

Moreover, notice that the sequences ηW>δ
1 (η), · · · , ηW>δ

k (η) and ητ>δ
1 (η), · · · , ητ>δ

k (η) are condition-
ally independent on event Eδ

c,k(η). Indeed, for any 1 ≤ i1 < · · · < ik ≤ ⌊1/η⌋ and c1, · · · , ck > c,

P
(
τ>δ
j (η) = ij and η|W>δ

j (η)| > cj ∀j ∈ [k]
)

P
(
τ>δ
k (η) < ⌊1/η⌋ < τ>δ

k+1(η); η|W
>δ
j (η)| > c ∀j ∈ [k]

)
=

P
(
τ>δ
j (η) = ij ∀j ≥ 1

)
P
(
η|W>δ

j (η)| > cj ∀j ∈ [k]
)

P
(
τ>δ
k (η) < ⌊1/η⌋ < τ>δ

k+1(η)
)
P
(
η|W>δ

j (η)| > c ∀j ∈ [k]
)

due to the independence between
(
τ>δ
i (η)

)
i≥1 and

(
W>δ

i (η)
)
i≥1

= P
(
τ>δ
j (η) = ij ∀j ≥ 1

∣∣∣ τ>δ
k (η) < ⌊1/η⌋ < τ>δ

k+1(η)
)
·P
(
η|W>δ

j (η)| > cj ∀j ∈ [k]
∣∣∣ η|W>δ

j (η)| > c ∀j ∈ [k]
)

= P
(
τ>δ
j (η) = ij ∀j ≥ 1

∣∣∣ τ>δ
k (η) < ⌊1/η⌋ < τ>δ

k+1(η); η|W
>δ
j (η)| > c ∀j ∈ [k]

)
·P
(
η|W>δ

j (η)| > cj ∀j ∈ [k]
∣∣∣ τ>δ

k (η) < ⌊1/η⌋ < τ>δ
k+1(η); η|W

>δ
j (η)| > c ∀j ∈ [k]

)
.

Again, we applied the independence between
(
τ>δ
i (η)

)
i≥1 and

(
W>δ

i (η)
)
i≥1. From the conditional in-

dependence between ηW>δ
1 (η), · · · , ηW>δ

k (η) and ητ>δ
1 (η), · · · , ητ>δ

k (η) on event Eδ
c,k(η), we know

that the limit of L
(
ηW>δ

1 (η), ηW>δ
2 (η), · · · , ηW>δ

k (η)
∣∣∣Eδ

c,k(η)
)

is also independent from that of

L
(
ητ>δ

1 (η), ητ>δ
2 (η), · · · , ητ>δ

k (η)
∣∣∣Eδ

c,k(η)
)
. Therefore, it now only remains to show that

L
(
ητ>δ

1 (η), ητ>δ
2 (η), · · · , ητ>δ

k (η)
∣∣∣Eδ

c,k(η)
)
⇒ L

(
U(1;k), · · · , U(k;k)

)
.

Note that since both {ητ>δ
i (η) : i = 1, . . . , k} and {U(i):k : i = 1, . . . , k} are sorted in an ascending

order, the joint CDFs are completely characterized by {ti : i = 1, . . . , k}’s such that 0 ≤ t1 ≤ t2 ≤
· · · ≤ tk ≤ 1. For any such (t1, · · · , tk) ∈ [0, t]k, note that

P
(
ητ>δ

1 (η) > t1, ητ
>δ
2 (η) > t2, · · · , ητ>δ

k (η) > tk

∣∣∣ Eδ
c,k(η)

)
= P

(
ητ>δ

1 (η) > t1, ητ
>δ
2 (η) > t2, · · · , ητ>δ

k (η) > tk

∣∣∣ τ>δ
k (η) < ⌊1/η⌋ < τ>δ

k+1(η)
)

=
P
(
ητ>δ

1 (η) > t1, ητ
>δ
2 (η) > t2, · · · , ητ>δ

k (η) > tk; τ
>δ
k (η) < ⌊1/η⌋ < τ>δ

k+1(η)
)

P
(
τ>δ
k (η) < ⌊1/η⌋ < τ>δ

k+1(η)
)

and observe that

P
(
ητ>δ

1 (η) > t1, ητ
>δ
2 (η) > t2, · · · , ητ>δ

k (η) > tk; τ
>δ
k (η) < ⌊1/η⌋ < τ>δ

k+1(η)
)

P
(
τ>δ
k (η) < ⌊1/η⌋ < τ>δ

k+1(η)
)

=

∣∣Sη
∣∣ · q2(η)q3(η)

q1(η)q2(η)q3(η)
=
∣∣Sη
∣∣/q1(η)
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where Sη =∆
{
(s1, · · · , sk) ∈ {1, 2, · · · , ⌊1/η⌋ − 1}k : ηsj > tj ∀j ∈ [k]; s1 < s2 < · · · < sk

}
. Note

that

|Sη| =
⌊1/η⌋−1∑

sk=⌊
tk
η ⌋+1

sk−1∑
sk−1=⌊

tk−1
η ⌋+1

sk−1−1∑
sk−2=⌊

tk−2
η ⌋+1

· · ·
s3−1∑

s2=⌊ t2η ⌋+1

s2−1∑
s1=⌊ t1η ⌋+1

1.

Together with (3.19), we obtain

lim
η↓0

∣∣Sη
∣∣/q1(η) = (k!) · lim

η↓0

∣∣Sη
∣∣

(1/η)k
= (k!)

∫ 1

tk

∫ sk

tk−1

∫ sk−1

tk−2

· · ·
∫ s3

t2

∫ s2

t1

ds1ds2 · · · dsk

= P
(
U(i;k) > ti ∀i ∈ [j]

)
and conclude the proof.

Recall the definitions of the sets D(k)
A and D(k)|b

A in (2.11) and (2.18) respectively. The next two

results reveal useful properties on sets of form D(k)
A and D(k)|b

A when Assumptions 2 and 4 hold.

Lemma 3.6. Let Assumptions 2 and 4 hold. Let A ⊆ R be compact and let B ∈ SD. Let k =

0, 1, 2, · · · . If B is bounded away from D(k−1)
A , then there exist ϵ̄ > 0 and δ̄ > 0 such that the following

claims hold:

(a) Given any x ∈ A, the condition |wj | > δ̄ ∀j ∈ [k] must hold if h(k)(x,w, t) ∈ B ϵ̄;

(b) dJ1(B
3ϵ̄,D(k−1)

A ) > 0.

Proof. The claims are trivial if A or B is an empty set. Also, the claims are trivially true if k = 0;

note that in (b) we have D(−1)
A = ∅. In this proof, therefore, we focus on the case where A ̸= ∅, B ̸= ∅,

and k ≥ 1.
Since B is bounded away from D(k−1)

A , there exists ϵ̄ > 0 such that dJ1(B
3ϵ̄,D(k−1)

A ) > 0 so that
part (b) is satisfied. We will show that there exists a δ̄, which together with ϵ̄ satisfies (a) as well.Let
D ∈ [1,∞) be the Lipschitz coefficient in Assumption 2. Besides, recall the constant C ∈ (1,∞) in
Assumption 4 that satisfies supx∈R |σ(x)| ≤ C. Let ρ =∆ exp(D) and

δ̄ =∆
ϵ̄

ρC + 1
. (3.21)

Note that δ̄ < ϵ̄. To show that the claim (a) holds for such ϵ̄ and δ̄, we proceed with proof by
contradiction. Suppose that there is some t = (t1, · · · , tk) ∈ (0, 1]k↑, w = (w1, · · · , wk) ∈ Rk, and
x0 ∈ A such that ξ =∆ h(k)(x0,w, t) ∈ B ϵ̄ yet |wj | ≤ δ̄ for some j = 1, 2, · · · , k. We construct

ξ′ ∈ D(k−1)
A such that dJ1

(ξ′, ξ) < ϵ̄. Let J =∆ min{j ∈ [k] : |wj | < δ̄}. We focus on the case J < k,
since the case J = k is almost identical but only slightly simpler. Specifically, recall the definition of
h(0)(·) given below (2.7), and construct ξ′ as

ξ′(s) =∆


ξ(s) s ∈ [0, tJ)

h(0)(ξ′(tJ−))(s− tJ) s ∈ [tJ , tJ+1)

ξ(s) s ∈ [tJ+1, t].

That is, ξ′ is driven by the same ODE as ξ on [tJ , tJ+1), except that at the beginning of the intervals,
ξ′ starts from ξ(tJ−) instead of ξ(tJ). On the other hand, ξ′ coincides with ξ outside of [tJ , tJ+1).
To see how close ξ and ξ′ are, note that from Assumption 4, we also have that

∣∣ξ(tJ) − ξ(tJ−)
∣∣ =∣∣σ(ξ(tJ−)) · wJ

∣∣ ≤ Cδ̄. Then using Gronwall’s inequality, we get

|ξ(s)− ξ′(s)| ≤ exp
(
(tJ+1 − tJ)D

)∣∣ξ(tJ)− ξ′(tJ−)
∣∣
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≤ ρ
∣∣ξ(tJ)− ξ(tJ−)

∣∣
≤ ρCδ̄ < ϵ̄, (3.22)

for all s ∈ [tJ , tJ+1). This implies that dJ1
(ξ, ξ′) < ϵ̄. However, this cannot be the case since ξ ∈ B ϵ̄,

ξ′ ∈ D(k−1)
A , and we chose ϵ̄ such that dJ1(B

3ϵ̄,D(k−1)
A ) > 0. This concludes the proof for the case

with J < k. The proof for the case where J = k is almost identical. The only difference is that ξ′ is
set to be ξ′(s) = ξ(s) for all s < tk, and ξ

′(s) = h(0)
(
ξ′(tk−)

)
(s− tk) for all s ∈ [tk, 1],

In some of the technical tools developed below, we will make use of the following uniform nonde-
generacy assumption, which can be viewed as a stronger version of Assumption 3.

Assumption 8 (Uniform Nondegeneracy). There exists c ∈ (0, 1] such that infx∈R σ(x) ≥ c.

We make one observation related to Assumption 8 and the truncation operator φb defined in (2.14).
For any b, c > 0, any w ∈ R and any z ≥ c, note that for w̃ =∆ φb/c(w), we have φb(z · w) = φb(z · w̃).
Indeed, the claim is obviously true when |w| ≤ b/c (so w̃ = w); in case that |w| > b/c, we simply get
φb(z · w) = φb(z · w̃) with the value equal to b or −b. Combining this fact with |φb(x) − φb(y)| ≤
|x− y| ∀x, y ∈ R, we yield (for any b, c > 0, any w1, w2 ∈ R, and any z1, z2 ≥ c)

|φb(z1 · w1)− φb(z2 · w2)| ≤ |z1w̃1 − z2w̃2| where w̃1 = φb/c(w1), w̃2 = φb/c(w2). (3.23)

Now we are ready to develop a result for D(k)|b
A that is analogous to Lemma 3.6.

Lemma 3.7. Let Assumptions 2 and 4 hold. Let A ⊆ R be compact and let B ∈ SD. Let k =

0, 1, 2, · · · . If B is bounded away from D(k−1)|b
A , then there exist ϵ̄ > 0 and δ̄ > 0 such that the

following claims hold:

(a) Given any x ∈ A, the condition |wj | > δ̄ ∀j ∈ [k] must hold if h(k)|b(x,w, t) ∈ B ϵ̄;

(b) dJ1
(B ϵ̄,D(k−1)|b

A ) > 0.

Furthermore, suppose that Assumption 8 holds, then there exist ϵ̄ > 0 and δ̄ > 0 such that

(c) Given any x ∈ A, the condition |wj | > δ̄ ∀j ∈ [k] must hold if h(k)|b+ϵ̄(x,w, t) ∈ B ϵ̄,

(d) dJ1
(B ϵ̄,D(k−1)|b+ϵ̄

A ) > 0.

Proof. The same arguments in Lemma 3.6 can be repeated here to identify some constants ϵ0, δ̄ > 0
such that the following two claims hold:

• given any x ∈ A, the condition |wj | > δ̄ ∀j ∈ [k] must hold if h(k)|b(x,w, t) ∈ Bϵ0 ;

• dJ1(B,D
(k−1)|b
A ) > 3ϵ0;

thus concluding the proof of (a),(b).
Let ρ =∆ exp(D) with D ∈ [1,∞) being the Lipschitz coefficient in Assumption 2, C ≥ 1 being the

constant in Assumption 4, and c ∈ (0, 1) being the constant in Assumption 8. We claim that

ξ = h(k)|b
(
x,w, t

)
, ξ′ = h(k)|b+ϵ

(
x,w, t

)
=⇒ dJ1(ξ, ξ

′) ≤
[
2ρ
(
1 +

bD

c

)]k
ϵ (3.24)

for any ϵ > 0, x ∈ R, t = (t1, · · · , tk) ∈ (0, 1]k↑, and w = (w1, · · · , wk) ∈ Rk. Then we can pick

some ϵ̄ > 0 small enough such that
[
2ρ
(
1 + bD

c

)]k
ϵ̄ < ϵ0/4. First, for any t = (t1, · · · , tk) ∈ (0, 1]k↑,

w = (w1, · · · , wk) ∈ Rk and x0 ∈ A such that h(k)|b+ϵ̄(x0,w, t) ∈ B ϵ̄, applying (3.24) we then get

h(k)|b(x0,w, t) ∈ B ϵ̄+
ϵ0
2 ⊆ Bϵ0 due to ϵ̄ < ϵ0/4. Considering our choice of δ̄ in part (a), we must have

|wj | > δ̄ for all j ∈ [k], thus concluding the proof of part (c).
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Next, for part (d) we proceed with a proof by contradiction. Suppose that dJ1
(B ϵ̄,D(k−1)|b+ϵ̄

A ) = 0.

Then we can find some ξ ∈ B and ξ′ = h(k)|b+ϵ̄(x,w, t) ∈ D(k−1)|b+ϵ̄
A such that dJ1(ξ, ξ

′) < 2ϵ̄.

However, due to (3.24), it holds for ξ̂ = h(k)|b(x,w, t) ∈ D(k)|b
A that dJ1

(ξ′, ξ̂) < ϵ0/2, thus leading

to the contradiction that dJ1(B,D
(k)|b
A ) ≤ dJ1(ξ, ξ̂) ≤ dJ1(ξ, ξ

′) + dJ1(ξ
′, ξ̂) < 2ϵ̄ + ϵ0

2 < ϵ0. This
concludes the proof of part (d).

Now it only remains to prove (3.24). We fix some x ∈ R, t = (t1, · · · , tk) ∈ (0, 1]k↑, w =
(w1, · · · , wk) ∈ Rk. Also, let t0 = 0, tk+1 = 1, ξ = h(k)|b

(
x,w, t

)
, ξ′ = h(k)|b+ϵ

(
x,w, t

)
and Rj =∆

supt∈[0,tj ]
∣∣ξ(t) − ξ′(t)

∣∣. First of all, by definition of h(k)|b, we get R1 =
∣∣ξ(t1) − ξ′(t1)

∣∣ ≤ ϵ. Now we

proceed by induction and suppose that for some j ∈ [k] we have Rj ≤
[
2ρ
(
1 + bD

c

)]j−1
ϵ. On interval

t ∈ [tj , tj+1), thanks to Assumption 2 we can apply Gronwall’s inequality to get

sup
t∈[tj ,tj+1)

∣∣ξ(t)− ξ′(t)
∣∣ ≤ exp

(
D(tj+1 − tj)

)∣∣ξ(tj)− ξ′(tj)
∣∣ ≤ ρRj . (3.25)

Lastly, at t = tj+1, if j = k (so tj+1 = 1), the continuity of ξ, ξ′ implies

|ξ(1)− ξ′(1)| = lim
t→∞

|ξ(t)− ξ′(t)| ≤ ρRk ≤ ρ ·
[
2ρ
(
1 +

bD

c

)]k−1
ϵ <

[
2ρ
(
1 +

bD

c

)]k
ϵ.

In case that j ≤ k − 1 so tj+1 < 1, the definition of h(k)|b implies (let z∗ =
∆ ξ(tj+1−), z′∗ =

∆ ξ′(tj+1−))∣∣ξ(tj+1)− ξ′(tj+1)
∣∣

=
∣∣z∗ + φb

(
σ(z∗)wj+1

)
−
[
z′∗ + φb+ϵ

(
σ(z′∗)wj+1

)]∣∣
≤
∣∣z∗ − z′∗

∣∣+ ∣∣φb

(
σ(z∗)wj+1

)
− φb

(
σ(z′∗)wj+1

)∣∣+ ∣∣φb

(
σ(z′∗)wj+1

)
− φb+ϵ

(
σ(z′∗)wj+1

)∣∣
≤
∣∣z∗ − z′∗

∣∣+ ∣∣φb

(
σ(z∗)wj+1

)
− φb

(
σ(z′∗)wj+1

)∣∣+ ϵ

≤
∣∣z∗ − z′∗

∣∣+ |σ(z∗)− σ(z′∗)| · |φb/c(wj+1)|+ ϵ using (3.23)

≤
∣∣z∗ − z′∗

∣∣+D ·
∣∣z∗ − z′∗

∣∣ · (b/c) + ϵ due to Lipschitz continuity of σ; see Assumption 2

= (1 +
bD

c
)|z∗ − z′∗|+ ϵ ≤ (1 +

bD

c
)ρRj + ϵ due to (3.25)

≤ ρ
(
1 +

bD

c

)
·
[
2ρ
(
1 +

bD

c

)]j−1
ϵ+ ϵ

≤
[
2ρ
(
1 +

bD

c

)]j
ϵ.

The proof to (3.24) can be completed by arguing inductively for j = 1, 2, · · · , k.

For any ξ ∈ D, let ∥ξ∥ =∆ supt∈[0,1] |ξ(t)|. We present a result about the boundedness of all ξ in

D(k)|b
A .

Lemma 3.8. Let Assumptions 2 and 3 hold. Given an integer k ≥ 0, some −∞ < u ≤ v < ∞, and

some b > 0, there exists M =M(k, u, v, b) <∞ such that ∥ξ∥ ≤M ∀ξ ∈ D(k)|b
[u,v] .

Proof. Let ξ∗(t) = yt(u). Let N = |u − v| ∨ b and ρ = exp(D) ≥ 1 where D ∈ [1,∞) is the

Lipschitz coefficient in Assumption 2. Let ξ = h(k)|b(x,w, t) be an arbitrary element of D(k)|b
A with

x ∈ A ⊆ [u, v], w = (w1, · · · , wk) ∈ Rk, t = (t1, · · · , tk) ∈ (0, 1]k↑. From Assumption 2 and
Gronwall’s inequality, we get supt∈[0,t1) |ξ

∗(t)− ξ(t)| ≤ |x− u| exp(Dt1) ≤ ρ|x− u| ≤ ρN. Since ξ∗(t)
is continuous, and |ξ(t1)− ξ(t1−)| ≤ b, we get supt∈[0,t1] |ξ

∗(t)− ξ(t)| ≤ ρN + b ≤ 2ρN. Now proceed
with induction. Adopt the convention that tk+1 = 1, and suppose that for some j = 1, 2, · · · , k,

sup
t∈[0,tj ]

|ξ∗(t)− ξ(t)| ≤ (2ρ)jN︸ ︷︷ ︸
=∆Aj

.
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Then from Gronwall’s inequality again, we get |ξ∗(t) − ξ(t)| ≤ ρAj for any t ∈ [tj , tj+1). Due to the
continuity of ξ∗ and the upper bound b on the jump size of ξ at tj+1, we have

|ξ(tj+1)− ξ∗(tj+1)| ≤ ρAj + b ≤ 2ρAj ≤ Aj+1.

Therefore, supt∈[0,tj+1] |ξ
∗(t) − ξ(t)| ≤ Aj+1. By induction, we can conlude the proof with M =

Ak+1 + ∥ξ∗∥ = (2ρ)k+1N + ∥ξ∗∥.

Next, we present a corollary that follows directly from the boundedness of D(k)|b
A shown in Lemma

3.8. To facilitate the analysis, we consider the following “truncated” version of functions a(·), σ(·).
For any M ≥ 1,

aM (x) =∆


a(M) if x > M,

a(−M) if x < −M,

a(x) otherwise.

σM (x) =∆


σ(M) if x > M,

σ(−M) if x < −M,

σ(x) otherwise.

(3.26)

Given any a(·), σ(·) satisfying Assumptions 2 and 3, it is worth noticing that aM (·), σM (·) will satisfy
Assumptions 2, 4, and 8. Similarly, recall the definition of the mapping h(k)|b in (2.15)-(2.17). We

also consider its “truncated” counterpart by defining the mapping h
(k)|b
M↓ : R × Rk × (0, 1]k↑ → D as

follows. Given any x0 ∈ R, w = (w1, · · · , wk) ∈ Rk, t = (t1, · · · , tk) ∈ (0, 1]k↑, let ξ = h
(k)|b
M↓ (x0,w, t)

be the solution to

ξ0 = x0; (3.27)

dξt
dt

= aM (ξt) ∀t ∈ [0, 1], t ̸= t1, t2, · · · , tk; (3.28)

ξt = ξt− + φb

(
σM (ξt−)wj

)
if t = tj for some j ∈ [k]. (3.29)

Also, we let D(k)|b
A;M↓ =

∆ h
(k)|b
M↓

(
R×Rk × (0, 1]k↑

)
. One can see that the key difference between h

(k)|b
M↓ and

h(k)|b is that, when constructing h
(k)|b
M↓ , we use the truncated aM (·), σM (·) as the drift and diffusion

coefficients instead of the vanilla a(·), σ(·).

Corollary 3.9. Let Assumptions 2 and 3 hold. Let b > 0, k ≥ 0. Let A ⊆ R be compact. There
exists M0 ∈ (0,∞) such that for any M ≥M0

• supt≤1 |ξ(t)| ≤M0 ∀ξ ∈ D(k)|b
A ∪ D(k)|b

A;M↓;

• For any t = (t1, · · · , tk) ∈ (0, 1]k↑, w = (w1, · · · , wk) ∈ Rk and x0 ∈ A,

h(k)|b(x0,w, t) = h
(k)|b
M↓ (x0,w, t).

Proof. Let −∞ < u < v < ∞ be such that A ⊆ [u, v]. Given x0 ∈ A, w ∈ Rk, and t ∈ (0, 1]k↑,

let ξ =∆ h(k)|b(x0,w, t) ∈ D(k)|b
A ⊆ D(k)|b

[u,v] . Let M0 < ∞ be the uniform upper bound associated

with D(k)|b
[u,v] in Lemma 3.8: i.e., supt∈[0,1] |ξ(t)| ≤ M0 ∀ξ ∈ D(k)|b

[u,v] . If M ≥ M0, then we must have

ξ = h(k)|b(x0,w, t) = h
(k)|b
M↓ (x0,w, t) due to ∥ξ∥ ≤M0 ≤M , and hence D(k)|b

A;M↓ = D(k)|b
A This concludes

the proof.

Now we are ready to study the continuity of mappings h(k) defined in (2.5)-(2.7) and h(k)|b defined
in (2.15)-(2.17).

Lemma 3.10. Let Assumptions 2 and 3 hold. Given any b, T > 0 and any k = 0, 1, 2, · · · , the

mapping h
(k)|b
[0,T ] is continuous on R× Rk × (0, T )k↑.
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Proof. To ease notations we focus on the case where T = 1, but the proof is identical for any T > 0. Fix
some b > 0 and k = 0, 1, 2, · · · , some x∗ ∈ R, w∗ = (w∗1 , · · · , w∗k) ∈ R and t∗ = (t∗1, · · · , t∗k) ∈ (0, 1)k↑.
Let ξ∗ = h(k)|b(x∗,w∗, t∗). Also, fix some ϵ ∈ (0, 1). It suffices to show the existence of some δ ∈ (0, 1)
such that dJ1

(ξ∗, ξ′) < ϵ for all ξ′ = h(k)|b(x′,w′, t′) with x′ ∈ R, w′ = (w′1, · · · , w′k) ∈ Rk, t′ =
(t′1, · · · , t′k) ∈ (0, 1)k↑ satisfying

|x∗ − x′| < δ, |w′j − w∗j | ∨ |t′j − tj | < δ ∀j ∈ [k]. (3.30)

In particular, by applying Corollary 3.9 onto D(k)|b
[x∗−1,x∗+1], given any M ∈ (0,∞) large enough the

claim ∥ξ∗∥+ 1 < M and ∥ξ′∥+ 1 < M holds for all ξ′ = h(k)|b(x′,w′, t′) satisfying (3.30). By picking
an even larger M if necessary, we also ensure that M ≥ 1 + maxj∈[k] |w∗j |. Let a∗ = aM , σ∗ = σM

(see (3.26)). Let C∗ = supx∈[−M,M ] |a(x)| ∨ σ(x) ∨ 1. Let h∗ = h
(k)|b
M↓ , see (3.27)-(3.29). The choice

of M implies that ξ∗ = h∗(x∗,w∗, t∗) and ξ′ = h∗(x′,w′, t′).
Let ρ =∆ exp(D) ≥ 1 where D ∈ [1,∞) is the Lipschitz coefficient in Assumption 2. We pick some

δ̃ > 0 small enough such that

2δ̃ < 1 ∧ ϵ; 2kρk(DM + 1)k+1(6C∗ + ρ)δ̃ < ϵ. (3.31)

Also, by picking δ > 0 small enough, it is guaranteed that (under convention t∗0 = t′0 = 0, t∗k+1 =
t′k+1 = 1)

δ < δ̃ ∨ 1; max
j∈[k]

∣∣∣ t∗j+1 − t∗j
t′j+1 − t′j

− 1
∣∣∣ < δ̃ ∀t′ = (t′1, · · · , t′k) ∈ (0, 1)k↑, max

j∈[k]
|t′j − t∗j | < δ. (3.32)

Now it only remains to show that, under the current the choice of δ, the bound dJ1(ξ, ξ
′) < ϵ follows

from condition (3.30). To proceed, fix some ξ′ satisfying condition (3.30). Define λ : [0, 1] → [0, 1] as

λ(u) =

{
0 if u = 0

t∗j +
t∗j+1−t

∗
j

t′j+1−t′j
· (u− t′j) if u ∈ (t′j , t

′
j+1] for some j = 0, 1, · · · , k.

For any u ∈ (0, 1), let j ∈ {0, 1, · · · , k} be such that u ∈ (t′j , t
′
j+1]. Observe that

|λ(u)− u| =
∣∣∣∣t∗j + t∗j+1 − t∗j

t′j+1 − t′j
· (u− t′j)− u

∣∣∣∣ = ∣∣∣∣t∗j + t∗j+1 − t∗j
t′j+1 − t′j

· v − (v + t′j)

∣∣∣∣ with v =∆ u− t′j

≤ |t∗j − t′j |+
∣∣∣∣ t∗j+1 − t∗j
t′j+1 − t′j

− 1

∣∣∣∣ · v
≤ δ̃ + δ̃ · 1 < ϵ. (3.33)

In summary, supu∈[0,1] |λ(u)−u| < ϵ. Moving on, we show supu∈[0,1]
∣∣ξ∗(λ(u))−ξ′(u)∣∣ < ϵ. with an in-

ductive argument. First, Assumption 2 allows us to apply Gronwall’s inequality and get supu∈(0,t∗1∧t′1)
∣∣ξ∗(u)−

ξ′(u)
∣∣ ≤ exp

(
D · (t∗1 ∧ t′1)

)
|x∗ − x′| ≤ ρδ. As a result, for any u ∈ (0, t∗1 ∧ t′1),∣∣ξ∗(λ(u))− ξ′(u)
∣∣ = ∣∣∣∣ξ∗( t∗1t′1 · u

)
− ξ′(u)

∣∣∣∣ ≤ ∣∣∣∣ξ∗( t∗1t′1 · u
)
− ξ∗(u)

∣∣∣∣+ ∣∣ξ′(u)− ξ∗(u)
∣∣

≤
∣∣∣∣ξ∗( t∗1t′1 · u

)
− ξ∗(u)

∣∣∣∣+ ρδ

≤ sup
x∈R

|a∗(x)| ·
∣∣∣∣ t∗1t′1 − 1

∣∣∣∣ · u+ ρδ due to ξ∗ = h∗(x∗,w∗, t∗)

≤ C∗δ̃ + ρδ̃ = (C∗ + ρ)δ̃ due to (3.32).
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In case that t′1 ≤ t∗1, we already get supu∈(0,t′1)
∣∣ξ∗(λ(u))− ξ′(u)

∣∣ < (4C∗ + ρ)δ̃. In case that t∗1 < t′1,

due to ξ′ = h∗(x′,w′, t′) for any u ∈ [t∗1, t
′
1) as well as the properties (3.32)(3.33),∣∣ξ′(u)− ξ′(t∗1)
∣∣ ≤ sup

x∈R
|a∗(x)| · |u− t∗1| < C∗δ̃;∣∣ξ∗(λ(u))− ξ∗

(
λ(t∗1)

)∣∣ ≤ sup
x∈R

|a∗(x)| ·
∣∣λ(u)− λ(t∗1)

∣∣ < 2C∗δ̃.

As a result, supu∈(0,t′1)
∣∣ξ∗(λ(u))− ξ′(u)

∣∣ < (4C∗ + ρ)δ̃. In addition, due to |φb(x)− φb(y)| ≤ |x− y|,∣∣∣ξ∗(λ(t′1))− ξ′(t′1)
∣∣∣

=

∣∣∣∣ξ∗(λ(t′1−)
)
+ φb

(
σ∗
(
ξ∗
(
λ(t′1−)

))
w∗1

)
− ξ′(t′1−)− φb

(
σ∗
(
ξ′(t′1−)

)
w′1

)∣∣∣∣
≤
∣∣∣ξ∗(λ(t′1−)

)
− ξ′(t′1−)

∣∣∣+ ∣∣∣σ∗(ξ∗(λ(t′1−)
))
w∗1 − σ∗

(
ξ′(t′1−)

)
w′1

∣∣∣
≤
∣∣∣ξ∗(λ(t′1−)

)
− ξ′(t′1−)

∣∣∣+ ∣∣∣σ∗(ξ∗(λ(t′1−)
))

− σ∗
(
ξ′(t′1−)

)∣∣∣ · |w∗1 |+ ∣∣∣σ∗(ξ′(t′1−)
)∣∣∣ · |w′1 − w∗1 |

<
∣∣∣ξ∗(λ(t′1−)

)
− ξ′(t′1−)

∣∣∣+ ∣∣∣σ∗(ξ∗(λ(t′1−)
))

− σ∗
(
ξ′(t′1−)

)∣∣∣ ·M + C∗δ

≤ (4C∗ + ρ)δ̃ + (4C∗ + ρ)δ̃ ·D ·M + C∗δ due to Assumption 2

=
[
(4C∗ + ρ)(DM + 1) + C∗

]
δ̃ due to δ < δ̃.

In summary, supu∈[0,t′1]
∣∣ξ∗(λ(u))− ξ′(u)∣∣ ≤ [(4C∗+ρ)(DM +1)+C∗

]
δ̃ ≤ (DM +1)(6C∗+ρ)δ̃. Now

we proceed inductively. Suppose that for some j = 1, 2, · · · , k,

sup
u∈[0,t′j ]

∣∣ξ∗(λ(u))− ξ′(u)
∣∣ ≤ 2j−1ρj−1(DM + 1)j(6C∗ + ρ)︸ ︷︷ ︸

=∆Rj

δ̃.

For any v ∈
[
0, (t′j+1 ∧ t∗j+1)− t′j

)
,

∣∣ξ∗(λ(t′j + v)
)
− ξ′(t′j + v)

∣∣ ≤ ∣∣∣∣ξ∗(λ(t′j + v)
)
− ξ∗(t′j + v)

∣∣∣∣+ ∣∣ξ∗(t′j + v)− ξ′(t′j + v)
∣∣

≤
∣∣∣∣ξ∗(λ(t′j + v)

)
− ξ∗(t′j + v)

∣∣∣∣+ ρRj δ̃ Using Gronwall’s inequality

≤ sup
x∈R

|a∗(x)| · |λ(t′j + v)− (t′j + v)|+ ρRj δ̃

≤ 2C∗δ̃ + ρRj δ̃ due to (3.33).

Again, in case that t′j+1 ≤ t∗j+1, we already get supu∈(0,t′j+1)

∣∣ξ∗(λ(u))− ξ′(u)∣∣ < (5C+ρRj

)
δ̃. In case

that t∗j+1 < t′j+1, note that for any u ∈ [t∗j+1, t
′
j+1), one can apply properties (3.32)(3.33) to yield∣∣ξ′(u)− ξ′(t∗j+1)

∣∣ ≤ sup
x∈R

|a∗(x)| · |u− t∗j+1| < C∗δ̃;∣∣ξ∗(λ(u))− ξ∗
(
λ(t∗j+1)

)∣∣ ≤ sup
x∈R

|a∗(x)| ·
∣∣λ(u)− λ(t∗j+1)

∣∣ < 2C∗δ̃.

In summary, we get supu∈(0,t′j+1)

∣∣ξ∗(λ(u))− ξ′(u)
∣∣ < (5C∗+ ρRj

)
δ̃. Lastly, in case that j = k+1 (so

t′j = t′k+1 = tj = tk+1 = 1), we have
∣∣∣ξ∗(1)− ξ′(1)

∣∣∣ ≤ lim supt↑1

∣∣∣ξ∗(λ(t))− ξ′(t)
∣∣∣ ≤ (5C∗ + ρRj

)
δ̃ ≤

Rj+1δ̃. In case that j ≤ k, using |φb(x)− φb(y)| ≤ |x− y|,∣∣∣ξ∗(λ(t′j+1)
)
− ξ′(t′j+1)

∣∣∣
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=

∣∣∣∣ξ∗(λ(t′j+1−)
)
+ φb

(
σ∗
(
ξ∗
(
λ(t′j+1−)

))
w∗j+1

)
− ξ′(t′j+1−)− φb

(
σ∗
(
ξ′(t′j+1−)

)
w′j+1

)∣∣∣∣
≤
∣∣∣ξ∗(λ(t′j+1−)

)
− ξ′(t′j+1−)

∣∣∣+ ∣∣∣σ∗(ξ∗(λ(t′j+1−)
))
w∗j+1 − σ∗

(
ξ′(t′j+1−)

)
w′j+1

∣∣∣
≤
∣∣∣ξ∗(λ(t′j+1−)

)
− ξ′(t′j+1−)

∣∣∣+ ∣∣∣σ∗(ξ∗(λ(t′j+1−)
))

− σ∗
(
ξ′(t′j+1−)

)∣∣∣ · |w∗j+1|

+
∣∣∣σ∗(ξ′(t′j+1−)

)∣∣∣ · |w′j+1 − w∗j+1|

<
∣∣∣ξ∗(λ(t′j+1−)

)
− ξ′(t′j+1−)

∣∣∣+ ∣∣∣σ∗(ξ(λ(t′j+1−)
))

− σ∗
(
ξ′(t′j+1−)

)∣∣∣ ·M + C∗δ

≤
(
5C∗ + ρRj

)
δ̃ +

(
5C∗ + ρRj

)
δ̃ ·D ·M + C∗δ because of Assumption 2

=
[(
5C∗ + ρRj

)
(DM + 1) + C∗

]
δ̃ ≤

(
6C∗ + ρRj

)
(DM + 1)δ̃

= 6C∗(DM + 1)δ̃ + ρ(DM + 1)Rj δ̃ ≤ ρ(DM + 1)Rj δ̃ + ρ(DM + 1)Rj δ̃

= 2ρ(DM + 1)Rj δ̃ = 2jρj(DM + 1)j+1(6C∗ + ρ)δ̃ = Rj+1δ̃,

and hence supu∈[0,t′j+1]

∣∣ξ∗(λ(u))−ξ′(u)∣∣ ≤ Rj+1δ̃. By arguing inductively, we yield supu∈[0,1]
∣∣ξ∗(λ(u))−

ξ′(u)
∣∣ ≤ Rk+1δ̃ < ϵ due to our choice of δ̃ in (3.31). Combining this bound with (3.33), we get

dJ1
(ξ∗, ξ′) < ϵ and conclude the proof.

Lemma 3.11. Let Assumptions 2, 3, and 4 hold. Given any k = 0, 1, 2, · · · and T > 0, the mapping

h
(k)
[0,T ] is continuous on R× Rk × (0, T )k↑.

Proof. To ease notations we focus on the case where T = 1, but the proof is identical for arbitrary
T > 0. Fix some k = 0, 1, 2, · · · , x∗ ∈ R, w∗ = (w∗1 , · · · , w∗k) ∈ R and t∗ = (t∗1, · · · , t∗k) ∈ (0, 1)k↑. We
claim the existence of some b = b(x∗,w∗, t∗) > 0 such that for any δ ∈ (0, 1), x′ ∈ R, w′ ∈ Rk and
t′ ∈ (0, 1)k↑ satisfying

|x∗ − x′| < δ; |w′j − w∗j | ∨ |t′j − t∗j | < δ ∀j ∈ [k], (3.34)

we have h(k)(x′,w′, t′) = h(k)|b(x′,w′, t′). Then the continuity of h(k) follows immediately from
the continuity of h(k)|b established in Lemma 3.10. To find such b > 0, note that we can simply
set b = C ·

(
max{|w∗j | : j ∈ [k]} + 1

)
where C ≥ 1 is the constant in Assumption 4 satisfying

supx∈R |σ(x)| ≤ C. Indeed, for any δ ∈ (0, 1) and any δ ∈ (0, 1), x′ ∈ R, w′ ∈ Rk and t′ ∈ (0, 1)k↑

satisfying (3.34), for ξ′ = h(k)(x′,w′, t′) we have |ξ′(t′j−)w′j | ≤ C ·
(
max{|w∗j | : j ∈ [k]}+ δ

)
< b for

all j ∈ [k], thus implying ξ′ = h(k)|b(x′,w′, t′). This concludes the proof.

As an important consequence of the previous discussion, we verify the sequential compactness
condition (2.1) for measures C(k)( · ;x) and C(k)|b( · ;x) when we restrict x over a compact set A.

Lemma 3.12. Let T > 0 and k ≥ 1. Let A ⊆ R be compact.

(a) Let Assumptions 2, 3, and 4 hold. For any sequence xn ∈ A and x∗ ∈ A such that limn→∞ xn =
x∗,

lim
n→∞

C(k)(f ;xn) = C(k)(f ;x∗) ∀f ∈ C
(
D[0, T ] \ D(k−1)

A [0, T ]
)
.

(b) Let Assumptions 2 and 3 hold. Let b > 0. For any sequence xn ∈ A and x∗ ∈ A such that
limn→∞ xn = x∗,

lim
n→∞

C(k)|b(f ;xn) = C(k)|b(f ;x∗) ∀f ∈ C
(
D[0, T ] \ D(k−1)|b

A [0, T ]
)
.
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Proof. For convenience we consider the case T = 1, but the proof can easily extend for arbitrary
T > 0.

(a) Pick some f ∈ C(D \ D(k−1)
A ). and let ϕ(x) = ϕf (x) =∆ C(k)(f ;x). We argue that ϕ(x) is a

continuous function using Dominated Convergence theorem. First, from the continuity of f and h(k)

(see Lemma 3.11), for any sequence ym ∈ R with limm→∞ ym = y ∈ R, we have

lim
m→∞

f
(
h(k)(ym,w, t)

)
= f

(
h(k)(y,w, t)

)
∀w ∈ Rk, t ∈ (0, 1)k↑.

Next, we apply Lemma 3.6 onto B = supp(f), which is bounded away from D(k−1)
A , and find δ̄ > 0 such

that h(k)(x,w, t) ∈ B =⇒ |wj | > δ̄ ∀j ∈ [k]. As a result,
∣∣f(h(k)(x,w, t))∣∣ ≤ ∥f∥ ·I

(
|wj | > δ̄ ∀j ∈ [k]

)
.

Also, note that
∫
I
(
|wj | > δ̄ ∀j ∈ [k]

)
νkα(dw) × Lk↑

1 (dt) ≤ 1/δ̄kα < ∞. This allows us to apply
Dominated Convergence theorem and establish the continuity of ϕ(x). This implies

lim
n→∞

C(k)(f ;xn) = lim
n→∞

ϕ(xn) = ϕ(x∗) = C(k)(f ;x∗).

Due to the arbitrariness of f ∈ C(D \ D(k−1)
A ) we conclude the proof of part (a).

(b) The proof is almost identical. The only differences are that we apply Lemma 3.10 (resp.
Lemma 3.7) instead of Lemma 3.11 (resp. Lemma 3.6) so we omit the details.

In the next lemma, we show that the image of h(1) (resp. h(1)|b) provides good approximations of

the sample path of Xη
j (resp. X

η|b
j ) up until τ>δ

1 (η), i.e. the arrival time of the first “large noise”; see

(3.2),(3.3) for the definition of τ>δ
i (η),W>δ

i (η).

Lemma 3.13. Let Assumptions 2 and 4 hold. Let D,C ∈ [1,∞) be the constants in Assumptions 2
and 4 respectively and let ρ =∆ exp(D).

(a) For any ϵ, δ, η > 0 and any x, y ∈ R, it holds on the event

{
max

i≤⌊1/η⌋∧
(
τ>δ
1 (η)−1

) η∣∣∣ i∑
j=1

σ
(
Xη

j−1(x)
)
Zj

∣∣∣ ≤ ϵ
}

that

sup
t∈[0,1]: t<ητ>δ

1 (η)

∣∣ξt −Xη
⌊t/η⌋(x)

∣∣ ≤ ρ ·
(
ϵ+ |x− y|+ ηC

)
, (3.35)

where

ξ =

{
h(1)

(
y, ηW>δ

1 (η), ητ>δ
1 (η)

)
if ητ>δ

1 (η) ≤ 1,

h(0)(y) if ητ>δ
1 (η) > 1.

(b) Furthermore, suppose that Assumption 8 holds. For any ϵ, b > 0, any δ ∈ (0, b
2C ), η ∈ (0, b∧12C ),

and any x, y ∈ R, it holds on event

{
max

i≤⌊1/η⌋∧
(
τ>δ
1 (η)−1

) η∣∣∣ i∑
j=1

σ
(
X

η|b
j−1(x)

)
Zj

∣∣∣ ≤ ϵ
}

that

sup
t∈[0,1]: t<ητ>δ

1 (η)

∣∣ξt −X
η|b
⌊t/η⌋(x)

∣∣ ≤ ρ ·
(
ϵ+ |x− y|+ ηC

)
, (3.36)
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sup
t∈[0,1]: t≤ητ>δ

1 (η)

∣∣ξt −X
η|b
⌊t/η⌋(x)

∣∣ ≤ ρ ·
(
1 +

bD

c

)(
ϵ+ |x− y|+ 2ηC

)
(3.37)

where

ξ =

{
h(1)|b

(
y, ηW>δ

1 (η), ητ>δ
1 (η)

)
if ητ>δ

1 (η) ≤ 1,

h(0)|b(y) if ητ>δ
1 (η) > 1.

Proof. (a) By definition of ξ, we have ξt = yt(y) = h(0)(y)(t) for any t ∈ [0, 1] with t < ητ>δ
1 (η).

Also, since τ>δ
1 (η) only takes values in {1, 2, · · · }, we know that ητ>δ

1 (η) ≤ 1 ⇐⇒ τ>δ
1 (η) ≤ ⌊1/η⌋ and

ητ>δ
1 (η) > 1 ⇐⇒ τ>δ

1 (η) > ⌊1/η⌋.
Let A =∆

{
max

i≤⌊1/η⌋∧
(
τ>δ
1 (η)−1

) η∣∣∣∑i
j=1 σ

(
Xη

j−1(x)
)
Zj

∣∣∣ ≤ ϵ
}
. Recall the definition of the deter-

ministic process xη defined in (3.1). Applying Lemma 3.2, we know that on event A,∣∣∣xη
j (x)−Xη

j (x)
∣∣∣ ≤ ϵ · exp(ηD · ⌊1/η⌋) ≤ ρϵ ∀j ≤ ⌊1/η⌋ ∧

(
τ>δ
1 (η)− 1

)
. (3.38)

On the other hand, recall that yt(y) is the solution to ODE dyt(y)/dt = a
(
yt(y)

)
under initial

condition y0(y) = y. Since ξt = yt(y) on t < ητ>δ
1 (η), by applying Lemma 3.3 we get

sup
t∈[0,1]: t<ητ>δ

1 (η)

∣∣∣ξt − xη
⌊t/η⌋(x)

∣∣∣ ≤ (ηC + |x− y|
)
· ρ. (3.39)

Therefore,

sup
t∈[0,1]:t<ητ>δ

1 (η)

∣∣∣ξt −Xη
⌊t/η⌋(x)

∣∣∣ ≤ ρ ·
(
ϵ+ |x− y|+ ηC

)
. (3.40)

(b) Note that for any x ∈ R and any t ∈ [0, 1] with t < ητ>δ
1 (η),

h(0)|b(x)(t) = h(0)(x)(t) = h(1)|b
(
x, ηW>δ

1 (η), ητ>δ
1 (η)

)
(t) = h(1)

(
x, ηW>δ

1 (η), ητ>δ
1 (η)

)
(t) = yt(x).

Also, for any w with |w| ≤ δ < b
2C , note that φb

(
ηa(x) + σ(x)w

)
= ηa(x) + σ(x)w ∀x ∈ R due

to η supx∈R |a(x)| ≤ ηC < b
2 and supx∈R σ(x)|w| ≤ C|w| < b/2 (recall our choice of ηC < b

2 ∧ 1).

As a result, Xη
j (x) = X

η|b
j (x) for all x ∈ R and j < τ>δ

1 (η). It then follows directly from (3.40)

that supt∈[0,1]:t<ητ>δ
1 (η)

∣∣ξt − X
η|b
⌊t/η⌋(x)

∣∣ ≤ ρ ·
(
ϵ + |x − y| + ηC

)
. A direct consequence is (we write

y(u; y) = yu(y), y(s−; y) = limu↑s yu(y), and ξ(t) = ξt in this proof)∣∣∣y(ητ>δ
1 (η)−; y)−X

η|b
τ>δ
1 (η)−1(x)

∣∣∣ ≤ ρ ·
(
ϵ+ |x− y|+ ηC

)
. (3.41)

Therefore,∣∣∣ξ(ητ>δ
1 (η)

)
−X

η|b
τ>δ
1 (η)

(x)
∣∣∣

=

∣∣∣∣∣y(ητ>δ
1 (η)−; y) + φb

(
ησ
(
y(ητ>δ

1 (η)−; y)
)
W>δ

1 (η)

)

−
[
X

η|b
τ>δ
1 (η)−1(x) + φb

(
ηa
(
X

η|b
τ>δ
1 (η)−1(x)

)
+ ησ

(
X

η|b
τ>δ
1 (η)−1(x)

)
W>δ

1 (η)

)]∣∣∣∣∣
≤
∣∣∣y(ητ>δ

1 (η)−; y)−X
η|b
τ>δ
1 (η)−1(x)

∣∣∣
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+

∣∣∣∣φb

(
ησ
(
y(ητ>δ

1 (η)−; y)
)
W>δ

1 (η)

)
− φb

(
ησ
(
X

η|b
τ>δ
1 (η)−1(x)

)
W>δ

1 (η)

)∣∣∣∣︸ ︷︷ ︸
=∆ I1

+

∣∣∣∣φb

(
ησ
(
X

η|b
τ>δ
1 (η)−1(x)

)
W>δ

1 (η)

)
− φb

(
ηa
(
X

η|b
τ>δ
1 (η)−1(x)

)
+ ησ

(
X

η|b
τ>δ
1 (η)−1(x)

)
W>δ

1 (η)

)∣∣∣∣︸ ︷︷ ︸
=∆ I2

.

Based on observation (3.23), we get

I1 ≤
∣∣φb/c

(
ηW>δ

1 (η)
)∣∣ · ∣∣∣σ(y(ητ>δ

1 (η)−; y)
)
− σ

(
X

η|b
τ>δ
1 (η)−1(x)

)∣∣∣
≤ b

c
·D ·

∣∣∣y(ητ>δ
1 (η)−; y)−X

η|b
τ>δ
1 (η)−1(x)

∣∣∣ ≤ bD

c
· ρ ·

(
ϵ+ |x− y|+ ηC

)
using Assumption 2 and the upper bound (3.41). On the other hand, from |φb(x)− φb(y)| ≤ |x− y|
we get I2 ≤

∣∣∣ηa(Xη|b
τ>δ
1 (η)−1(x)

)∣∣∣ ≤ ηC. In summary,

sup
t∈[0,1]: t≤ητ>δ

1 (η)

∣∣∣ξt −X
η|b
⌊t/η⌋(x)

∣∣∣ ≤ (1 + bD

c

)
· ρ ·

(
ϵ+ |x− y|+ ηC

)
+ ηC

≤
(
1 +

bD

c

)
· ρ ·

(
ϵ+ |x− y|+ 2ηC

)
.

This concludes the proof of part (b).

By applying Lemma 3.13 inductively, the next result illustrates how the image of the mapping

h(k)|b approximates the path of X
η|b
j (x).

Lemma 3.14. Let Assumptions 2, 4, and 8 hold. Let Ai(η, b, ϵ, δ, x) be defined as in (3.6). For any

k ≥ 0, x ∈ R, ϵ, b > 0, δ ∈ (0, b
2C ), and η ∈ (0, b∧ϵ2C ), it holds on event

(⋂k+1
i=1 Ai(η, b, ϵ, δ, x)

)
∩{

τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η)
}

that

sup
t∈[0,1]

∣∣∣ξ(t)−X
η|b
⌊t/η⌋(x)

∣∣∣ < [3ρ · (1 + bD

c
)
]k

· 3ρϵ.

where ξ =∆ h(k)|b
(
x, ηW>δ

1 (η), · · · , ηW>δ
k (η), ητ>δ

1 (η), · · · , ητ>δ
k (η)

)
, ρ = exp(D) ≥ 1, D ∈ [1,∞) is

the Lipschitz coefficient in Assumption 2, C ≥ 1 is the constant in Assumption 4, and c ∈ (0, 1) is
the constant in Assumption 8.

Proof. First of all, on A1(η, b, ϵ, δ, x), one can apply (3.36) of Lemma 3.13 and obtain

sup
t∈[0,1]: t<ητ>δ

1 (η)

∣∣∣ξt −X
η|b
⌊t/η⌋(x)

∣∣∣ = sup
t∈[0,1]: t<ητ>δ

1 (η)

∣∣∣yt(x)−Xη
⌊t/η⌋(x)

∣∣∣ ≤ ρ · (ϵ+ ηC) < 2ρϵ,

where we applied our choice of ηC < ϵ/2. In case that k = 0, we can already conclude the proof.
Henceforth in the proof, we focus on the case where k ≥ 1. Now we can instead apply (3.37) of Lemma
3.13 to get

sup
t∈[0,ητ>δ

1 (η)]

∣∣∣ξt −X
η|b
⌊t/η⌋(x)

∣∣∣ ≤ ρ ·
(
1 +

bD

c

)(
ϵ+ 2ηC

)
≤ 3ρ ·

(
1 +

bD

c

)
ϵ

due to our choice of 2ηC < ϵ. To proceed with an inductive argument, suppose that for some
j = 1, 2, · · · , k − 1 we can show that

sup
t∈[0,1∧ητ>δ

j (η)]

∣∣∣ξt −X
η|b
⌊t/η⌋(x)

∣∣∣ ≤ [3ρ · (1 + bD

c
)
]j
ϵ︸ ︷︷ ︸

=∆Rj

.
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To highlight the timestamp in the ODE yt(y) we write y(t; y) = yt(y) in this proof. Note that for

any t ∈
[
ητ>δ

j (η), ητ>δ
j+1(η)

)
, we have ξt = y

(
t− ητ>δ

j (η); ξητ>δ
j (η)

)
. Therefore, by applying (3.37) of

Lemma 3.13 again, we obtain

sup
t∈
[
ητ>δ

j (η),ητ>δ
j+1(η)

] ∣∣∣ξt −X
η|b
⌊t/η⌋(x)

∣∣∣ ≤ ρ ·
(
1 +

bD

c

)
· (ϵ+Rj + 2ηC)

≤ ρ ·
(
1 +

bD

c

)
· (2ϵ+Rj) due to 2ηC < ϵ

≤ 3ρ ·
(
1 +

bD

c

)
Rj = Rj+1 due to Rj > ϵ.

Arguing inductively, we yield supt∈[0,ητ>δ
k (η)]

∣∣ξt −X
η|b
⌊t/η⌋(x)

∣∣ ≤ Rk =
[
3ρ · (1 + bD

c )
]k
ϵ. Lastly, due to

(3.35) of Lemma 3.13 and the fact that ητ>δ
k+1(η) > 1,

sup
t∈[ητ>δ

k (η),1]

∣∣∣ξt −X
η|b
⌊t/η⌋(x)

∣∣∣ ≤ ρ · (ϵ+Rk + ηC) ≤ ρ · (2ϵ+Rk)

≤ ρ · 3Rk <
[
3ρ · (1 + bD

c
)
]k

· 3ρϵ

This concludes the proof.

3.2 Proof of Theorem 2.1

We first provide the proof of Theorem 2.1, i.e., the Portmanteau theorem for the uniform M(S \ C)-
convergence.

Proof of Theorem 2.1. We first prove (i) ⇒ (ii) and proceed with a proof by contradiction. Suppose
that the claim lim supη↓0 supθ∈Θ µ

η
θ(F )− µθ(F

ϵ) ≤ 0 does not hold for some closed F bounded away
from C and some ϵ > 0. Then there exists some sequences ηn ↓ 0 and θn ∈ Θ and some δ > 0 such
that µηn

θn
(F ) − µθn(F

ϵ) > δ ∀n ≥ 1. Now, we make two observations. First, using Urysohn’s lemma
(see, e.g., lemma 2.3 of [34]), one can identify some f ∈ C(S \C) such that IF ≤ f ≤ IF ϵ , which leads
to the bound µηn

θn
(F ) − µθn(F

ϵ) ≤ µηn

θn
(f) − µθn(f) for each n. Second, from statement (i) we get

limn→∞
∣∣µηn

θn
(f)− µθn(f)

∣∣ = 0. In summary, we yield the contradiction

lim sup
n→∞

µηn

θn
(F )− µθn(F

ϵ) ≤ lim sup
n→∞

µηn

θn
(f)− µθn(f)

≤ lim
n→∞

∣∣µηn

θn
(f)− µθn(f)

∣∣ = 0.

The case where claim lim infη↓0 infθ∈Θ µ
η
θ(G) − µθ(G

ϵ) ≥ 0 does not hold for some open G bounded
away from C and some ϵ > 0 can be addressed analogously by applying Urysohn’s lemma and con-
structing some g ∈ C(S \ C) such that IGϵ ≤ g ≤ IG. This concludes the proof of (i) ⇒ (ii).

Next, we prove (ii) ⇒ (i). Again, we consider a proof by contradiction. Suppose that the claim
limη↓0 supθ∈Θ

∣∣µη
θ(g)−µθ(g)

∣∣ = 0 does not hold for some g ∈ C(S\C). Then there exist some sequences
ηn ↓ 0, θn ∈ Θ and some δ > 0 such that

|µηn

θn
(g)− µθn(g)| > δ ∀n ≥ 1. (3.42)

To proceed, we arbitrarily pick some closed F ⊆ S that is bounded away from C, and some open
G ⊆ S that is bounded away from C, and then make two observations. First, using claims in (ii),
we have lim supn→∞ µηn

θn
(F ) − µθn(F

ϵ) ≤ 0 and lim infn→∞ µηn

θn
(G) − µθn(Gϵ) ≥ 0 for any ϵ > 0.

Next, due to the assumption (2.1), by picking a sub-sequence of θn if necessary we can find some µθ∗

such that limn→∞
∣∣µθn(f)− µθ∗(f)

∣∣ = 0 for all f ∈ C(S \ C). By Portmanteau theorem for standard
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M(S\C)-convergence (see theorem 2.1 of [34]), we yield lim supn→∞ µθn(F
ϵ) ≤ µθ∗(F

ϵ) for the closed
set F ϵ and lim infn→∞ µθn(Gϵ) ≥ µθ∗(Gϵ) for the open set Gϵ. In summary, for any ϵ > 0,

lim sup
n→∞

µηn

θn
(F ) ≤ lim sup

n→∞
µθn(F

ϵ) + lim sup
n→∞

µηn

θn
(F )− µθn(F

ϵ) ≤ µθ∗(F
ϵ),

lim inf
n→∞

µηn

θn
(G) ≥ lim inf

n→∞
µθn(Gϵ) + lim inf

n→∞
µηn

θn
(G)− µθn(Gϵ) ≥ µθ∗(Gϵ).

Lastly, note that limϵ↓0 µθ∗(F
ϵ) = µθ∗(F ) and limϵ↓0 µθ∗(Gϵ) = µθ∗(G) due to continuity of measures

and
⋂

ϵ>0 F
ϵ = F ,

⋃
ϵ>0Gϵ = G. This allows us to apply Portmanteau theorem for standard M(S\C)-

convergence again and obtain that limn→∞
∣∣µηn

θn
(g)− µθ∗(g)

∣∣ = 0 for the g ∈ C(S \ C) fixed in (3.42).

However, recall that we have already obtained limn→∞
∣∣µθn(g)− µθ∗(g)

∣∣ = 0 using assumption (2.1).
We hereby arrive at the contradiction

lim
n→∞

∣∣µηn

θn
(g)− µθn(g)

∣∣ ≤ lim
n→∞

∣∣µηn

θn
(g)− µθ∗(g)

∣∣+ lim
n→∞

∣∣µθ∗(g)− µθn(g)
∣∣ = 0

and conclude the proof of (ii) ⇒ (i).
Due to the equivalence of (i) and (ii), it only remains to show that (i) ⇒ (iii). Again, we consider

a proof by contradiction. Suppose that the claim lim supη↓0 supθ∈Θ µ
η
θ(F ) ≤ supθ∈Θ µθ(F ) in (iii)

does not hold for some closed F bounded away from C. Then we can find sequences ηn ↓ 0, θn ∈ Θ
and some δ > 0 such that µηn

θn
(F ) > supθ∈Θ µθ(F ) + δ ∀n ≥ 1. Next, due to the assumption (2.1), by

picking a sub-sequence of θn if necessary we can find some µθ∗ such that limn→∞
∣∣µθn(f)−µθ∗(f)

∣∣ = 0

for all f ∈ C(S \ C). Meanwhile, (i) implies that limn→∞
∣∣µηn

θn
(f) − µθn(f)

∣∣ = 0 for all f ∈ C(S \ C).
Therefore,

lim
n→∞

∣∣µηn

θn
(f)− µθ∗(f)

∣∣ ≤ lim
n→∞

∣∣µηn

θn
(f)− µθn(f)

∣∣+ lim
n→∞

∣∣µθn(f)− µθ∗(f)
∣∣ = 0

for all f ∈ C(S \ C). By Portmanteau theorem for standard M(S \ C)-convergence, we yield the
contradiction lim supn→∞ µηn

θn
(F ) ≤ µθ∗(F ) ≤ supθ∈Θ µθ(F ). In summary, we have established the

claim lim supη↓0 supθ∈Θ µ
η
θ(F ) ≤ supθ∈Θ µθ(F ) for all closed F bounded away from C. The same

approach can also be applied to show lim infη↓0 infθ∈Θ µ
η
θ(G) ≥ infθ∈Θ µθ(G) for all open G bounded

away from C. This concludes the proof.

To facilitate the application of Theorem 2.1, we introduce the concept of asymptotic equivalence
between two families of random objects. Specifically, we consider a generalized version of asymptotic
equivalence over S \ C, which is equivalent to definition 2.9 in [12].

Definition 3.1. Let Xn and Yn be random elements taking values in a complete separable metric
space (S,d). Let ϵn be a sequence of positive real numbers. Let C ⊆ S be Borel measurable. Xn is said
to be asymptotically equivalent to Yn in M(S \ C) with respect to ϵn if for any ∆ > 0 and any
B ∈ SS bounded away from C,

lim
n→∞

ϵ−1n P
(
d
(
Xn, Yn

)
I
(
Xn ∈ B or Yn ∈ B

)
> ∆

)
= 0.

In case that C = ∅, Definition 3.1 simply degenerates to the standard notion of asymptotic equiv-
alence; see definition 1 of [45]. The following lemma demonstrates the application of the asymptotic
equivalence and is plays an important role in our analysis below.

Lemma 3.15 (Lemma 2.11 of [12]). Let Xn and Yn be random elements taking values in a complete
separable metric space (S,d) and let C ⊆ S be Borel measurable. Suppose that ϵ−1n P(Xn ∈ ·) → µ(·)
in M(S \ C) for some sequence of positive real numbers ϵn. If Xn is asymptotically equivalent to Yn
when bounded away from C with respect to ϵn, then ϵ

−1
n P(Yn ∈ ·) → µ(·) in M(S \ C).
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3.3 Proof of Theorems 2.2 and 2.3

In the proofs of Theorems 2.2 and 2.3 below, without loss of generality we focus on the case where
T = 1. But we note that the proof for the cases with arbitrary T > 0 is identical.

Recall the notion of uniform M-convergence introduced in Definition 2.1. At first glance, the
uniform version of M-convergence stated in Theorem 2.2 and 2.3 is stronger than the standard M-
convergence introduced in [34]. Nevertheless, under the conditions provided in Theorem 2.2 or 2.3
regarding the initial conditions of Xη or Xη|b, we can show that it suffices to prove the standard
notion of M-convergence. In particular, the proofs to Theorem 2.2 and 2.3 hinge on the following key
result for Xη|b.

Proposition 3.16. Let ηn be a sequence of strictly positive real numbers with limn→∞ ηn = 0. Let
compact set A ⊆ R and xn, x

∗ ∈ A be such that limn→∞ xn = x∗. Under Assumptions 1, 2, and 3, it
holds for any k = 0, 1, 2, · · · and b > 0 that

P
(
Xηn|b(xn) ∈ ·

)/
λk(ηn) → C(k)|b( · ;x∗) in M

(
D \ D(k−1)|b

A

)
as n→ ∞.

As the first application of Proposition 3.16, we prepare a similar result for the unclipped dynamics
Xη defined in (2.10).

Proposition 3.17. Let ηn be a sequence of strictly positive real numbers with limn→∞ ηn = 0. Let
compact set A ⊆ R and xn, x

∗ ∈ A be such that limn→∞ xn = x∗. Under Assumptions 1, 2, 3, and 4,
it holds for any k = 0, 1, 2, · · · that

P
(
Xηn(xn) ∈ ·

)/
λk(ηn) → C(k)

(
· ;x∗

)
in M

(
D \ D(k−1)

A

)
as n→ ∞.

Proof. Fix some k = 0, 1, 2, · · · and some g ∈ C
(
D \ D(k−1)

A

)
. By virtue of Portmanteau theorem for

M-convergence (see theorem 2.1 of [34]), it suffices to show that

lim
n→∞

E
[
g
(
Xηn(xn)

)]/
λk(ηn) = C(k)(g;x∗).

To this end, we first set B =∆ supp(g) and observe that for any n ≥ 1 and any δ, b > 0,

E
[
g
(
Xηn(xn)

)]
= E

[
g(Xηn(xn))I

(
Xηn(xn) ∈ B

)]
= E

[
g(Xηn(xn))I

(
τ>δ
k+1(ηn) < ⌊1/ηn⌋; Xηn(xn) ∈ B

)]
+E

[
g(Xηn(xn))I

(
τ>δ
k (ηn) > ⌊1/ηn⌋; Xηn(xn) ∈ B

)]
+E

[
g(Xηn(xn))I

(
τ>δ
k (ηn) ≤ ⌊1/ηn⌋ < τ>δ

k+1(ηn); ηn|W
>δ
j (ηn)| >

b

2C
for some j ∈ [k]; Xηn(xn) ∈ B

)]
+E

[
g(Xηn(xn))I

(
τ>δ
k (ηn) ≤ ⌊1/ηn⌋ < τ>δ

k+1(ηn); ηn|W
>δ
j (ηn)| ≤

b

2C
∀j ∈ [k]; Xηn(xn) ∈ B

)
︸ ︷︷ ︸

=∆ I∗(n,b,δ)

]

where C ≥ 1 is the constant in Assumption 4 such that |a(x)| ∨ σ(x) ≤ C for any x ∈ R. Now we
focus on term I∗(n, b, δ) and let

Ã(n, b, δ) =∆
{
τ>δ
k (ηn) ≤ ⌊1/ηn⌋ < τ>δ

k+1(ηn); ηn|W
>δ
j (ηn)| ≤

b

2C
∀j ∈ [k]; Xηn(xn) ∈ B

}
.

For any n large enough, we have ηn · supx∈R |a(x)| ≤ ηnC ≤ b/2. As a result,for such n and any

δ ∈ (0, b
2C ), on event Ã(n, b, δ) the step-size (before truncation) ηa

(
X

η|b
j−1(x)

)
+ ησ

(
X

η|b
j−1(x)

)
Zj of
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X
η|b
j is less than b for each j ≤ ⌊1/ηn⌋, and hence Xηn(xn) = Xηn|b(xn). This observation leads to

the following upper bound: Given any b > 0 and δ ∈ (0, b
2C ), it holds for any n large enough that

E
[
g(Xηn(xn))

]
≤ ∥g∥P

(
τ>δ
k+1(ηn) ≤ ⌊1/ηn⌋

)︸ ︷︷ ︸
=∆p1(n,δ)

+ ∥g∥P
(
τ>δ
k (ηn) > ⌊1/ηn⌋; Xηn(xn) ∈ B

)︸ ︷︷ ︸
=∆p2(n,δ)

+ ∥g∥P
(
τ>δ
k (ηn) ≤ ⌊1/ηn⌋ < τ>δ

k+1(ηn); ηn|W
>δ
j (ηn)| >

b

2C
for some j ∈ [k]

)
︸ ︷︷ ︸

=∆p3(n,b,δ)

+E
[
g(Xηn|b(xn))

]
.

Meanwhile, given any n large enough, any b > 0 and any δ ∈ (0, b
2C ), we obtain the lower bound

E
[
g(Xηn(xn))

]
≥ E[I∗(n, b, δ)]

= E
[
g(Xηn|b(xn))I

(
Ã(n, b, δ)

)]
due to Xηn(xn) = Xηn|b(xn) on Ã(n, b, δ)

≥ E
[
g(Xηn|b(xn))

]
− ∥g∥P

((
Ã(n, b, δ)

)c)
≥ E

[
g(Xηn|b(xn))

]
− ∥g∥ ·

[
p1(n, δ) + p2(n, δ) + p3(n, b, δ)

]
.

Suppose we can find some δ > 0 satisfying

lim
n→∞

p1(n, δ)
/
λk(ηn) = 0, (3.43)

lim
n→∞

p2(n, δ)
/
λk(ηn) = 0. (3.44)

Fix such δ. Furthermore, we claim that for any b > 0,

lim sup
n→∞

p3(n, b, δ)
/
λk(ηn) ≤ ψδ(b) =

∆ k

δαk
·
( δ
2C

)α · 1

bα
. (3.45)

Note that limb→∞ ψδ(b) = 0. Lastly, we claim that

lim
b→∞

C(k)|b(g;x∗) = C(k)(g;x∗). (3.46)

Then by combining (3.43)–(3.44) with the upper and lower bounds for E
[
g(Xηn(xn))

]
established

earlier, we see that for any b large enough (such that b
2C > δ),

lim
n→∞

E
[
g(Xηn|b(xn))

]
λk(ηn)

− ∥g∥ψδ(b) ≤ lim
n→∞

E
[
g(Xηn(xn))

]
λk(ηn)

≤ lim
n→∞

E
[
g(Xηn|b(xn))

]
λk(ηn)

+ ∥g∥ψδ(b),

=⇒− ∥g∥ψδ(b) +C(k)|b(g;x∗) ≤ lim
n→∞

E
[
g(Xηn(xn))

]
λk(ηn)

≤ ∥g∥ψδ(b) +C(k)|b(g;x∗).

In the last line of the display, we applied Proposition 3.16. Letting b tend to ∞ and applying the limit
(3.46), we conclude the proof. Now it only remains to prove (3.43) (3.44) (3.45) (3.46).

Proof of Claim (3.43):

Applying (3.4), we see that p1(n, δ) ≤
(
H( δ

ηn
)
/
ηn
)k+1

holds for any δ > 0 and any n ≥ 1. Due to

the regularly varying nature of H(·), we then yield lim supn→∞
p1(n,δ)

λk+1(ηn)
≤ 1/δα(k+1) < ∞. To show

that claim (3.43) holds for any δ > 0 we only need to note that

lim sup
n→∞

p1(n, δ)

λk(ηn)
≤ lim sup

n→∞

p1(n, δ)

λk+1(ηn)
· lim
n→∞

λ(ηn) ≤
1

δα(k+1)
· lim
n→∞

H(1/ηn)

ηn
= 0
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due to H(1/η)
η = λ(η) ∈ RVα−1(η) as η ↓ 0 and α > 1.

Proof of Claim (3.44):
We claim the existence of some ϵ > 0 such that{
τ>δ
k (η) > ⌊1/η⌋; Xη(x) ∈ B

}
∩
( k+1⋂

i=1

Ai(η,∞, ϵ, δ, x)
)
= ∅ ∀x ∈ A, δ > 0, η ∈ (0,

ϵ

Cρ
) (3.47)

where D,C ∈ [1,∞) are the constants in Assumptions 2 and 4 respectively, ρ =∆ exp(D), and event
Ai(η, b, ϵ, δ, x) is defined in (3.6). Then for any δ > 0, we yield

lim sup
n→∞

p2(n, δ)
/
λk(ηn) ≤ lim sup

n→∞
sup
x∈A

P
(( k+1⋂

i=1

Ai(ηn,∞, ϵ, δ, x)
)c)/

λk(ηn).

Applying Lemma 3.4 (b) with some N > k(α − 1), we conclude that claim (3.44) holds for all δ > 0
small enough. Now it only remains to find ϵ > 0 that satisfies condition (3.47). To this end, we first

note that the set B = supp(g) is bounded away from D(k−1)
A . By applying Lemma 3.6 one can find

ϵ̄ > 0 such that dJ1(B
ϵ̄,D(k−1)

A ) > ϵ̄. Now we show that (3.47) holds for any ϵ > 0 small enough with
(ρ + 1)ϵ < ϵ̄. To see why, we fix such ϵ as well as some x ∈ A, δ > 0 and η ∈ (0, ϵ

Cρ ). Next, define

process X̆η,δ(x) =∆
{
X̆η,δ

t (x) : t ∈ [0, 1]
}
as the solution to (under initial condition X̆η,δ

0 (x) = x)

dX̆η,δ
t (x)

dt
= a

(
X̆η,δ

t (x)
)

∀t ≥ 0, t /∈ {ητ>δ
j (η) : j ≥ 1},

X̆η,δ

ητ>δ
i (η)

(x) = Xη

τ>δ
i (η)

(x) ∀j ≥ 1.

On event
(
∩k+1
i=1 Ai(η,∞, ϵ, δ, x)

)
∩ {τ>δ

k (η) > ⌊1/η⌋}, observe that

dJ1

(
X̆η,δ(x),Xη(x)

)
≤ sup

t∈
[
0,ητ>δ

1 (η)
)
∪
[
ητ>δ

1 (η),ητ>δ
2 (η)

)
∪···∪

[
ητ>δ

k (η),ητ>δ
k+1(η)

) ∣∣∣X̆η,δ
t (x)−Xη

⌊t/η⌋(x)
∣∣∣

≤ ρ ·
(
ϵ+ ηC

)
≤ ρϵ+ ϵ < ϵ̄ because of (3.35) of Lemma 3.13.

In the last line of the display above, we applied η < ϵ
Cρ and our choice of (ρ + 1)ϵ < ϵ̄. However,

on {τ>δ
k (η) > ⌊1/η⌋} we have X̆η,δ(x) ∈ D(k−1)

A . As a result, on event
(
∩k+1
i=1 Ai(η,∞, ϵ, δ, x)

)
∩

{τ>δ
k (η) > ⌊1/η⌋} we must have dJ1

(
D(k−1)

A ,Xη(x)
)
< ϵ̄, and hence Xη(x) /∈ B due to the fact that

dJ1
(B ϵ̄,D(k−1)

A ) > ϵ̄. This establishes (3.47).

Proof of Claim (3.45):
Due to the independence between

(
τ>δ
i (η)− τηj−1(δ)

)
j≥1 and

(
W>δ

i (η)
)
j≥1,

p3(n, b, δ) = P
(
τ>δ
k (ηn) < ⌊1/ηn⌋ < τ>δ

k+1(ηn)
)
P
(
ηn|W>δ

j (ηn)| >
b

2C
for some j ∈ [k]

)
≤ P

(
τ>δ
k (ηn) ≤ ⌊1/ηn⌋

)
·

k∑
j=1

P
(
ηn|W>δ

j (ηn)| >
b

2C

)

≤
(H(δ/ηn)

ηn

)k
· k ·

H
(

b
2C · 1

ηn

)
H
(
δ · 1

ηn

) .
Due to H(x) ∈ RV−α(x) as x→ ∞, we conclude that lim supn→∞

p4(n,b,δ)
λk(ηn)

≤ k
δαk ·

(
δ
2C

)α · 1
bα = ψδ(b).
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Proof of Claim (3.46):

The proof relies on the following claim: for any S ∈ SD that is bounded away from D(k−1)
A ,

lim
b→∞

C(k)|b(S;x∗) = C(k)(S;x∗). (3.48)

Then for g ∈ C(D \ D(k−1)
A ) fixed at the beginning of the proof, we know that B = supp(g) is

bounded away from D(k−1)
A . Also, for an arbitrarily selected ∆ > 0, an approximation to g using

simple functions implies the existence of some N ∈ N, some sequence of real numbers
(
c
(i)
g

)N
i=1

, some

sequence
(
B

(i)
g

)N
i=1

of Borel measurable sets on D that are bounded away from D(k−1)
A such that the

following claims hold for g∆(·) =∆
∑N

i=1 c
(i)
g I
(
· ∈ B

(i)
g

)
:

B(i)
g ⊆ B ∀i ∈ [N ];

∣∣g∆(ξ)− g(ξ)
∣∣ < ∆ ∀ξ ∈ D.

Now observe that

lim sup
b→∞

∣∣∣C(k)|b(g;x∗)−C(k)(g;x∗)
∣∣∣ ≤ lim sup

b→∞

∣∣∣C(k)|b(g;x∗)−C(k)|b(g∆;x∗)
∣∣∣

+ lim sup
b→∞

∣∣∣C(k)|b(g∆;x∗)−C(k)(g∆;x∗)
∣∣∣

+ lim sup
b→∞

∣∣∣C(k)(g∆;x∗)−C(k)(g;x∗)
∣∣∣

First, note that C(k)|b(g∆;x∗) =
∑N

i=1 c
(i)
g C(k)|b(B

(i)
g ;x∗) and C(k)(g∆;x∗) =

∑N
i=1 c

(i)
g C(k)(B

(i)
g ;x∗).

Therefore, applying (3.48), we get lim supb→∞

∣∣∣C(k)|b(g∆;x∗) − C(k)(g∆;x∗)
∣∣∣ = 0. Next, note that∣∣∣C(k)|b(g∆;x∗)−C(k)|b(g;x∗)

∣∣∣ ≤ ∆ ·C(k)|b(B;x∗) and
∣∣∣C(k)(g∆;x∗)−C(k)(g;x∗)

∣∣∣ ≤ ∆ ·C(k)(B;x∗).

Thanks to (3.48) again, we get lim supb→∞

∣∣∣C(k)|b(g;x∗)−C(k)(g;x∗)
∣∣∣ ≤ 2∆ ·C(k)(B;x∗). The arbi-

trariness of ∆ > 0 allows us to conclude the proof of (3.45).
We prove (3.48) by applying Dominated Convergence theorem. From the definition in (2.19),

C(k)|b(S;x∗) =∆
∫

I

{
h(k)|b

(
x∗,w, t

)
∈ S

}
νkα(dw)× Lk↑

1 (dt)

where S ∈ SD is bounded away from D(k−1)
A . First, for any w ∈ Rk, t ∈ (0, 1)k↑ and x0 ∈ R, let

M =∆ maxj∈[k] |wj |. For any b > MC where C ≥ 1 is the constant satisfying such that supx∈R |a(x)| ∨
σ(x) ≤ C (see Assumption 4), by comparing the definition of h(k) and h(k)|b it is easy to see that
h(k)|b(x∗,w, t) = h(k)(x∗,w, t). This implies limb→∞ I

{
h(k)|b

(
x∗,w, t

)
∈ S

}
= I
{
h(k)

(
x∗,w, t

)
∈ S

}
for all w ∈ Rk and t ∈ (0, 1)k↑. In order to apply Dominated Convergence theorem and conclude
the proof of (3.48), it suffices to find an integrable function that dominates I

{
h(k)|b

(
x∗,w, t

)
∈ S

}
.

Specifically, since S is bounded away from D(k−1)
A , we can find some ϵ̄ > 0 such that dJ1(S,D

(k−1)
A ) > ϵ̄.

Also, let ρ = exp(D) where D ∈ [1,∞) is the Lipschitz coefficient in Assumption 2. Fix some δ̄ < ϵ̄
ρC .

We claim that

I

{
h(k)|b

(
x∗,w, t

)
∈ S

}
≤ I

{
|wj | > δ̄ ∀j ∈ [k]

}
∀b > 0, w ∈ Rk, t ∈ (0, 1)k↑. (3.49)

From
∫
I{|wj | > δ̄ ∀j ∈ [k]}νkα(dw) × Lk↑

1 (dt) ≤ 1/δ̄kα < ∞ we conclude the proof. Now it only
remains to prove (3.49). Fix some w = (w1, · · · , wk) ∈ Rk, t = (t1, · · · , tk) ∈ (0, 1)k↑, and b > 0. Let
ξb = h(k)|b(x∗,w, t). Suppose there is some J ∈ [k] such that |wJ | ≤ δ̄. It suffices to show that ξb /∈ S.
To this end, define ξ ∈ D as (recall that y·(x) is the ODE defined in (2.32))

ξ(s) =∆


ξb(s) s ∈ [0, tJ)

ys−tJ (ξ(tJ−)) s ∈ [tJ , tJ+1)

ξb(s) s ∈ [tJ+1, t].
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Note that ξ ∈ D(k−1)
A and |ξ(tJ) − ξb(tJ)| = |∆ξb(tJ)| =

∣∣σ(ξb(tJ−)
)
· wJ

∣∣. Applying Gronwall’s
inequality, we then yield that for all s ∈ [tJ , tJ−1),

|ξb(s)− ξ(s)| ≤ exp
(
D(s− tJ)

)
·
∣∣σ(ξb(tJ−)

)
· wJ

∣∣
≤ ρ ·

∣∣σ(ξb(tJ−)
)
· wJ

∣∣ where ρ = exp(D)

≤ ρC|wJ | due to sup
x∈R

|σ(x)| ≤ C , see Assumption 4

≤ ρCδ̄ < ϵ̄ due to our choice of δ̄ <
ϵ̄

ρC
,

which implies dJ1(ξ, ξb) < ϵ̄. However, due to ξ ∈ D(k−1)
A and dJ1(S,D

(k−1)
A ) > ϵ̄, we must have ξb /∈ S.

This concludes the proof of (3.49).

With Proposition 3.17 in our arsenal, we prove Theorem 2.2.

Proof of Theorem 2.2. For simplicity of notations we focus on the case where T = 1, but the proof
below can be easily generalized for arbitrary T > 0.

We first prove the uniform M-convergence. Specifically, we proceed with a proof by contradiction.

Fix some k = 0, 1, · · · and suppose that there is some f ∈ C(D \ D(k−1)
A ), some sequence ηn > 0 with

limit limn→∞ ηn = 0, some sequence xn ∈ A, and ϵ > 0 such that
∣∣µ(k)

n (f)−C(k)(f ;xn)
∣∣ > ϵ ∀n ≥ 1

where µ
(k)
n (·) =∆ P

(
Xηn(xn) ∈ ·

)/
λk(ηn). Since A is compact, by picking a proper subsequence we

can assume w.l.o.g. that limn→∞ xn = x∗ for some x∗ ∈ A. This allows us to apply Proposition 3.17

and yield limn→∞
∣∣µ(k)

n (f) −C(k)(f ;x∗)
∣∣ = 0. On the other hand, using part (a) of Lemma 3.12, we

get limn→∞
∣∣C(k)(f ;xn)−C(k)(f ;x∗)

∣∣ = 0. Therefore, we arrive at the contradiction

lim
n→∞

∣∣µ(k)
n (f)−C(k)(f ;xn)

∣∣ ≤ lim
n→∞

∣∣µ(k)
n (f)−C(k)(f ;x∗)

∣∣+ lim
n→∞

∣∣C(k)(f ;x∗)−C(k)(f ;xn)
∣∣ = 0

and conclude the proof of the uniform M-convergence claim.
Next, we prove the uniform sample-path large deviations stated in (2.12). Part (a) of Lemma

3.12 verifies the compactness condition (2.1) for measures C(k)( · ;x) with x ∈ A. In light of the
Portmanteau theorem for uniform M-convergence (i.e., Theorem 2.1), most claims follow directly
from Theorem 2.2 and it only remains to verify that supx∈A C(k)

(
B−;x

)
<∞.

Note that B− is bounded away from D(k−1)
A . This allows us to apply Lemma 3.6 and find ϵ̄ > 0

and δ̄ > 0 such that

• Given any x ∈ A, h(k)(x,w, t) ∈ B ϵ̄ =⇒ |wj | > δ̄ ∀j ∈ [k],

• B ϵ̄ ∩ D(k−1)
A = ∅.

Then by the definition of C(k)|b in (2.9),

sup
x∈A

C(k)(B−;x) = sup
x∈A

∫
I

{
h(k)

(
x,w, t

)
∈ B− ∩ D(k)|b

A

}
νkα(dw)× Lk↑

1 (dt)

≤
∫

I

{
|wj | > δ̄ ∀j ∈ [k]

}
νkα(dw)× Lk↑

1 (dt) ≤ 1/δ̄kα <∞.

This concludes the proof.

Similarly, building upon Proposition 3.16, we provide the proof to Theorem 2.3.

Proof of Theorem 2.3. The proof-by-contradiction approach in Theorem 2.2 can be applied here to
establish the uniform M-convergence. The only difference is that we apply Proposition 3.16 (resp.,
part (b) of Lemma 3.12) instead of Proposition 3.17 (resp., part (a) of Lemma 3.12). Similarly, the
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proof to the uniform sample-path large deviations stated in (2.20) is almost identical to that of (2.12)
in Theorem 2.2. In particular, the only differences are that we apply part (b) of Lemma 3.12 (resp.,
Lemma 3.7) instead of part (a) of Lemma 3.12 (resp., Lemma 3.6). To avoid repetition we omit the
details.

3.3.1 Proof of Proposition 3.16

As has been demonstrated earlier, Proposition 3.16 lays the foundation for the sample-path LDPs of
heavy-tailed stochastic difference equations. To disentangle the technicalities involved, the first step
we will take is to provide further reduction to the assumptions in Proposition 3.16. Specifically, we
show that it suffices to prove the seemingly more restrictive results stated below, where we impose
the the boundedness condition in Assumption 4 and the stronger uniform nondegeneracy condition in
Assumption 8.

Proposition 3.18. Let ηn be a sequence of strictly positive real numbers with limn→∞ ηn = 0. Let
compact set A ⊆ R and xn, x

∗ ∈ A be such that limn→∞ xn = x∗. Under Assumptions 1, 2, 4, and 8,
it holds for any k = 0, 1, 2, · · · and b > 0 that

P
(
Xηn|b(xn) ∈ ·

)/
λk(ηn) → C(k)|b( · ;x∗) in M

(
D \ D(k−1)|b

A

)
as n→ ∞.

Proof of Proposition 3.16. Fix some b > 0, k ≥ 0, as well as some g ∈ C
(
D \ D(k−1)|b

A

)
that is also

uniformly continuous on D. Thanks to the Portmanteau theorem for M-convergence (see theorem 2.1
of [34]), it suffices to show that limn→∞E

[
g
(
Xηn|b(xn)

)]/
λk(ηn) = C(k)|b(g;x∗). Let B =∆ supp(g).

Note that B is bounded away from D(k−1)|b
A . Applying Corollary 3.9, we can fix some M0 such that

the following claim holds for any M ≥M0 : for any ξ = h
(k)|b
M↓ (x0,w, t) with t = (t1, · · · , tk) ∈ (0, 1]k↑,

w = (w1, · · · , wk) ∈ Rk and x0 ∈ A,

ξ = h(k)|b(x0,w, t) = h
(k)|b
M↓ (x0,w, t); sup

t∈[0,1]
|ξ(t)| ≤M0. (3.50)

Here the mapping h
(k)|b
M↓ is defined in (3.27)-(3.29). Now fix someM ≥M0+1 and recall the definitions

of aM , σM in (3.26). Also, define stochastic processes X̃η|b(x) =∆
{
X̃

η|b
⌊t/η⌋(x) : t ∈ [0, 1]

}
as

X̃
η|b
j (x) = X̃

η|b
j−1(x) + φb

(
ηaM

(
X̃

η|b
j−1(x)

)
+ ησM

(
X̃

η|b
j−1(x)

)
Zj

)
∀j ≥ 1

under initial condition X̃
η|b
0 (x) = x. In particular, by comparing the definition of X̃

η|b
j (x) with that

of X
η|b
j (x) in (2.13), we must have (for any x ∈ R, η > 0)

sup
t∈[0,1]

∣∣X̃η|b
⌊t/η⌋(x)

∣∣ > M ⇐⇒ sup
t∈[0,1]

∣∣Xη|b
⌊t/η⌋(x)

∣∣ > M, (3.51)

sup
t∈[0,1]

∣∣Xη|b
⌊t/η⌋(x)

∣∣ ≤M =⇒ Xη|b(x) = X̃η|b(x). (3.52)

Now observe that for any n ≥ 1 (recall that B = supp(g))

E
[
g
(
Xηn|b(xn)

)]
= E

[
g
(
Xηn|b(xn)

)
I

{
Xηn|b(xn) ∈ B; sup

t∈[0,1]

∣∣Xηn|b
⌊t/η⌋(xn)

∣∣ ≤M
}]

+E
[
g
(
Xηn|b(xn)

)
I

{
Xηn|b(xn) ∈ B; sup

t∈[0,1]

∣∣Xηn|b
⌊t/η⌋(xn)

∣∣ > M
}]
.

(3.53)

An upper bound then follows immediately from (3.51) and (3.52):

E
[
g
(
Xηn|b(xn)

)]
≤ E

[
g
(
X̃ηn|b(xn)

)]
+ ∥g∥P

(
sup

t∈[0,1]

∣∣X̃ηn|b
⌊t/η⌋(xn)

∣∣ > M
)
.
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Similarly, by bounding the first term on the R.H.S. of (3.53) using (3.51) and (3.52), we obtain

E
[
g
(
Xηn|b(xn)

)]
≥ E

[
g
(
X̃ηn|b(xn)

)
I

{
X̃ηn|b(xn) ∈ B; sup

t∈[0,1]

∣∣X̃ηn|b
⌊t/η⌋(xn)

∣∣ ≤M
}]

≥ E
[
g
(
X̃ηn|b(xn)

)]
− ∥g∥P

(
sup

t∈[0,1]

∣∣X̃ηn|b
⌊t/η⌋(xn)

∣∣ > M
)
.

To conclude the proof, it only remains to show that

lim
n→∞

λ−k(ηn)E
[
g
(
X̃ηn|b(xn)

)]
= C(k)|b(g;x∗), (3.54)

lim
n→∞

λ−k(ηn)P
(

sup
t∈[0,1]

∣∣X̃ηn|b
⌊t/η⌋(xn)

∣∣ > M
)
= 0. (3.55)

Proof of Claim (3.54):
Under Assumption 3, one can easily see that aM , σM would satisfy Assumption 4 and 8. This allows

us to apply Proposition 3.18 and obtain limn→∞ λ−k(ηn)E
[
g
(
X̃ηn|b(xn)

)]
= C̃(k)|b(g;x∗) where

C̃(k)|b( · ;x) =∆
∫

I

{
h
(k)|b
M↓

(
x,w, t

)
∈ ·

}
νkα(dw)× Lk↑

1 (dt).

Given (3.50) and the fact that x∗ ∈ A, we immediately get C̃(k)|b( · ;x∗) = C(k)|b( · ;x∗) and conclude
the proof of (3.54).

Proof of Claim (3.55):

Let E =∆ {ξ ∈ D : supt∈[0,1] |ξ(t)| > M}. Suppose we can show that E is bounded away from D(k)|b
A ,

then by applying Proposition 3.18 again we get lim supn→∞P
(
X̃ηn|b(xn) ∈ E

)/
λk+1(ηn) <∞, which

then implies (3.55). To see why E is bounded away from D(k)|b
A , note that it follows directly from

(3.50) that

ξ ∈ D(k)|b
A =⇒ sup

t∈[0,1]
|ξ(t)| ≤M0 ≤M − 1

due to our choice of M ≥ M0 + 1 at the beginning. Therefore, we yield dJ1

(
D(k)|b

A , E
)
≥ 1 and

conclude the proof.

The rest of Section 3.3 is devoted to establishing Proposition 3.18. In light of Lemma 3.15, a natural
approach to the M-convergence claim in Proposition 3.18 is to construct some process X̂η|b;(k) that is
not only asymptotically equivalent to Xη|b (as η ↓ 0) but also (under the right scaling) approaches to

C
(k)
b in the sense of M-convergence. To properly introduce the process X̂η|b;(k), a few new definitions

are in order. For any j ≥ 1 and n ≥ j let

JZ(c, n) =
∆ #{i ∈ [n] : |Zi| ≥ c} ∀c ≥ 0; Z(j)(η) =∆ max

{
c ≥ 0 : JZ(c, ⌊1/η⌋) ≥ j

}
. (3.56)

In other words, JZ(c, n) counts the number of elements in {|Zi| : i ∈ [n]} that are larger than c, and
Z(j)(η) identifies the value of the jth largest element in {|Zi| : i ≤ ⌊1/η⌋}. Moreover, let

τ
(j)
i (η) =∆ min

{
k > τ

(j)
i−1(η) : |Zk| ≥ Z(j)(η)

}
, W

(j)
i (η) =∆ Z

τ
(j)
i (η)

∀i = 1, 2, · · · , j (3.57)

with the convention that τ
(j)
0 (η) = 0. Note that

(
τ
(j)
i (η),W

(j)
i (η)

)
i∈[j] record the arrival time and

size of the top j elements (in terms of absolute value) of {|Zi| : i ∈ [n]}. In case that there are ties
between the values of {|Zi| : i ≤ ⌊1/η⌋}, under our definition we always pick the first j elements. Now
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for any j ≥ 1 and any η, b > 0, x ∈ R, we are able to define X̂η|b;(j)(x) =∆
{
X̂

η|b;(j)
t (x) : t ∈ [0, 1]

}
as

the solution to

dX̂
η|b;(j)
t (x)

dt
= a

(
X̂

η|b;(j)
t (x)

)
∀t ∈ [0, 1], t /∈

{
ητ

(j)
i (η) : i ∈ [j]

}
, (3.58)

X̂
η|b;(j)
t (x) = X̂

η|b;(j)
t− (x) + φb

(
ησ
(
X̂

η|b;(j)
t− (x)

)
W

(j)
i (η)

)
if t = ητ

(j)
i (η) for some i ∈ [j]. (3.59)

with initial condition X̂
η|b;(j)
0 (x) = x. For the case j = 0, we adopt the convention that

dX̂
η|b;(0)
t (x)

/
dt = a

(
X̂

η|b;(0)
t (x)

)
∀t ∈ [0, 1]

with X̂
η|b;(0)
0 (x) = x. The key observation is that, by definition of X̂η|b;(k), it holds for any η, b > 0,

k ≥ 0, and x ∈ R that

τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η) =⇒ X̂η|b;(k)(x) = h(k)|b
(
x, ηW>δ(η), ητ>δ(η)

)
(3.60)

withW>δ(η) = (W>δ
1 (η), · · · ,W>δ

k (η)) and τ>δ(η) = (τ>δ
1 (η), · · · , τ>δ

k (η)). The following two results
allow us to apply Lemma 3.15, thus bridging the gap between Xη|b and the limiting measure C(k)|b

in the sense of M-convergence.

Proposition 3.19. Let ηn be a sequence of strictly positive real numbers such that limn→∞ ηn = 0.
Let compact set A ⊆ R and xn, x

∗ ∈ A be such that limn→∞ xn = x∗. Under Assumptions 1, 2,
4, and 8, it holds for any k = 0, 1, 2, · · · and b > 0 that Xηn|b(xn) is asymptotically equivalent to

X̂ηn|b;(k)(xn) (as n→ ∞) w.r.t. λk(ηn) when bounded away from D(k−1)|b
A .

Proposition 3.20. Let ηn be a sequence of strictly positive real numbers with limn→∞ ηn = 0. Let
compact set A ⊆ R and xn, x

∗ ∈ A be such that limn→∞ xn = x∗. Under Assumptions 1, 2, 4, and 8,
it holds for any k = 0, 1, 2, · · · and b > 0 that

P
(
X̂ηn|b;(k)(xn) ∈ ·

)/
λk(ηn) → C(k)|b( · ;x∗) in M

(
D \ D(k−1)|b

A

)
as n→ ∞

where the measure C(k)|b is defined in (2.19).

Proof of Proposition 3.18. In light of Lemma 3.15, it is a direct corollary of Propositions 3.19 and
3.20.

Now it only remains to prove Propositions 3.19 and 3.20.

Proof of Proposition 3.19. Fix some b > 0, k ≥ 0, and some sequence of strictly positive real numbers
ηn with limn→∞ ηn = 0. Also, fix a compact set A ⊆ R and xn, x

∗ ∈ A such that limn→∞ xn = x∗.

Meanwhile, arbitrarily pick some ∆ > 0 and some B ∈ SD that is bounded away from D(k−1)|b
A . It

suffices to show that

lim
n→∞

P
(
dJ1

(
Xηn|b(xn), X̂

ηn|b;(k)(xn)
)
I
(
Xηn|b(xn) or X̂

ηn|b;(k)(xn) ∈ B
)
> ∆

)/
λk(ηn) = 0. (3.61)

Applying Lemma 3.7, we can fix some ϵ̄ > 0 and δ̄ ∈ (0, b
3C ) such that for any x ∈ A, t = (t1, · · · , tk) ∈

(0, 1]k↑, and w = (w1, · · · , wk) ∈ Rk,

h(k)|b(x,w, t) ∈ B ϵ̄ or h(k)|b+ϵ̄(x,w, t) ∈ B ϵ̄ =⇒ |wi| > 3Cδ̄/c ∀i ∈ [k]. (3.62)

dJ1
(B ϵ̄,D(k−1)|b+ϵ̄

A ) > ϵ̄ (3.63)

where C ≥ 1 and 0 < c ≤ 1 are the constants in Assumptions 4 and 8, respectively. Meanwhile, let

B0 =∆ {Xη|b(x) ∈ B or X̂η|b;(k)(x) ∈ B; dJ1

(
Xη|b(x), X̂η|b;(k)(x)

)
> ∆},
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B1 =∆ {τ>δ
k+1(η) > ⌊1/η⌋},

B2 =∆ {τ>δ
k (η) ≤ ⌊1/η⌋},

B3 =∆
{
η|W>δ

i (η)| > δ̄ for all i ∈ [k]
}
.

Note that

B0 = (B0 ∩Bc
1) ∪ (B0 ∩B1 ∩Bc

2) ∪ (B0 ∩B1 ∩B2 ∩Bc
3) ∪ (B0 ∩B1 ∩B2 ∩B3). (3.64)

To proceed, set ρ(k) =∆
[
3ρ ·(1+ bD

c )
]k

·3ρ where ρ = exp(D) and D ∈ [1,∞) is the Lipschitz coefficient

in Assumption 2. For any ϵ > 0 small enough so that

ρ(k)
√
ϵ < ∆, ϵ <

δ̄

2ρ
, ϵ < ϵ̄/2, ϵ ∈ (0, 1),

we claim that

lim
η↓0

sup
x∈A

P
(
B0 ∩Bc

1

)/
λk(η) = 0, (3.65)

lim
η↓0

sup
x∈A

P
(
B0 ∩B1 ∩Bc

2

)/
λk(η) = 0, (3.66)

lim
η↓0

sup
x∈A

P
(
B0 ∩B1 ∩B2 ∩Bc

3

)/
λk(η) = 0, (3.67)

lim
η↓0

sup
x∈A

P
(
B0 ∩B1 ∩B2 ∩B3

)/
λk(η) = 0 (3.68)

if we pick δ > 0 sufficiently small. Now fix such δ. Combining these claims with the decomposition of
event B0 in (3.64), we establish (3.61). Now we conclude the proof of this proposition with the proofs
of claims (3.65)–(3.68).

Proof of (3.65):

For any δ > 0, note that (3.4) implies that supx∈A P(B0 ∩ Bc
1) ≤ P(Bc

1) ≤
(
η−1H(δη−1)

)k+1
=

o
(
λk(η)

)
, from which the claim follows.

Proof of (3.66):
It suffices to find δ > 0 such that

lim
η↓0

P
(
B0 ∩

{
τ>δ
k (η) > ⌊1/η⌋

}︸ ︷︷ ︸
=∆ B̃

)/
λk(η) = 0

In particular, we focus on δ ∈ (0, δ̄ ∧ b
2 ) with δ̄ characterized in (3.62). By definition, X̂η|b;(k)(x) =

h(k)|b
(
x, ητ

(k)
1 (η), · · · , ητ (k)k (η), ηW

(k)
1 (η), · · · , ηW (k)

k (η)
)
. Moreover, on {τ>δ

k (η) > ⌊1/η⌋} we must

have #
{
i ∈

[
⌊1/η⌋

]
: η|Zi| > δ

}
< k. From the definition of Z(k)(η) in (3.56), we then have that

mini∈[k] η|W
(k)
i (η)| ≤ δ. In light of (3.62), we yield X̂η|b;(k)(x) /∈ B ϵ̄ on {τ>δ

k (η) > ⌊1/η⌋}, and hence

B̃ ⊆ {Xη|b(x) ∈ B} ∩ {τ>δ
k (η) > ⌊1/η⌋}.

Let event Ai(η, b, ϵ, δ, x) be defined as in (3.6). Suppose that

{Xη|b(x) ∈ B} ∩ {τ>δ
k (η) > ⌊1/η⌋} ∩

(
∩k
i=1 Ai(η, b, ϵ, δ, x)

)
= ∅ (3.69)

holds for all η > 0 small enough with η < min{ b∧1
2C ,

ϵ
C }, any δ ∈ (0, b

2C ), and any x ∈ A. Then

lim
η↓0

sup
x∈A

P(B̃)
/
λk(η) ≤ lim

η↓0
sup
x∈A

P
(( k+1⋂

i=1

Ai(η, b, ϵ, δ, x)
)c)/

λk(η).
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To conclude the proof, one only need to apply Lemma 3.4 (b) with some N > k(α− 1).

Now it only remains to prove claim (3.69). To proceed, let process X̆
η|b;δ
t (x) be the solution to

dX̆
η|b;δ
t (x)

dt
= a

(
X̆

η|b;δ
t (x)

)
∀t ∈ [0,∞) \ {ητ>δ

j (η) : j ≥ 1}, (3.70)

X̆
η|b;δ
ητ>δ

j (η)
(x) = X

η|b
τ>δ
j (η)

(x) ∀j ≥ 1 (3.71)

under the initial condition X̆
η|b;δ
0 (x) = x. Let X̆η|b;δ(x) =∆

{
X̆

η|b;δ
t (x) : t ∈ [0, 1]

}
. For any j ≥ 1,

observe that on event
(
∩j
i=1 Ai(η, b, ϵ, δ, x)

)
∩ {τ>δ

j (η) > ⌊1/η⌋},

dJ1(X̆
η|b;δ(x),Xη|b(x))

≤ sup
t∈
[
0,ητ>δ

1 (η)
)
∪
[
ητ>δ

1 (η),ητ>δ
2 (η)

)
∪···∪

[
ητ>δ

j−1(η),ητ
>δ
j (η)

) ∣∣∣X̆η|b;δ
t (x)−X

η|b
⌊t/η⌋(x)

∣∣∣
≤ ρ ·

(
ϵ+ ηC

)
≤ 2ρϵ < ϵ̄ due to (3.36) of Lemma 3.13. (3.72)

Therefore, on event
(
∩k
i=1 Ai(η, b, ϵ, δ, x)

)
∩ {τ>δ

k (η) > ⌊1/η⌋}, it holds for any j ∈ [k − 1] with

ητ>δ
j (η) ≤ 1 that∣∣∣∆X̆η|b;δ

ητ>δ
j (η)

(x)
∣∣∣ = ∣∣∣X̆η|b;δ

ητ>δ
j (η)−(x)−X

η|b
τ>δ
j (η)

(x)
∣∣∣ see (3.71)

≤
∣∣∣X̆η|b;δ

ητ>δ
j (η)−(x)−X

η|b
τ>δ
j (η)−1(x)

∣∣∣+ ∣∣∣Xη|b
τ>δ
j (η)−1(x)−X

η|b
τ>δ
J (η)

(x)
∣∣∣

< ϵ̄+ b. (3.73)

As a result, on event
(
∩k
i=1Ai(η, b, ϵ, δ, x)

)
∩{τ>δ

k (η) > ⌊1/η⌋}, we have X̆η|b;δ(x) ∈ D(k−1)|b+ϵ̄
A . Consid-

ering the facts that D(k−1)|b+ϵ̄
A is bounded away fromB ϵ̄ (see (3.63)) as well as dJ1

(X̆η|b;δ(x),Xη|b(x)) <
ϵ̄ shown in (3.72), we have just established that Xη|b(x) /∈ B, thus establishing (3.69).

Proof of (3.67):

On event B1 ∩ B2 = {τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η)}, it follows from (3.60) that X̂η|b;(k)(x) =

h(k)|b
(
x, ηW>δ

1 (η), · · · , ηW>δ
k (η), ητ>δ

1 (η), · · · , ητ>δ
k (η)

)
. Furthermore, on Bc

3, there is some i ∈ [k]

with |ηW>δ
i (η)| ≤ δ̄. Considering the choice of δ̄ in (3.62), on event B1∩B2∩Bc

3 we have X̂η|b;(k)(x) /∈
B, and hence

B0 ∩B1 ∩B2 ∩Bc
3 ⊆ {Xη|b(x) ∈ B} ∩

{
τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η); η|W
>δ
i (η)| ≤ δ̄ for some i ∈ [k]

}
.

Furthermore, we claim that for any x ∈ A, any δ ∈ (0, δ̄∧ b
2C ) and any η > 0 satisfying η < min{ b∧1

2C , δ̄},

{Xη|b(x) ∈ B} ∩
{
τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η); η|W
>δ
i (η)| ≤ δ̄ for some i ∈ [k]

}
∩
( k+1⋂

i=1

Ai(η, b, ϵ, δ, x)
)
= ∅.

(3.74)

Then it follows immediately that for any δ ∈ (0, δ̄ ∧ b
2 ),

lim
η↓0

sup
x∈A

P
(
B0 ∩B1 ∩B2 ∩Bc

3

)/
λk(η) ≤ lim

η↓0
sup
x∈A

P
(( k+1⋂

i=1

Ai(η, b, ϵ, δ, x)
)c)/

λk(η).

Applying Lemma 3.4 (b) with some N > k(α− 1), the conclusion of the proof follows.
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We are left with proving the claim (3.74). First, note that on this event, there exists some J ∈ [k]

such that η|W>δ
J (η)| ≤ δ̄. Next, recall the definition of X̆

η|b;δ
t (x) in (3.70)-(3.71), and note that it has

been shown in (3.72) (with j = k + 1) that

sup
t∈[0,1]

∣∣∣X̆η|b;δ
t (x)−X

η|b
⌊t/η⌋(x)

∣∣∣ < 2ρϵ < ϵ̄. (3.75)

If we can show that X̆η|b;δ(x) /∈ B ϵ̄, then (3.75) immediately leads to Xη|b(x) /∈ B, thus proving claim
(3.74). To proceed, first note that∣∣∣∆X̆η|b;δ

ητ>δ
J (η)

(x)
∣∣∣ ≤ ∣∣∣X̆η|b;δ

ητ>δ
J (η)−(x)−X

η|b
τ>δ
J (η)−1(x)

∣∣∣+ ∣∣∣Xη|b
τ>δ
J (η)−1(x)−X

η|b
τ>δ
J (η)

(x)
∣∣∣ see (3.71)

≤ 2ρϵ+ η
∣∣∣a(Xη|b

τ>δ
J (η)−1(x)

)
+ σ

(
X

η|b
τ>δ
J (η)−1(x)

)
W>δ

J (η)
∣∣∣ using (3.75)

≤ 2ρϵ+ ηC + Cδ̄ < 3Cδ̄ due to 2ρϵ < δ̄, η < δ̄, and C ≥ 1.

Meanwhile, the calculations in (3.73) can be repeated to show that X̆η|b;δ(x) ∈ D(k)|b+ϵ̄
A , and hence

X̆η|b;δ(x) = h(k)|b+ϵ̄
(
x, w̃1, · · · , w̃k, ητ

>δ
1 (η), · · · , ητ>δ

k (η)
)
for some (w̃1, · · · , w̃k) ∈ Rk. Due to 0 <

c ≤ σ(y) ≤ C ∀y ∈ R (see Assumptions 4 and 8),

3Cδ̄ >
∣∣∣∆X̆η|b;δ

ητ>δ
J (η)

(x)
∣∣∣ = φb+ϵ̄

(∣∣∣∣σ(X̆η|b;δ
ητ>δ

J (η)−(x)
)
· w̃J

∣∣∣∣) ≥ c · |w̃J |,

which implies |w̃J | < 3Cδ̄/c. In light of our choice of δ̄ in (3.62), we yield X̆η|b;δ(x) /∈ B ϵ̄ and conclude
the proof.

Proof of (3.68):

We focus on δ ∈ (0, δ̄ ∧ b
2C ). On event B1 ∩ B2 = {τ>δ

k (η) ≤ ⌊1/η⌋ < τ>δ
k+1(η)}, X̂η|b;(k) admits

the expression in (3.60). This allows us to apply Lemma 3.14 and show that, for any x ∈ A and any
η ∈ (0, ϵ∧b2C ), the inequality

dJ1

(
X̂η|b;(k)(x),Xη|b(x)

)
≤ sup

t∈[0,1]
|X̂η|b;(k)

t (x)−X
η|b
⌊t/η⌋(x)| < ρ(k)ϵ

holds on event
(⋂k+1

i=1 Ai(η, b, ϵ, δ, x)
)
∩ B1 ∩ B2 ∩ B3 ∩ B0. Due to our choice of ρ(k)ϵ < ∆ at the

beginning of the proof, we get
(⋂k+1

i=1 Ai(η, b, ϵ, δ, x)
)
∩B1 ∩B2 ∩B3 ∩B0 = ∅. Therefore,

lim sup
η↓0

sup
x∈A

P
(
B1 ∩B2 ∩B3 ∩B0

)/
λk(η) ≤ lim sup

η↓0
sup
x∈A

P
(( k+1⋂

i=1

Ai(η, b, ϵ, δ, x)
)c)/

λk(η).

Again, by applying Lemma 3.4 (b) with some N > k(α− 1), we conclude the proof.

In order to prove Proposition 3.20, we first prepare a lemma regarding a weak convergence claim

on event Eδ
c,k(η) =

∆

{
τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η); η|W
>δ
j (η)| > c ∀j ∈ [k]

}
defined in (3.16).

Lemma 3.21. Let Assumption 1 hold. Let A ⊆ R be a compact set. Let bounded function Φ :
R× Rk × (0, 1]k↑ → R be continuous on R× Rk × (0, 1)k↑. For any δ > 0, c > δ and k = 0, 1, 2, · · · ,

lim
η↓0

sup
x∈A

∣∣∣∣∣E
[
Φ
(
x, ηW>δ

1 (η), · · · , ηW>δ
k (η), ητ>δ

1 (η), · · · , ητ>δ
k (η)

)
IEδ

c,k(η)

]
λk(η)

− (1/cαk)ϕc,k(x)

k!

∣∣∣∣∣ = 0

where ϕc,k(x) =
∆ E

[
Φ
(
x,W ∗1 (c), · · · ,W ∗k (c), U(1;k), · · · , U(k;k)

)]
.
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Proof. Fix some δ > 0, c > δ and k = 0, 1, · · · . We proceed with a proof by contradiction. Suppose
there exist some ϵ > 0, some sequence xn ∈ A, and some sequence ηn > 0 such that∣∣∣λ−k(ηn)E[Φ(xn,W ηn , τ ηn

)
IEδ

c,k(ηn)

]
− (1/k!) · c−αk · ϕc,k(xn)

∣∣∣ > ϵ ∀n ≥ 1 (3.76)

where W η =∆ (ηW>δ
1 (η), · · · , ηW>δ

k (η)); τ η =∆ (ητ>δ
1 (η), · · · , ητ>δ

k (η)). Since A is compact, we can
always pick a converging subsequence xnk

such that xnk
→ x∗ for some x∗ ∈ A. To ease the notation

complexity, let’s assume (w.l.o.g. ) that xn → x∗. Now observe that

lim
n→∞

λ−k(ηn)E
[
Φ
(
xn,W

ηn , τ ηn
)
IEδ

c,k(ηn)

]
=
[
lim

n→∞
λ−k(ηn)P

(
Eδ

c,k(ηn)
)]

· lim
n→∞

E
[
Φ
(
xn,W

ηn , τ ηn
)∣∣∣Eδ

c,k(ηn)
]

= (1/k!) · c−αk ·E
[
Φ
(
x∗,W ∗,U∗

)]
= (1/k!) · c−αk · ϕc,k(x∗) due to Lemma 3.5

where W ∗ =∆
(
W ∗j (c)

)k
j=1

, U∗ =∆
(
U(j;k)

)k
j=1

. However, by Bounded Convergence theorem, we see

that ϕc,k is also continuous, and hence ϕc,k(xn) → ϕc,k(x
∗). This leads to a contradiction with (3.76)

and allows us to conclude the proof.

We are now ready to prove Proposition 3.20.

Proof of Proposition 3.20. Fix some b > 0, some k = 0, 1, 2, · · · and g ∈ C(D \ D(k−1)|b
A ) (i.e., g : D →

[0,∞) is continuous and bounded with support B =∆ supp(g) bounded away from D(k−1)|b
A ). First of

all, from Lemma 3.7 we can fix some δ̄ > 0 such that the following claim holds for any x0 ∈ A and
any t = (t1, · · · , tk) ∈ (0, 1)k↑, w = (w1, · · · , wk) ∈ Rk:

h(k)|b(x0,w, t) ∈ B ϵ̄ =⇒ |wj | > δ̄ ∀j ∈ [k]. (3.77)

Fix some δ ∈ (0, δ̄ ∧ b
2 ), and observe that for any η > 0 and x ∈ A,

g
(
X̂η|b;(k)(x)

)
= g
(
X̂η|b;(k)(x)

)
I
{
τ>δ
k+1(η) ≤ ⌊1/η⌋

}︸ ︷︷ ︸
=∆ I1(η,x)

+ g
(
X̂η|b;(k)(x)

)
I
{
τ>δ
k (η) > ⌊1/η⌋

}︸ ︷︷ ︸
=∆ I2(η,x)

+ g
(
X̂η|b;(k)(x)

)
I
{
τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η); |ηW>δ
j (η)| ≤ δ̄ for some j ∈ [k]

}︸ ︷︷ ︸
=∆ I3(η,x)

+ g
(
X̂η|b;(k)(x)

)
I
(
Eδ

δ̄,k(η)
)︸ ︷︷ ︸

=∆ I4(η,x)

.

For term I1(η, x), it follows from (3.4) that supx∈R E[I1(η, x)] ≤ ∥g∥ ·
[

1
ηn

·H(δ/ηn)
]k+1

. Therefore,

limη↓0 supx∈A E[I1(η, x)]
/(
η−1H(η−1)

)k ≤ ∥g∥
δα(k+1) · limn→∞

H(1/η)
η = 0.

Next, by definition, X̂η|b;(k)(x) = h(k)|b
(
x, ητ

(k)
1 (η), · · · , ητ (k)k (η), ηW

(k)
1 (η), · · · , ηW (k)

k (η)
)
. More-

over, on event {τ>δ
k (η) > ⌊1/η⌋}, we must have #

{
i ∈
[
⌊1/η⌋

]
: η|Zi| > δ

}
< k. From the definition

of Z(k)(η) in (3.56), we then have that mini∈[k] η|W
(k)
i (η)| ≤ δ. In light of (3.77) and our choice

of δ < δ̄, for any x ∈ A and any η > 0, on event {τ>δ
k (η) > ⌊1/η⌋} we have X̂η|b;(k)(x) /∈ B for

B = supp(g), thus implying I2(η, x) = 0 for any x ∈ A and η > 0.

Moving onto term I3(η, x), on event {τ>δ
k (η) ≤ ⌊1/η⌋ < τ>δ

k+1(η)} the process X̂η|b;(k)(x) admits

the expression in (3.60), which implies X̂η|b;(k)(x) /∈ B. due to (3.77) and our choice of δ < δ̄. In
summary, we get I3(η, x) = 0.
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Lastly, on event Eδ
δ̄,k

(η), the process X̂η|b;(k)(x) would again admits the expression in (3.60). As

a result, for any η > 0 and x ∈ A, we have

E[I4(η, x)] = E
[
Φ
(
x, ηW>δ(η), ητ>δ(η)

)
I
(
Eδ

δ̄,k(η)
)]

where W>δ(η) = (W>δ
1 (η), · · · ,W>δ

k (η)), τ>δ(η) = (τ>δ
1 (η), · · · , τ>δ

k (η)), and Φ : R×Rk×(0, 1)k↑ →
R is defined as Φ(x0,w, t) =

∆ g
(
h(k)|b(x0,w, t)

)
. Meanwhile, let ϕ(x) =∆ E

[
Φ
(
x,W ∗1 (δ̄), · · · ,W ∗k (δ̄), U(1;k), · · · , U(k;k)

)]
.

First, the continuity of mapping Φ on R× Rk × (0, 1)k↑ follows directly from the continuity of g and
h(k)|b (see Lemma 3.10). Besides, ∥Φ∥ ≤ ∥g∥ < ∞. It then follows from the continuity of Φ and
Bounded Convergence Theorem that ϕ is also continuous. Also, ∥ϕ∥ ≤ ∥Φ∥ ≤ ∥g∥ <∞. Now observe
that

lim
η↓0

sup
x∈A

∣∣∣λ−k(η)E[Φ(x, ηW>δ(η), ητ>δ(η)
)
I
(
Eδ

δ̄,k(η)
)]

− (1/k!) · c−αk · ϕc,k(x)
∣∣∣ = 0

due to Lemma 3.21. Meanwhile, due to continuity of ϕ(·), for any xn, x∗ ∈ A with limn→∞ xn = x∗,

we have limn→∞ ϕ(xn) = ϕ(x∗). To conclude the proof, we only need to show that (1/δ̄αk)ϕ(x∗)
k! =

C(k)|b(g;x∗). In particular, note that

ϕ(x∗) =

∫
g
(
h(k)|b(x∗, w1, · · · , wk, t1, · · · , tk)

)
I
{
|wj | > δ̄ ∀j ∈ [k]

}
P
(
U(1;k) ∈ dt1, · · · , U(k;k) ∈ dtk

)
×
( k∏

j=1

δ̄α · να(dwj)
)
.

First, using (3.77), we must have g
(
h(k)(x∗, w1, · · · , wk, t)

)
= 0 if there is some j ∈ [k] with |wj | ≤ δ̄.

Next, P
(
U(1;k) ∈ dt1, · · · , U(k;k) ∈ dtk

)
= k! · I{0 < t1 < t2 < · · · < tk < 1}Lk↑

1 (dt1, · · · , dtk) where

Lk↑
1 is the Lebesgue measure restricted on (0, 1)k↑. The conclusion of the proof then follows from

ϕ(x∗) = k! · δ̄αk
∫
g
(
h(k)|b(x∗,w, t)

)
νkα(dw)× Lk↑

1 (dt) = k! · δ̄αk ·C(k)
b

(
g;x∗

)
,

where we appealed to the definition in (2.19) in the last equality.

4 First Exit Time Analysis

4.1 Proof of Theorem 2.7

Our proof of Theorem 2.7 hinges on the following proposition.

Proposition 4.1. Suppose that Condition 1 holds. For each measurable set B ⊆ S and t ≥ 0, there
exists δt,B(ϵ) such that

C(B◦) · e−t − δt,B(ϵ) ≤ lim inf
η↓0

inf
x∈A(ϵ)

P
(
γ(η)τηI(ϵ)c(x) > t; V η

τϵ(x) ∈ B
)

≤ lim sup
η↓0

sup
x∈A(ϵ)

P
(
γ(η)τηI(ϵ)c(x) > t; V η

τϵ(x) ∈ B
)
≤ C(B−) · e−t + δt,B(ϵ).

for all sufficiently small ϵ > 0, where δt,B(ϵ) → 0 as ϵ→ 0.

Proof. Fix some measurable B ⊆ S and t ≥ 0. Henceforth in the proof, given any choice of 0 < r < R,
we only consider ϵ ∈ (0, ϵB) and T sufficiently large such that Condition 1 holds with T replaced with
1−r
2 T , 2−r

2 T , rT , and RT . Let

ρηi (x) =
∆ inf

{
j ≥ ρηi−1(x) + ⌊rT/η⌋ : V η

j (x) ∈ A(ϵ)
}
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where ρη0(x) = 0. One can interpret these as the ith asymptotic regeneration times after cooling period
rT/η. We start with the following two observations: For any 0 < r < R,

P
(
τηI(ϵ)c(y) ∈

(
RT/η, ρη1(y)

])
≤ P

(
τηI(ϵ)c(y) ∧ ρ

η
1(y) > RT/η

)
≤ P

(
V η
j (y) ∈ I(ϵ) \A(ϵ) ∀j ∈

[
⌊rT/η⌋, RT/η

])
≤ sup

z∈I(ϵ)\A(ϵ)

P
(
τη(I(ϵ)\A(ϵ))c(z) >

R− r

2
T/η

)
= γ(η)T/η · o(1) (4.1)

where the last equality is from (2.39) of Condition 1, and

sup
y∈A(ϵ)

P
(
V η
τϵ(y) ∈ B; τηI(ϵ)c(y) ≤ ρη1(y)

)
≤ sup

y∈A(ϵ)

P
(
V η
τϵ(y) ∈ B; τηI(ϵ)c(y) ≤ RT/η

)
+ sup

y∈A(ϵ)

P
(
τηI(ϵ)c(y) ∈

(
RT/η, ρη1(y)

])
≤ sup

y∈A(ϵ)

P
(
V η
τϵ(y) ∈ B; τηI(ϵ)c(y) ≤ RT/η

)
+ γ(η)T/η · o(1)

≤
(
C(B−) + δB(ϵ, RT ) + o(1)

)
· γ(η)RT/η (4.2)

where the second inequaility is from (4.1) and the last equality is from (2.38) of Condition 1.
We work with different choices of R and r for the lower and upper bounds. For the lower bound,

we work with R > r > 1 and set K =
⌈
t/γ(η)
T/η

⌉
. Note that for η ∈

(
0, (r−1)T

)
, we have ⌊rT/η⌋ ≥ T/η

and hence ρηK(x) ≥ K⌊rT/η⌋ ≥ t/γ(η). Note also that from the Markov property conditioning on
Fρη

j (x)
,

inf
x∈A(ϵ)

P
(
γ(η)τηI(ϵ)c(x) > t; V η

τϵ(x) ∈ B
)

≥ inf
x∈A(ϵ)

P(τηI(ϵ)c(x) > ρηK(x); V η
τϵ(x) ∈ B) = inf

x∈A(ϵ)

∞∑
j=K

P
(
τηI(ϵ)c(x) ∈

(
ρηj (x), ρ

η
j+1(x)

]
; V η

τϵ(x) ∈ B
)

≥ inf
x∈A(ϵ)

∞∑
j=K

P
(
τηI(ϵ)c(x) ∈

(
ρηj (x), ρ

η
j (x) + T/η

]
; V η

τϵ(x) ∈ B
)

≥ inf
x∈A(ϵ)

∞∑
j=K

inf
y∈A(ϵ)

P
(
τηI(ϵ)c(y) ≤ T/η; V η

τϵ(y) ∈ B
)
·P
(
τηI(ϵ)c(x) > ρηj (x)

)
.

≥ inf
y∈A(ϵ)

P
(
τηI(ϵ)c(y) ≤ T/η; V η

τϵ(y) ∈ B
)
·
∞∑

j=K

inf
x∈A(ϵ)

P
(
τηI(ϵ)c(x) > ρηj (x)

)
. (4.3)

From the Markov property conditioning on Fρη
j (x)

, the second term can be bounded as follows:

∞∑
j=K

inf
x∈A(ϵ)

P
(
τηI(ϵ)c(x) > ρηj (x)

)
≥
∞∑
j=0

(
inf

y∈A(ϵ)
P
(
τηI(ϵ)c(y) > ρη1(y)

))K+j

=

∞∑
j=0

(
1− sup

y∈A(ϵ)

P
(
τηI(ϵ)c(y) ≤ ρη1(y)

))K+j

=
1

supy∈A(ϵ) P
(
τηI(ϵ)c(y) ≤ ρη1(y)

) ·
(
1− sup

y∈A(ϵ)

P
(
τηI(ϵ)c(y) ≤ ρη1(y)

))⌈ t/γ(η)
T/η

⌉
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≥ 1(
1 + δS(ϵ, RT ) + o(1)

)
· γ(η)RT/η

·
(
1−

(
1 + δS(ϵ, RT ) + o(1)

)
· γ(η)RT/η

) t/γ(η)
T/η

+1

. (4.4)

where the last inequality is from (4.2) with B = S. From (4.3), (4.4), and (2.37) of Condition 1, we
have

lim inf
η↓0

inf
x∈A(ϵ)

P
(
γ(η)τηI(ϵ)c(x) > t; V η

τϵ(x) ∈ B
)

≥ lim inf
η↓0

C(B◦)− δB(ϵ, T ) + o(1)(
1 + δS(ϵ, RT ) + o(1)

)
·R

·
(
1−

(
1 + δS(ϵ, RT ) + o(1)

)
· γ(η)RT/η

) R·t
γ(η)RT/η

+1

.

≥ C(B◦)− δB(ϵ, T )

1 + δS(ϵ, RT )
· exp

(
−
(
1 + δS(ϵ, RT )

)
·R · t

)
.

By taking limit T → ∞ and then considering an R arbitrarily close to 1, it is straightforward to check
that the desired lower bound holds.

Moving on to the upper bound, we set R = 1 and fix an arbitrary r ∈ (0, 1). Set k =
⌊
t/γ(η)
T/η

⌋
and

note that

sup
x∈A(ϵ)

P
(
γ(η)τηI(ϵ)c(x) > t; V η

τϵ(x) ∈ B
)
= sup

x∈A(ϵ)

P
(
τηI(ϵ)c(x) > t/γ(η); V η

τϵ(x) ∈ B
)

= sup
x∈A(ϵ)

P
(
τηI(ϵ)c(x) > t/γ(η) ≥ ρηk(x); V

η
τϵ(x) ∈ B

)
︸ ︷︷ ︸

(I)

+ sup
x∈A(ϵ)

P
(
τηI(ϵ)c(x) > t/γ(η); ρηk(x) > t/γ(η); V η

τϵ(x) ∈ B
)

︸ ︷︷ ︸
(II)

We first show that (II) vanishes as η → 0. Our proof hinges on the following claim:

{
τηI(ϵ)c(x) > t/γ(η); ρηk(x) > t/γ(η)

}
⊆

k⋃
j=1

{
τηI(ϵ)c(x) ∧ ρ

η
j (x)− ρηj−1(x) ≥ T/η

}
Proof of the claim: Suppose that τηI(ϵ)c(x) > t/γ(η) and ρηk(x) > t/γ(η). Let k∗ =∆ max{j ≥ 1 : ρηj (x) ≤
t/γ(η)}. Note that k∗ < k. We consider two cases separately: (i) ρηk∗(x)/k

∗ > (t/γ(η)− T/η)/k∗ and
(ii) ρηk∗(x) ≤ t/γ(η) − T/η. In case of (i), since ρηk∗(x)/k

∗ is the average of {ρηj (x) − ρηj−1(x) : j =
1, . . . , k∗}, there exists j∗ ≤ k∗ such that

ρηj∗(x)− ρηj∗−1(x) >
t/γ(η)− T/η

k∗
≥ kT/η − T/η

k − 1
= T/η

Note that since ρηj∗(x) ≤ ρηk∗(x) ≤ t/γ(η) ≤ τηI(ϵ)c(x), this proves the claim for case (i). For case (ii),

note that
ρηk∗+1(x) ∧ τ

η
I(ϵ)c(x)− ρηk∗(x) ≥ t/γ(η)− (t/γ(η)− T/η) = T/η,

which proves the claim.
Now, with the claim in hand, we have that

(II) ≤
k∑

j=1

sup
x∈A(ϵ)

P
(
τηI(ϵ)c(x) ∧ ρ

η
j (x)− ρηj−1(x) ≥ T/η

)
=

k∑
j=1

sup
x∈A(ϵ)

E
[
P
(
τηI(ϵ)c(x) ∧ ρ

η
j (x)− ρηj−1(x) ≥ T/η

∣∣Fρη
j−1(x)

)]
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≤
k∑

j=1

sup
y∈A(ϵ)

P
(
τηI(ϵ)c(y) ∧ ρ

η
1(y) ≥ T/η

)
≤ t

γ(η)T/η
· γ(η)T/η · o(1) = o(1)

for sufficiently large T ’s, where the last inequality is from the definition of k and (4.1). We are now
left with bounding (I) from above.

(I) = sup
x∈A(ϵ)

P
(
τηI(ϵ)c(x) > t/γ(η) ≥ ρηK(x); V η

τϵ(x) ∈ B
)
≤ sup

x∈A(ϵ)

P
(
τηI(ϵ)c(x) > ρηK(x); V η

τϵ(x) ∈ B
)

=

∞∑
j=k

sup
x∈A(ϵ)

P
(
τηI(ϵ)c(x) ∈

(
ρηj (x), ρ

η
j+1(x)

]
; V η

τϵ(x) ∈ B
)

=

∞∑
j=k

sup
x∈A(ϵ)

E

[
E
[
I
{
V η
τϵ(x) ∈ B

}
· I
{
τηI(ϵ)c(x) ≤ ρηj+1(x)

}∣∣∣Fρη
j (x)

]
· I
{
τηI(ϵ)c(x) > ρηj (x)

}]

≤
∞∑
j=k

sup
x∈A(ϵ)

E

[
sup

y∈A(ϵ)

P
(
V η
τϵ(y) ∈ B; τηI(ϵ)c(y) ≤ ρη1(y)

)
· I
{
τηI(ϵ)c(x) > ρηj (x)

}]

= sup
y∈A(ϵ)

P
(
V η
τϵ(y) ∈ B; τηI(ϵ)c(y) ≤ ρη1(y)

)
·
∞∑
j=k

sup
x∈A(ϵ)

P
(
τηI(ϵ)c(x) > ρηj (x)

)
The first term can be bounded via (4.2) with R = 1:

sup
y∈A(ϵ)

P
(
V η
τϵ(y) ∈ B; τηI(ϵ)c(y) ≤ ρη1(y)

)
≤
(
C(B−) + δB(ϵ, T ) + o(1)

)
· γ(η)T/η + 1− r

2
· γ(η)T/η · o(1)

whereas the second term is bounded via (2.37) of Condition 1 as follows:

∞∑
j=k

sup
x∈A(ϵ)

P
(
τηI(ϵ)c(x) > ρηj (x)

)
≤
∞∑
j=0

(
sup

y∈A(ϵ)

P
(
τηI(ϵ)c(y) > ⌊rT/η⌋

))k+j

=

∞∑
j=0

(
1− inf

y∈A(ϵ)
P
(
τηI(ϵ)c(y) ≤ rT/η

))k+j

≤ 1

infy∈A(ϵ) P
(
τηI(ϵ)c(y) ≤ rT/η

) ·
(
1− inf

y∈A(ϵ)
P
(
τηI(ϵ)c(y) ≤ rT/η

)) t/γ(η)
T/η

−1

=
1

r ·
(
1− δB(ϵ, rT ) + o(1)

)
· γ(η)T/η

·
(
1− r ·

(
1− δB(ϵ, rT ) + o(1)

)
· γ(η)T/η

) t
γ(η)T/η

−1

Therefore,

lim sup
η↓0

sup
x∈A(ϵ)

P
(
γ(η)τηI(ϵ)c(x) > t; V η

τϵ(x) ∈ B
)
≤ C(B−) + δB(ϵ, T )

r · (1− δB(ϵ, rT ))
· exp

(
− r ·

(
1− δB(ϵ, rT )

)
· t
)
.

Again, taking T → ∞ and considering r arbitrarily close to 1, we can check that the desired upper
bound holds.

Now we are ready to prove Theorem 2.7.
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Proof of Theorem 2.7. We first claim that for any ϵ, ϵ′ > 0, t ≥ 0, and measurable B ⊆ S,

C(B◦) · e−t − δt,B(ϵ) ≤ lim inf
η↓0

inf
x∈I(ϵ′)

P
(
γ(η) · τηI(ϵ)c(x) > t, V η

τϵ(x) ∈ B
)

≤ lim sup
η↓0

sup
x∈I(ϵ′)

P
(
γ(η) · τηI(ϵ)c(x) > t, V η

τϵ(x) ∈ B
)
≤ C(B−) · e−t + δt,B(ϵ)

(4.5)
where δt,B(ϵ) is characterized in Proposition 4.1 such that δt,B(ϵ) → 0 as ϵ → 0. Now, note that for
any measurable B ⊆ Ic,

P
(
γ(η) · τηIc(x) > t, V η

τ (x) ∈ B
)

= P
(
γ(η) · τηIc(x) > t, V η

τ (x) ∈ B, V η
τϵ(x) ∈ I

)
︸ ︷︷ ︸

(I)

+P
(
γ(η) · τηIc(x) > t, V η

τ (x) ∈ B, V η
τϵ(x) /∈ I

)
︸ ︷︷ ︸

(II)

and since

(I) ≤ P
(
V η
τϵ(x) ∈ I

)
and (II) = P

(
γ(η) · τηϵ (x) > t, V η

τϵ(x) ∈ B \ I
)
,

we have that

lim inf
η↓0

inf
x∈I(ϵ′)

P
(
γ(η) · τηIc(x) > t, V η

τ (x) ∈ B
)
≥ lim inf

η↓0
inf

x∈I(ϵ′)
P
(
γ(η) · τηϵ (x) > t, V η

τϵ(x) ∈ B \ I
)

≥ C
(
(B \ I)◦

)
· e−t − δt,B\I(ϵ)

= C(B◦) · e−t − δt,B\I(ϵ)

due to B ⊆ Ic, and

lim sup
η↓0

sup
x∈I(ϵ′)

P
(
γ(η) · τηIc(x) > t, V η

τ (x) ∈ B
)

≤ lim sup
η↓0

sup
x∈I(ϵ′)

P
(
γ(η) · τηϵ (x) > t, V η

τϵ(x) ∈ B \ I
)
+ lim sup

η↓0
sup

x∈I(ϵ′)
P
(
V η
τϵ(x) ∈ I

)
≤ C

(
(B \ I)−

)
· e−t + δt,B\I(ϵ) + C(I−) + δ0,I(ϵ)

= C(B−) · e−t + δt,B\I(ϵ) + δ0,I(ϵ).

Taking ϵ→ 0, we arrive at the desired lower and upper bounds of the theorem. Now we are left with
the proof of the claim 4.5 is true. Note that for any x ∈ I,

P
(
γ(η) · τηϵ (x) > t, V η

τϵ(x) ∈ B
)

= E

[
P
(
γ(η) · τηϵ (x) > t, V η

τϵ(x) ∈ B
∣∣∣Fτη

A(ϵ)
(x)

)
·
(
I
{
τηA(ϵ)(x) ≤ T/η

}
+ I
{
τηA(ϵ)(x) > T/η

})]
(4.6)

Fix an arbitrary s > 0, and note that from the Markov property,

P
(
γ(η) · τηϵ (x) > t, V η

τϵ(x) ∈ B
)

≤ E

[
sup

y∈A(ϵ)

P
(
τηϵ (y) > t/γ(η)− T/η, V η

τϵ(y) ∈ B
)
· I
{
τηA(ϵ)(x) ≤ T/η

}]
+P

(
τηA(ϵ)(x) > T/η

)
≤ sup

y∈A(ϵ)

P
(
γ(η) · τηϵ (y) > t− s, V η

τϵ(y) ∈ B
)
+P

(
τηA(ϵ)(x) > T/η

)
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for sufficiently small η’s; here, we applied γ(η)/η → 0 as η ↓ 0 in the last inequality. In light of (2.40)
of Condition 1, by taking η → 0 uniformly over x ∈ I(ϵ′) and then T → ∞ we yield

lim sup
η↓0

sup
x∈I(ϵ′)

P
(
γ(η) · τηϵ (x) > t, V η

τϵ(x) ∈ B
)
≤ C(B−) · e−(t−s) + δt,B(ϵ)

Considering an arbitrarily small s > 0, we get the upper bound of the claim (4.5). For the loswer
bound, again from (4.6) and the Markov property,

lim inf
η↓0

inf
x∈I(ϵ′)

P
(
γ(η) · τηϵ (x) > t, V η

τϵ(x) ∈ B
)

≥ lim inf
η↓0

inf
x∈I(ϵ′)

E

[
inf

y∈A(ϵ)
P
(
τηϵ (y) > t/γ(η), V η

τϵ(y) ∈ B
)
· I
{
τηA(ϵ)(x) ≤ T/η

}]
≥ lim inf

η↓0
inf

y∈A(ϵ)
P
(
γ(η) · τηϵ (y) > t, V η

τϵ(y) ∈ B
)
· inf
x∈I(ϵ′)

P
(
τηA(ϵ)(x) ≤ T/η

)
≥ C(B◦)− δt,B(ϵ),

which is the desired lower bound of the claim 4.5. This concludes the proof.

4.2 Technical Lemmas for measures qC(k)|b( · )
In order to prove Theorem 2.6, in Section 4.2 we first prepare several technical lemmas that reveal
important properties of measure qC(k)|b(·) defined in (2.34). Throughout this section, we impose
Assumptions 1, 2, 3, and 6 for all results derived below. Besides, we fix a few useful constants. For
the sake of notation simplicity, for the majority of this section we fix some b > 0 such that sleft/b /∈ Z
and sright/b /∈ Z. With this, for r = |sleft| ∧ sright we have r > (J ∗b − 1)b. This allows us to fix,
throughout this section, some ϵ̄ > 0 small enough such that

ϵ̄ ∈ (0, 1), r > (J ∗b − 1)b+ 3ϵ̄. (4.7)

Next, for any ϵ ∈ (0, ϵ̄), let

t(ϵ) =∆ min
{
t ≥ 0 : yt(sleft + ϵ) ∈ [−ϵ, ϵ] and yt(sright − ϵ) ∈ [−ϵ, ϵ]

}
(4.8)

for the ODE yt(x) defined in (2.32), and recall that Iϵ =∆ (sleft + ϵ, sright − ϵ) is the r-shrinkage of
set I. Also, we use I−ϵ = [sleft + ϵ, sright − ϵ] to denote the closure of Iϵ. Then, the definition of t(·)
immediately implies

yt(y) ∈ [−ϵ, ϵ] ∀y ∈ I−ϵ , ∀t ≥ t(ϵ). (4.9)

Recall that I− = [sleft, sright]. The following lemma collects useful properties of the mapping h
(k)|b
[0,T ]

defined in (2.15)-(2.17).

Lemma 4.2. Let Assumptions 2 and 6 hold. Let ϵ̄ > 0 be the constant characterized in (4.7).
Furthermore, suppose that supx∈I− |a(x)| ∨ |σ(x)| ≤ C for some C ≥ 1 and infx∈I− σ(x) ≥ c for some
c ∈ (0, 1]. (We adopt the convention that t0 = 0.)

(a) Suppose that J ∗b ≥ 2. It holds for all T > 0, x0 ∈ [−b− ϵ̄, b+ ϵ̄], w = (w1, · · · , wJ ∗b −2) ∈ RJ ∗b −2,
and t = (t1, · · · , tJ ∗b −2) ∈ (0, T ]J

∗
b −2↑ that

sup
t∈[0,T ]

|ξ(t)| ≤ (J ∗b − 1)b+ ϵ̄ < r − 2ϵ̄ where ξ =∆ h
(J ∗b −2)|b
[0,T ] (x0,w, t).
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(b) It holds for all T > 0, x0 ∈ [−ϵ̄, ϵ̄], w = (w1, · · · , wJ ∗b −1) ∈ RJ ∗b −1, and t = (t1, · · · , tJ ∗b −1) ∈
(0, T ]J

∗
b −1↑ that

sup
t∈[0,T ]

|ξ(t)| ≤ (J ∗b − 1)b+ ϵ̄ < r − 2ϵ̄ where ξ =∆ h
(J ∗b −1)|b
[0,T ] (x0,w, t).

(c) There exist δ̄ > 0 and t̄ > 0 such that the following claim holds. Let T > 0, x0 ∈ [−ϵ̄, ϵ̄], w0 ∈ R,
w = (w1, · · · , wJ ∗b −1) ∈ RJ ∗b −1, and t = (t1, · · · , tJ ∗b −1) ∈ (0, T ]J

∗
b −1↑. If

sup
t∈[0,T ]

|ξ(t)| ≥ r − ϵ̄ where ξ =∆ h
(J ∗b −1)|b
[0,T ]

(
x0 + φb

(
σ(x0) · w0

)
,w, t

)
,

then

• supt∈[0,tJ∗
b
−1)

|ξ(t)| ≤ (J ∗b − 1)b+ ϵ̄ < r − 2ϵ̄;

• |ξ(tJ ∗b −1)| ≥ r − ϵ̄;

• inft∈[0,tJ∗
b
−1] |ξ(t)| ≥ ϵ̄;

• |wj | > δ̄ for all j = 0, 1, · · · ,J ∗b − 1;

• tJ ∗b −1 < t̄.

(d) Let T > 0, x ∈ R,w = (w1, · · · , wJ ∗b ) ∈ RJ ∗b , t = (t1, · · · , tJ ∗b ) ∈ (0, T ]J
∗
b ↑ and ϵ ∈ (0, ϵ̄). If

|ξ(t1−)| < ϵ for ξ = h
(J ∗b )|b
[0,T ] (x,w, t), then

|ξ(tJ ∗b )− ξ̂(tJ ∗b − t1)| <
[
2 exp

(
D(T − t1)

)
·
(
1 +

bD

c

)]J ∗b +1

· ϵ

where ξ̂ = h
(J ∗b −1)|b
[0,T−t1]

(
φb(σ(0) · w1), (w2, · · · , wJ ∗b ), (t2 − t1, t3 − t1, · · · , tJ ∗b − t1)

)
and D ≥ 1 is

the constant in Assumption 2.

(e) Given ∆ > 0, there exists ϵ0 = ϵ0(∆) ∈ (0, ϵ̄) such that for any T > 0, θ > r − ϵ̄, x ∈ [−ϵ0, ϵ0],
w = (w1, · · · , wJ ∗b ) ∈ RJ ∗b , and t = (t1, · · · , tJ ∗b ) ∈ (0, T ]J

∗
b ↑,

|ξ(tJ ∗b )| ∨ |ξ̂(tJ ∗b − t1)| > θ =⇒ |ξ̂(tJ ∗b − t1)− ξ(tJ ∗b )| < ∆

where ξ = h
(J ∗b )|b
[0,T ] (x,w, t) and ξ̂ = h

(J ∗b −1)|b
[0,T−t1]

(
φb(σ(0)·w1), (w2, · · · , wJ ∗b ), (t2−t1, t3−t1, · · · , tJ ∗b −

t1)
)
.

Proof. Before the proof of the claims, we stress that the validity of all claims do not depend on the
value of σ(·) and a(·) outside of I−. Take part (a) as an example. Suppose that we can prove part (a)
under the stronger assumption that supx∈R |a(x)|∧σ(x) ≤ C for some C ∈ [1,∞) and infx∈R σ(x) ≥ c

for some c ∈ (0, 1]. Then due to supt∈[0,T ] |ξ(t)| < r = |sleft| ∧ sright for ξ = h
(J ∗b −2)|b
[0,T ] (x0,w, t),

we have ξ(t) ∈ I− for all t ∈ [0, T ]. This implies that part (a) is still valid even if we only have
supx∈I− |a(x)| ∧ σ(x) ≤ C and infx∈I− σ(x) ≥ c. The same applies to all the other claims. Therefore,
in the proof below we assume w.l.o.g. that the strong assumptions supx∈R |a(x)| ∧ σ(x) ≤ C for some
C ∈ [1,∞) and infx∈R σ(x) ≥ c for some c ∈ (0, 1] hold.

(a) The proof hinges on the following observation. For any j ≥ 0, T > 0, x0 ∈ R,w = (w1, · · · , wj) ∈
Rj and t = (t1, · · · , tj) ∈ (0, T ]j↑, let ξ = h

(j)|b
[0,T ](x0,w, t). The condition a(x)x ≤ 0 ∀x ∈ (−γ, γ) im-

plies that

d|ξ(t)|
dt

= −
∣∣a(ξ(t))∣∣ ∀t ∈ [0, T ] \ {t1, · · · , tj} (4.10)
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Specifically, suppose that J ∗b ≥ 2. For all T > 0, x0 ∈ [−b − ϵ̄, b + ϵ̄],w = (w1, · · · , wJ ∗b −2) ∈ RJ ∗b −2

and t = (t1, · · · , tJ ∗b −2) ∈ (0, T ]J
∗
b −2↑, it holds for ξ =∆ h

(J ∗b −2)|b
[0,T ] (x0,w, t) that d|ξ(t)|/dt ≤ 0 for any

t ∈ [0, T ] \ {t1, · · · , tJ ∗b −2}, thus leading to

sup
t∈[0,T ]

|ξ(t)| ≤ |ξ(0)|+
∑
t≤T

|∆ξ(t)|

≤ |ξ(0)|+ (J ∗b − 2)b due to truncation operators φb in h
(J ∗b −2)|b
[0,T ]

≤ b+ ϵ̄+ (J ∗b − 2)b

= (J ∗b − 1)b+ ϵ̄ < r − 2ϵ̄ due to (4.7).

This concludes the proof of part (a).
(b) The proof is almost identical to that of part (a). In particular, it follows from (4.10) that

d|ξ(t)|/dt ≤ 0 for any t ∈ [0, T ] \ {t1, · · · , tJ ∗b −1}. Therefore,

sup
t∈[0,T ]

|ξ(t)| ≤ |ξ(0)|+
∑
t≤T

|∆ξ(t)|

≤ |ξ(0)|+ (J ∗b − 1)b due to truncation operators φb in h
(J ∗b −1)|b
[0,T ]

≤ ϵ̄+ (J ∗b − 1)b < r − 2ϵ̄ due to (4.7).

(c) We start from the claim that supt∈[0,tJ∗
b
−1)

|ξ(t)| < r − 2ϵ̄. The case with J ∗b = 1 is trivial

since [0, tJ ∗b −1) = [0, 0) is an empty set. Now consider the case where J ∗b ≥ 2. For x̂0 =∆ x0 +

φb

(
σ(x0) · w0

)
, we have |x̂0| ≤ ϵ̄ + b. By setting ŵ = (w1, · · · , wJ ∗b −2), t̂ = (t1, · · · , tJ ∗b −2) and

ξ̂ = h
(J ∗b −2)|b
[0,T ] (x̂0, ŵ, t̂), we get ξ(t) = ξ̂(t) for all t ∈ [0, tJ ∗b −1). It then follows directly from results

in part (a) that supt∈[0,tJ∗
b
−1)

|ξ(t)| = supt∈[0,tJ∗
b
−1)

|ξ̂(t)| ≤ (J ∗b − 1)b+ ϵ̄ < r − 2ϵ̄.

Next, to see why the claim |ξ(tJ ∗b −1)| ≥ r− ϵ̄ is true, note that we already know supt∈[0,T ] |ξ(t)| ≥
r − ϵ̄, and we have just shown that supt∈[0,tJ∗

b
−1)

|ξ(t)| < r − 2ϵ̄. Now consider the following proof

by contradiction. Suppose that |ξ(tJ ∗b −1)| < r − ϵ̄. Then by definition of the mapping h
(J ∗b −1)|b
[0,T ] , we

know that ξ(t) is continuous on t ∈ [tJ ∗b −1, T ]. Given observation (4.10), we yield the contradiction

that supt∈[tJ∗
b
−1,T ] |ξ(t)| ≤ |ξ(tJ ∗b −1)| ∧

(
supt∈[0,tJ∗

b
−1)

|ξ(t)|
)
< r − ϵ̄. This concludes the proof.

Similarly, to show the claim inft∈[0,tJ∗
b
−1] |ξ(t)| ≥ ϵ̄ we proceed with a proof by contradiction.

Suppose there is some t ∈ [0, tJ ∗b −1] such that |ξ(t)| < ϵ̄. Then observation (4.10) implies that

|ξ(tJ ∗b −1)| ≤ |ξ(t)|+
∑

s∈(t,tJ∗
b
−1]

|∆ξ(s)|

≤ ϵ̄+ (J ∗b − 1)b due to truncation operators φb in h
(J ∗b −1)|b
[0,T ]

< r − 2ϵ̄ due to (4.7).

However, we have just shown that |ξ(tJ ∗b −1)| ≥ r − ϵ̄ must hold. With this contradiction established
we conclude the proof.

Recall that C ≥ 1 be the constant satisfying supx∈R |σ(x)| ≤ C. We show that for any δ̄ > 0 small
enough such that

(J ∗b − 1)b+ 3ϵ̄+ Cδ̄ < r,

we have |wj | > δ̄ for all j = 0, 1, · · · ,J ∗b − 1. Again, suppose that the claim does not hold. Then
there is some j∗ = 0, 1, · · · ,J ∗b − 1 with |wj∗ | ≤ δ̄. From observation (4.10), we get

|ξ(tJ ∗b −1)| ≤ |ξ(0)|+
∑

t∈[0,tJ∗
b
−1]

|∆ξ(t)|
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≤ |x0|+ φb

(∣∣∣σ(x0) · w0

∣∣∣)+ J ∗b −1∑
j=1

φb

(∣∣∣σ(ξ(tj−)
)
· wj

∣∣∣)
≤ ϵ̄+ (J ∗b − 1)b+ Cδ̄ due to |x0| ≤ ϵ̄, |wj∗ | ≤ δ̄ and |σ(y)| ≤ C for all y ∈ R
< r − 2ϵ̄ due to our choice of δ̄.

This contradiction with the fact |ξ(tJ ∗b −1)| ≥ r − ϵ̄ allows us to conclude the proof.
Lastly, we move onto the claim tJ ∗b −1 < t̄. If J ∗b = 1, then due to t0 = 0 the claim is trivially true

for any t̄ > 0. Now we focus on the case where J ∗b ≥ 2 and start by specifying the constant t̄. From
the continuity of a(·) (see Assumption 2) and the fact that a(y) ̸= 0 ∀y ∈ (−r, 0) ∪ (0, r), we can find
some cϵ̄ > 0 such that |a(y)| ≥ cϵ̄ for all y ∈ [−r + ϵ̄,−ϵ̄] ∪ [ϵ̄, r − ϵ̄]. Now we pick some

tϵ̄ =
∆ r/cϵ̄, t̄ = (J ∗b − 1) · tϵ̄.

We proceed with a proof by contradiction. Suppose that tJ ∗b −1 ≥ t̄ = (J ∗b − 1) · tϵ̄, then we can
find some j∗ = 1, 2, · · · ,J ∗b − 1 such that tj∗ − tj∗−1 ≥ tϵ̄. First, recall that we have shown that
|ξ(tj∗−1)| < r − ϵ̄. Next, note that we must have |ξ(t)| < ϵ̄ for some t ∈ [tj∗−1, tj∗). Indeed, suppose
that |ξ(t)| ≥ ϵ̄ for all t ∈ [tj∗−1, tj∗). Then from observation (4.10) and the fact that |a(y)| ≥ cϵ̄ for
all y ∈ [−γ,−ϵ̄] ∪ [ϵ̄, γ], we yield

|ξ(tj∗−)| ≤ |ξ(tj∗−1)| − cϵ̄ · tϵ̄ ≤ r − cϵ̄ ·
r

cϵ̄
= 0.

The continuity of ξ(t) on t ∈ [tj∗−1, tj∗) then implies that for any t ∈ [tj∗−1, tj∗) close enough to
tj∗ , we have |ξ(t)| < ϵ̄. However, note that we have shown that inft∈[0,tJ∗

b
−1] |ξ(t)| ≥ ϵ̄. With this

contradiction established, we conclude the proof.
(d) Let Rj =∆ |ξ(tj) − ξ̂(tj − t1)| for any j ∈ [J ∗b ] and R0 =∆ |ξ(t1) − ξ̂(0)|. We start by analyzing

R0. First, note that ξ(t1) = ξ(t1−) + φb

(
σ
(
ξ(t1−)

)
· w1

)
and ξ̂(0) = φb

(
σ(0) · w1

)
. Using (4.10), we

get |ξ(t1−)| ≤ |x0| ≤ ϵ. As a result,

R0 ≤ ϵ0 +
∣∣∣φb

(
σ
(
ξ(t1−)

)
· w1

)
− φb

(
σ(0) · w1

)∣∣∣
≤ ϵ+

∣∣σ(ξ(t1−)
)
− σ(0)

∣∣ · ∣∣φb/c(w1)
∣∣ using (3.23)

≤ ϵ+Dϵ · b
c
= (1 +

bD

c
) · ϵ because of Assumption 2.

We proceed with an induction argument. Suppose that for some j = 0, 1, · · · ,J ∗b − 1, we have
Rj ≤ ρj+1 · ϵ with

ρ =∆ exp(DT ) ·
(
1 +

bD

c

)
.

Then by applying Gronwall’s inequality for u ∈ [tj , tj+1), we get

sup
u∈[tj ,tj+1)

|ξ(u)− ξ̂(u− t1)| ≤ Rj · exp
(
D(tj+1 − tj)

)
≤ exp(DT )Rj .

Then at t = tj+1 we have (set t̂j+1 =∆ tj+1 − t1)

Rj+1 = |ξ̂(t̂j+1)− ξ(tj+1)|

=

∣∣∣∣ξ̂(t̂j+1−) + φb

(
σ
(
ξ̂(t̂j+1−)

)
· wj+1

)
−
[
ξ(tj+1−) + φb

(
σ
(
ξ(tj+1−)

)
· wj+1

)]∣∣∣∣
≤
∣∣∣ξ̂(t̂j+1−)− ξ(tj+1−)

∣∣∣+ ∣∣∣φb

(
σ
(
ξ̂(t̂j+1−)

)
· wj+1

)
− φb

(
σ
(
ξ(tj+1−)

)
· wj+1

)∣∣∣
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≤ exp(DT )Rj +
∣∣∣φb

(
σ
(
ξ̂(t̂j+1−)

)
· wj+1

)
− φb

(
σ
(
ξ(tj+1−)

)
· wj+1

)∣∣∣
≤ exp(DT )Rj +

∣∣∣σ(ξ̂(t̂j+1−)
)
− σ

(
ξ(tj+1−)

)∣∣∣ · ∣∣φb/c(wj+1)
∣∣ using (3.23)

≤ exp(DT )Rj +D
∣∣ξ̂(tj+1−)− ξ(tj+1−)

∣∣ · b
c

due to Assumption 2

≤ exp(DT )Rj +
bD

c
· exp(DT )Rj =

(
1 +

bD

c

)
exp(DT )Rj ≤ ρj+2 · ϵ.

By arguing inductively we conclude the proof.
(e) Note that the statement is not affected by the values of ξ outside of [0, tJ ∗b ] or the values of

ξ̂ outside of [0, tJ ∗b − t1]. Therefore, without loss of generality we set T = tJ ∗b + 1. Suppose we can
show that

|ξ(tJ ∗b )− ξ̂(tJ ∗b − t1)| <
[
2 exp

(
D(t̄+ 1)

)
·
(
1 +

bD

c

)]J ∗b +1

︸ ︷︷ ︸
=∆ρ∗

·ϵ0 ∀ϵ0 ∈ (0, ϵ̄]. (4.11)

Then one can see that part (e) holds for any ϵ0 ∈ (0, ϵ̄) small enough such that ρ∗ϵ0 < ∆.
Now it remains to prove claim (4.11). From observation (4.10), we get |ξ(t1−)| ≤ |ξ(0)| = |x| ≤ ϵ0.

This allows us to apply results in part (d) and get (recall our choice of T = tJ ∗b + 1)

|ξ(tJ ∗b )− ξ̂(tJ ∗b − t1)| <
[
2 exp

(
D(tJ ∗b − t1 + 1)

)
·
(
1 +

bD

c

)]J ∗b +1

· ϵ0.

Lastly, note that if |ξ̂(tJ ∗b − t1)| > θ > r− ϵ̄, then tJ ∗b − t1 < t̄ from part (c). Likewise, from part (c),
|ξ(tJ ∗b )| > θ > r − ϵ̄, then tJ ∗b < t̄. Therefore, in either case, tJ ∗b − t1 + 1 ≤ t̄+ 1. This concludes the
proof.

The following lemmas reveal important properties of the measure qC(J ∗b )|b.

Lemma 4.3. For any |γ| > (J ∗b − 1)b+ ϵ̄ such that γ/b /∈ Z,

qC(J ∗b )|b({γ}) = 0.

Proof. First, consider the case where J ∗b = 1. qC(1)|b({γ}) = να

({
w : φb

(
σ(0) · w

)
= γ

})
. Since

γ ̸= b, we know that
{
w : φb

(
σ(0) · w

)
= γ

}
⊆ { γ

σ(0)}. The absolute continuity of να (w.r.t the

Lebesgue measure) then implies that qC(1)|b({γ}) = 0.
Now we focus on the case where J ∗b ≥ 2. Observe that

qC(J ∗b )|b({γ})

=

∫
I

(
I

{
g(J

∗
b −1)|b

(
φb

(
σ(0) · w1

)
, w2, · · · , wJ ∗b −2, w

∗, t1, · · · , tJ ∗b −2, tJ ∗b −2 + t∗
)
= γ

}
× να(dw

∗)L(dt∗)
)
ν
J ∗b −1
α (dw1, · · · , dwJ ∗b −1)× LJ

∗
b −2↑∞ (dt1, · · · , dtJ ∗b −2)

=

∫ (∫
(t∗,w∗)∈E(w,t)

να(dw
∗)L(dt∗)

)
ν
J ∗b −1
α (dw)× LJ

∗
b −2↑∞ (dt)

where

E(w, t) =

{
(w, t) ∈ R× (0,∞) : φb

(
yt

(
x̃(w, t)

)
+ σ

(
yt

(
x̃(w, t)

))
w

)
= γ

}
,

x̃(w, t) = qg(J
∗
b −2)|b

(
φb

(
σ(0) · w1

)
, w2, · · · , wJ ∗b −2, t1, · · · , tJ ∗b −2

)
.
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Here yt(x) is the ODE defined in (2.32). Furthermore, we claim that for any w, t, there exist some
continuous function w∗ : (0,∞) → R and some t∗ ∈ (0,∞) such that

E(w, t) ⊆
{
(w, t) ∈ R× (0,∞) : w = w∗(t) or t = t∗

}
. (4.12)

Then set E(w, t) charges zero mass under Lebesgues measure on R × (0,∞). From the absolute

continuity of να × L (w.r.t. Lebesgues measure on R× (0,∞)) we get qC(J ∗b )|b({γ}) = 0.
Now it only remains to prove claim (4.12). Henceforth in this proof we fix some w ∈ RJ ∗b −1 and

t ∈ (0,∞)J
∗
b −2↑. We first note that due to |γ| > (J ∗b − 1)b + ϵ̄, it follows from part (a) of Lemma

4.2 that |x̃(w, t)| ≤ (J ∗b − 1)b + ϵ̄ < γ. If x̃(w, t) = 0, then a(0) = 0 implies that yt

(
x̃(w, t)

)
= 0

for all t ≥ 0. Due to the assumption that γ ̸= b, in this case we have |yt

(
x̃(w, t)

)
− γ| = γ ̸= b for

all t ≥ 0. Otherwise, Assumption 6 implies that |yt

(
x̃(w, t)

)
| is monotone decreasing w.r.t. t. Since

|x̃(w, t)| < γ, we must also have |yt

(
x̃(w, t)

)
| < γ for all t ≥ 0. As a result, for |yt

(
x̃(w, t)

)
− γ| = b

to hold, we need yt

(
x̃(w, t)

)
= y for some |y| < γ, |y−γ| = b. There exists at most one y that satisfies

this condition: that is, y = γ − b if γ > b, and no solution if γ < b. Due to the strict monotonicity of
yt

(
x̃(w, t)

)
w.r.t. t, there exists at most one t∗ = t∗(w, t) such that |yt

(
x̃(w, t)

)
− γ| = b.

Now for any t > 0, t ̸= t∗, we know that |yt

(
x̃(w, t)

)
− γ| ≠ b. If there is some w ∈ R such that

φb

(
yt

(
x̃(w, t)

)
+ σ

(
yt

(
x̃(w, t)

))
w

)
= γ, then from the fact that |yt

(
x̃(w, t)

)
− γ| ≠ b, the only

possible choice for w is w =
γ−yt

(
x̃(w,t)

)
σ
(
yt

(
x̃(w,t)

)) . (Note that this quantity is well-defined due to σ(x) >

0 ∀x ∈ R; see Assumption 3.) By setting w∗(t) =∆
γ−yt

(
x̃(w,t)

)
σ
(
yt

(
x̃(w,t)

)) we conclude the proof.

Lemma 4.4. qC(J ∗b )|b(Ic) ∈ (0,∞).

Proof. Let t̄, δ̄ be the constants characterized in Lemma 4.2. We start with the proof of finiteness.
Recall that r = |sleft| ∧ sright, and observe

qC(J ∗b )|b
(
(−∞, sleft] ∪ [sright,∞)

)
≤ qC(J ∗b )|b

(
R \

[
− (r − ϵ̄), r − ϵ̄

])
=

∫
I

{∣∣∣∣qg(J ∗b −1)|b(φb(σ(0) · wJ ∗b ), (w1, · · · , wJ ∗b −1), (t1, · · · , tJ ∗b −1)
)∣∣∣∣ > γ − ϵ̄

}
× ν
J ∗b
α (dw1, · · · , dwJ ∗b )× LJ

∗
b −1↑∞ (dt1, · · · , dtJ ∗b −1)

=

∫
I

{∣∣∣∣h(J ∗b −1)|b[0,1+tJ∗
b
−1]

(
φb(σ(0) · wJ ∗b ), (w1, · · · , wJ ∗b −1), (t1, · · · , tJ ∗b −1)

)
(tJ ∗b −1)

∣∣∣∣ > γ − ϵ̄

}
× ν
J ∗b
α (dw1, · · · , dwJ ∗b )× LJ

∗
b −1↑∞ (dt1, · · · , dtJ ∗b −1)

≤
∫

I

(
|wj | > δ̄ ∀j ∈ [J ∗b ]; tJ ∗b −1 < t̄

)
ν
J ∗b
α (dw)× LJ

∗
b −1↑∞ (dt) using part (c) of Lemma 4.2

≤ t̄J
∗
b −1

/
δ̄αJ

∗
b <∞.

Next, we move onto the proof of the strict positivity. Without loss of generality, assume that
sright ≤ |sleft|. Then due to r/b /∈ Z, we have (J ∗b − 1)b < sright < J ∗b b. First, consider the case where
J ∗b = 1. Then for all w ≥ b

σ(0) we have φb

(
σ(0) · w

)
= b > sright. Therefore,

qC(1)|b
(
[sright,∞)

)
=

∫
I
{
φb

(
σ(0) · w

)
≥ sright

}
να(dw) ≥

∫
w∈[ b

σ(0)
,∞)

να(dw) =

(
σ(0)

b

)α

> 0.
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Now consider the case where J ∗b ≥ 2. In particular, we claim the existence of some (w1, · · · , wJ ∗b ) ∈
RJ ∗b and t = (t1, · · · , tJ ∗b −1) ∈ (0,∞)J

∗
b −1↑ such that

qg(J
∗
b )|b
(
φb(σ(0) · wJ ∗b ), w1, · · · , wJ ∗b −1, t

)
= h

(J ∗b −1)|b
[0,tJ∗

b
−1+1]

(
φb(σ(0) · wJ ∗b ), w1, · · · , wJ ∗b −1, t

)
(tJ ∗b −1) > sright.

(4.13)

Then from the continuity of mapping h
(J ∗b −1)|b
[0,tJ∗

b
−1+1] (see Lemma 3.10), we can fix some ∆ > 0 such that

for all w′j such that |w′j − wj | < ∆ and |t′j − tj | < ∆, we have

qg(J
∗
b −1)|b

(
φb(σ(0) · w′J ∗b ), w

′
1, · · · , w′J ∗b −1, t

′
1, · · · , t′J ∗b −1

)
> sright.

Then we can conclude the proof with

qC(J ∗b )|b
(
[sright,∞)

)
≥
∫

I

{
|w′j − wj | < ∆ ∀j ∈ [J ∗b ]; |t′j − tj | < ∆ ∀j ∈ [J ∗b − 1]

}
× ν
J ∗b
α (dw′1, · · · , dw′J ∗b )× LJ

∗
b −1∞ (dt′1, · · · , dt′J ∗b −1)

> 0.

It only remains to show (4.13). By Assumptions 2 and 3, we can fix some C0 > 0 such that
|a(x)| ≤ C0 for all x ∈ [sleft, sright], as well as some c > 0 such that infx∈[sleft,sright] σ(x) ≥ c. Now
set w1 = · · · = wJ ∗b = b/c, Also, pick some ∆ > 0 and set tk = k∆ (with convention t0 =∆ 0).

For ξ =∆ h
(J ∗b −1)|b
[0,tJ∗

b
−1+1]

(
φb(σ(0) · wJ ∗b ), w1, · · · , wJ ∗b −1, t1, · · · , tJ ∗b −1

)
, note that part (c) of Lemma 4.2

implies supt∈[0,tJ∗
b
−1)

|ξ(t)| ≤ (J ∗b − 1)b+ ϵ̄, so we must have ξ(t) ∈ [sleft, sright] for all t < tJ ∗b −1. This

implies
∣∣a(ξ(t))∣∣ ≤ C0 for all t < tJ ∗b −1. Now we make a few observations. First, at t0 = 0 we have

ξ(0) = φb

(
σ(0) ·wJ ∗b

)
= b due to σ(0) ·wJ ∗ ≥ c · b

c = b. Also, note that (for any j = 1, 2, · · · ,J ∗b − 1)

ξ(tj) = ξ(tj−1) +

∫
s∈[tj−1,tj)

a
(
ξ(s)

)
ds+ φb

(
σ(ξ(tj−) · wj

)
= ξ(tj−1) +

∫
s∈[tj−1,tj)

a
(
ξ(s)

)
ds+ b due to σ

(
ξ(tj−)

)
· wj ≥ c · b

c
= b

≥ ξ(tj−1)− C0 · (tj − tj−1) + b because of a(x)x ≤ 0 (see Assumption 6) and
∣∣a(ξ(t))∣∣ ≤ C0

= ξ(tj−1)− C0∆+ b.

By arguing inductively, we get

qg(J
∗
b −1)|b

(
φb(σ(0) · wJ ∗b ), w1, · · · , wJ ∗b −1, t

)
= ξ(tJ ∗b −1) ≥ J ∗b b− (J ∗b − 1)C0∆.

Due to J ∗b b > sright, it then holds for all ∆ > 0 small enough that J ∗b b− (J ∗b − 1)C0∆ > sright. This
concludes the proof.

Lemma 4.5. Let t̄, δ̄ be the constants characterized in Lemma 4.2. Given ∆ ∈ (0, ϵ̄/2), there exists
ϵ0 > 0 such that for any ϵ ∈ (0, ϵ0], T ≥ t̄, and measurable B ⊆ (Iϵ̄/2)

c,

(T − t̄) · qC(J ∗b )|b
(
B∆

)
≤ inf

x∈[−ϵ,ϵ]
C

(J ∗b )|b
[0,T ]

((
qE(ϵ, B, T )

)◦
; x

)
≤ sup

x∈[−ϵ,ϵ]
C

(J ∗b )|b
[0,T ]

((
qE(ϵ, B, T )

)−
; x

)
≤ T · qC(J ∗b )|b

(
B∆
)
+
(
t̄/δ̄α

)J ∗b .
where qE(ϵ, B, T ) =∆

{
ξ ∈ D[0, T ] : ∃t ≤ T s.t. ξ(t) ∈ B and ξ(s) ∈ Iϵ ∀s ∈ [0, t)

}
.
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Proof. Using part (e) of Lemma 4.2, for the fixed ∆ > 0 we can fix some ϵ0 ∈ (0,∆/2) such that the
following claim holds (recall that r = |sleft|∧sright): For any T > 0, x ∈ [−ϵ0, ϵ0], w = (w1, · · · , wJ ∗b ) ∈
RJ ∗b , and t = (t1, · · · , tJ ∗b ) ∈ (0, T ]J

∗
b ↑,

|ξ(tJ ∗b )| ∨ |ξ̂(tJ ∗b − t1)| > r − ϵ̄ =⇒ |ξ̂(tJ ∗b − t1)− ξ(tJ ∗b )| < ∆/2 (4.14)

where ξ = h
(J ∗b )|b
[0,T ] (x,w, t) and qg(J

∗
b −1)|b

(
φb(σ(0) · w1), w2, · · · , wJ ∗b , t2 − t1, t3 − t1, · · · , tJ ∗b − t1

)
.

Henceforth in the proof we fix some ϵ ∈ (0, ϵ0] and B ⊆ (Iϵ̄/2)
c. To prove the upper bound, we

start with the following observation. For any ξ ∈ qE(ϵ, B, T ) and any ξ′ such that dJ1,[0,T ](ξ, ξ
′) < ϵ,

due to ϵ ≤ ϵ0 < ∆/2, we can find some t′ ∈ [0, T ] such that ξ′(t′) ∈ B∆/2. This implies(
qE(ϵ, B, T )

)− ⊆
(

qE(ϵ, B, T )
)ϵ ⊆ {ξ ∈ D[0, T ] : ξ(t) ∈ B∆/2 for some t ∈ [0, T ]

}
.

By definition of the measure C
(k)|b
[0,T ] in (2.9),

C
(J ∗b )|b
[0,T ]

((
qE(ϵ, B, T )

)−
; x
)

≤
∫

I

{
∃t ∈ [0, T ] s.t. h

(J ∗b )|b
[0,T ] (x,w, t)(t) ∈ B∆/2

}
ν
J ∗b
α (dw)× LJ

∗
b ↑

T (dt)

(by setting uj =
∆ tj − t1 for all j = 2, 3, · · · ,J ∗b )

=

∫ (∫
I

{
∃t ∈ [0, T ] s.t. h

(J ∗b )|b
[0,T ] (x,w, t1, t1 + u2, t1 + u3, · · · , t1 + uJ ∗b )(t) ∈ B∆/2

}
× ν
J ∗b
α (dw)× LJ

∗
b −1↑

T−t1 (du2, · · · , duJ ∗b )
)
L(dt1)

=

∫
ϕB(t1, x)LT (dt1) (4.15)

where

ϕB(t1, x) =

∫
I

{
∃t ∈ [0, T ] s.t. h

(J ∗b )|b
[0,T ] (x,w, t1, t1 + u2, t1 + u3, · · · , t1 + uJ ∗b )(t) ∈ B∆/2

}
× ν
J ∗b
α (dw)× LJ

∗
b −1↑

T−t1 (du2, · · · , duJ ∗b ).

For any x ∈ [−ϵ0, ϵ0], note that yt(x) ∈ [−ϵ0, ϵ0] ∀t ≥ 0. Also, note that due to B ⊆ (Iϵ̄/2)
c, we have

infw∈B |w| ≥ r− ϵ̄/2. Because of our choice of ∆ ∈ (0, ϵ̄/2), we then have infw∈B∆/2 |w| > r− ϵ̄. Using
property (4.14), for all t1 ∈ (0, T ] and x ∈ [−ϵ0, ϵ0] we have the upper bound

ϕB(t1, x) ≤
∫

I

{
qg(J

∗
b −1)|b

(
φb

(
σ(0) · w1

)
, w2, · · · , wJ ∗b , u2, · · · , uJ ∗b

)
∈ B∆

}
× ν
J ∗b
α (dw1, · · · , dwJ ∗b )× LJ

∗
b −1↑

T−t1 (du2, · · · , duJ ∗b )
(4.16)

due to part (c) of Lemma 4.2. In particular, if we only consider t1 ∈ (0, T−t̄), then for any x ∈ [−ϵ0, ϵ0]
it follows from (4.16) that

ϕB(t1, x) ≤
∫

I

{
qg(J

∗
b −1)|b

(
φb

(
σ(0) · w1

)
, w2, · · · , wJ ∗b , u2, · · · , uJ ∗b

)
∈ B∆

}
× ν
J ∗b
α (dw1, · · · , dwJ ∗b )× LJ

∗
b −1↑∞ (du2, · · · , duJ ∗b )

due to T − t1 > t̄ (from t1 ∈ (0, T − t̄)) and uJ∗ < t̄ (see part (c) of Lemma 4.2)

= qC(J ∗b )|b(B∆).
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On the other hand, for all t1 ∈ [T − t̄, T ) and x ∈ [−ϵ0, ϵ0], from (4.16) we get

ϕB(t1, x) ≤
∫

I

{
qg(J

∗
b −1)|b

(
φb

(
σ(0) · w1

)
, w2, · · · , wJ ∗b , u2, · · · , uJ ∗b

)
∈ B∆

}
× ν
J ∗b
α (dw1, · · · , dwJ ∗b )× LJ

∗
b −1↑

T−t1 (du2, · · · , duJ ∗b )

≤
∫

I

{
qg(J

∗
b −1)|b

(
φb

(
σ(0) · w1

)
, w2, · · · , wJ ∗b , u2, · · · , uJ ∗b

)
∈ B∆

}
× ν
J ∗b
α (dw1, · · · , dwJ ∗b )× LJ

∗
b −1↑

t̄ (du2, · · · , duJ ∗b )
due to T − t1 ≤ t̄

≤
∫

I

{∣∣∣qg(J ∗b −1)|b(φb

(
σ(0) · w1

)
, w2, · · · , wJ ∗b , u2, · · · , uJ ∗b

)∣∣∣ > r − ϵ̄

}
× ν
J ∗b
α (dw1, · · · , dwJ ∗b )× LJ

∗
b −1↑

t̄ (du2, · · · , duJ ∗b )
due to ∆ < ϵ̄ and recall r = |sleft| ∧ sright

≤
∫

I

{
|wj | > δ̄ ∀j ∈ [J ∗b ]

}
ν
J ∗b
α (dw1, · · · , dwJ ∗b )× LJ

∗
b −1↑

t̄ (du2, · · · , duJ ∗b )

due to part (c) of Lemma 4.2

≤ (1/δ̄)αJ
∗
b · t̄J

∗
b −1. (4.17)

Therefore, in (4.15) we obtain (for all x ∈ [−ϵ0, ϵ0])∫
ϕB(t1, x)LT (dt1) =

∫
t1∈(0,T−t̄)

ϕB(t1, x)LT (dt1) +

∫
t1∈[T−t̄,T )

ϕB(t1, x)LT (dt1)

≤ (T − t̄) · qC(J ∗b )|b(B∆) + t̄ · (1/δ̄α)J
∗
b · t̄J

∗
b −1

≤ T · qC(J ∗b )|b(B∆) + (t̄/δ̄α)J
∗
b

and conclude the proof of the upper bound.
The proof of the lower bound is almost identical. Specifically, let Ẽ =

{
ξ ∈ D[0, T ] : ∃t ∈

[0, T ] s.t. ξ(t) ∈ B∆/2, ξ(s) ∈ I2ϵ ∀s ∈ [0, t)
}
. For any ξ ∈ Ẽ and any ξ′ with dJ1,[0,T ](ξ, ξ

′) < ϵ, due
to ϵ ≤ ϵ0 < ∆/2 there must be some t′ ∈ [0, T ] such that ξ′(t′) ∈ B and ξ′(s) ∈ Iϵ ∀s ∈ [0, t′). This
implies{

ξ ∈ D[0, T ] : ∃t ∈ [0, T ] s.t. ξ(t) ∈ B∆/2, ξ(s) ∈ I2ϵ ∀s ∈ [0, t)
}
⊆
(

qE(ϵ, B, T )
)
ϵ
⊆
(

qE(ϵ, B, T )
)◦
.

As a result,

C
(J ∗b )|b
[0,T ]

((
qE(ϵ, B, T )

)◦
; x
)

≥
∫

I

{
∃t ∈ [0, T ] s.t. h

(J ∗b )|b
[0,T ] (x,w, t)(t) ∈ B∆/2 and h

(J ∗b )|b
[0,T ] (x,w, t)(s) ∈ I2ϵ ∀s ∈ [0, t)

}
ν
J ∗b
α (dw)× LJ

∗
b ↑

T (dt)

=

∫
ϕ̃B(t1, x)LT (dt1)

where

ϕ̃B(t1, x) =

∫
I

{
∃t ∈ [0, T ] s.t. h

(J ∗b )|b
[0,T ] (x,w, t1, t1 + u2, t1 + u3, · · · , t1 + uJ ∗b )(t) ∈ B∆/2

and h
(J ∗b )|b
[0,T ] (x,w, t1, t1 + u2, t1 + u3, · · · , t1 + uJ ∗b )(s) ∈ I2ϵ ∀s ∈ [0, t)

}
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× ν
J ∗b
α (dw)× LJ

∗
b −1↑

T−t1 (du2, · · · , duJ ∗b ).

Analogous to the argument for (4.16), using property (4.14) we yield that for all t ∈ (0, T − t̄):

ϕB(t1, x) ≥
∫

I

{
qg(J

∗
b −1)|b

(
φb

(
σ(0) · w1

)
, w2, · · · , wJ ∗b , u2, · · · , uJ ∗b

)
∈ B∆

}
× ν
J ∗b
α (dw1, · · · , dwJ ∗b )× LJ

∗
b −1↑

T−t1 (du2, · · · , duJ ∗b )

= qC(J ∗b )|b(B∆).

due to part (c) of Lemma 4.2 again. To avoid repetitions we omit the details here.

Lemma 4.6. Let ϵ̄ ∈ (0, b) be defined as in (4.7). Let positive integer k, open interval S ⊆ R, and
b > 0 be such that dS ≥ k and rS − (dS − 1) · b > ϵ̄ where

rS =∆ inf{|x| : x ∈ S}, dS =∆ ⌈rS/b⌉.

Then

qC(k)|b(S) > 0 ⇐⇒ dS = k.

Proof. We first prove that qC(k)|b(S) > 0 =⇒ dS = k. By definition of qC(k)|b in (2.34), there must
be some w0 ∈ R, w = (w1, · · · , wk−1) ∈ Rk−1, and t = (t1, · · · , tk−1) ∈ (0,∞)(k−1)↑ such that (let
T = tk−1 + 1)

h
(k−1)|b
[0,T ]

(
φb(σ(0) · w0),w, t)(tk−1) ∈ S. (4.18)

However, part (a) of Lemma 4.2 implies that
∣∣h(k−1)|b[0,T ]

(
φb(σ(0) · w0),w, t)(t)

∣∣ < (k − 1) · b+ ϵ̄ for all

t ∈ [0, tk−1). Therefore,

rS ≤
∣∣h(k−1)|b[0,T ]

(
φb(σ(0) · w0),w, t)(tk−1)

∣∣ ≤ ∣∣h(k−1)|b[0,T ]

(
φb(σ(0) · w0),w, t)(tk−1−)

∣∣+ b

≤ k · b+ ϵ̄.

This leads to rS/b < k + 1, and hence dS = k or k + 1. Furthermore, suppose that dS = k + 1. Then
rS ≤ k · b+ ϵ̄ immediately contradicts the assumption rS − (dS − 1) · b = rS − k · b > ϵ̄. This concludes
the proof of dS = k.

Next, we prove that dS = k =⇒ qC(k)|b(S) > 0. In particular, suppose that we can find some
w0 ∈ R, w = (w1, · · · , wk−1) ∈ Rk−1, and t = (t1, · · · , tk−1) ∈ (0,∞)(k−1)↑ such that (4.18) holds

under the choice of T = tk−1 + 1. Then from the continuity of mapping h
(k)|b
[0,T ] (see Lemma 3.10), one

can find some ∆ > 0 small enough such that

S ⊇
{
(w′0,w

′, t′) ∈ R× Rk−1 × (0, T )k : |w′0 − w0| < ∆; max
i∈[k−1]

|w′i − wi| ∨ |t′i − ti| < ∆
}
.

Note that for ∆ > 0 small enough, we can ensure that t′ = (t′1, · · · , t′k−1) ∈ (0, T )(k−1)↑ if maxi∈[k−1] |t′i−
ti| < ∆ (that is, t′ is still strictly increasing). Therefore, qC(k)|b(S) ≥

(∏
i∈[k−1]

∫
(ti−∆,ti+∆)

L(dt)
)
·(∏

i=0,1,··· ,k−1
∫
(wi−∆,wi+∆)

να(dw)
)
> 0.

Now, it suffices to find some w0 ∈ R, w = (w1, · · · , wk−1) ∈ Rk−1, and t = (t1, · · · , tk−1) ∈
(0,∞)(k−1)↑ such that (4.18) holds. Due to rS − (dS − 1) · b > ϵ̄ we know that rS > 0, which implies
0 /∈ S. W.l.o.g. we assume that the open interval S is on the R.H.S. of the origin. First, due to
dS = k, we can find some δ > 0 and x ∈ S such that x < kb+ δ. Next, let ti = ∆ · i for some ∆ > 0.
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By Assumption 3, we can fix some constant c > 0 such that infx∈[sleft,sright] σ(x) ≥ c. Also, we set
wi = b/c for all i = 0, 1, · · · , k − 2. By picking ∆ > 0 small enough we can ensure that

xk−1 =∆ h
(k−1)|b
[0,T ] (φb(σ(0) · w0),w, t)(tk−1−) > (k − 1) · b− δ.

Lastly, note that h
(k−1)|b
[0,T ] (φb(σ(0) · w0),w, t)(tk−1) = xk−1 + φb(σ(xk−1) · wk−1), and x − xk−1 < b

due to xk−1 > (k − 1) · b − δ and x < kb − δ. By setting wk−1 = (x − xk−1)/σ(xk−1), we yield

h
(k−1)|b
[0,T ] (φb(σ(0) · w0),w, t)(tk−1) = x ∈ S and conclude the proof.

4.3 Proof of Theorem 2.6

In this section, we apply the framework developed in Section 2.3.2. and prove Theorem 2.6. Analogous
to Section 4.2, we impose Assumptions 1, 2, 3, and 6 and adopt the choices of ϵ̄ > 0, r > 0, and t(ϵ)
in (4.7), (4.8), and (4.8) throughout this section.

Let us consider a specialized version of Condition 1 where S = R, A(ϵ) = (−ϵ, ϵ), I = (sleft, sright),

and I(ϵ) is set to be Iϵ = (sleft + ϵ, sright − ϵ). Let V η
j (x) = X

η|b
j (x). Meanwhile, recall that C∗b =

qC(J ∗b )|b(Ic), and it has been established in Lemma 4.4 that C∗b ∈ (0,∞). Now, recall that H(·) =
P(|Z1| > ·) and λ(η) = η−1H(η−1), and set

C( · ) =∆
qC(J ∗b )|b( · \ I)

C∗b
, γ(η) =∆ C∗b · η ·

(
λ(η)

)J ∗b .
Note that ∂I = {sleft, sright} and recall our assumption sleft/b /∈ Z and sright/b /∈ Z. Also, our choice of

constant ϵ̄ in (4.7) ensures that |sleft|∧sright > (J ∗b −1) ·b+ ϵ̄. Lemma 4.3 then verifies qC(J ∗b )|b(∂I) = 0

and hence C(∂I) = 0. Besides, note that γ(η)T/η = C∗b T ·
(
λ(η)

)J ∗b .
We start by establishing conditions (2.37) and (2.38). First, given any B ⊆ R we specify the choice

of function δB(ϵ, T ) in Condition 1. From the continuity of measures, we get lim∆↓0 qC(J ∗b )|b
(
(B∆ ∩

Ic) \ (B− ∩ Ic)
)
= 0 and lim∆↓0 qC(J ∗b )|b

(
(B◦ ∩ Ic) \ (B∆ ∩ Ic)

)
= 0. This allows us to fix a sequence

(∆(n))n≥1 such that ∆(n+1) ∈ (0,∆(n)/2) and

qC(J ∗b )|b
(
(B∆ ∩ Ic) \ (B− ∩ Ic)

)
∨ qC(J ∗b )|b

(
(B◦ ∩ Ic) \ (B∆ ∩ Ic)

)
≤ 1/2n (4.19)

for each n ≥ 1. Next, recall the definition of set qE(ϵ, B, T ) in Lemma 4.5, and let B̃(ϵ) =∆ B \ Iϵ.
Using Lemma 4.5, we are able to fix another sequence (ϵ(n))n≥1 such that ϵ(n) ∈ (0, ϵ̄] ∀n ≥ 1 and for
any n ≥ 1, ϵ ∈ (0, ϵ(n)], we have

sup
x∈[−ϵ,ϵ]

C
(J ∗b )|b
[0,T ]

((
qE(ϵ, B̃(ϵ), T )

)−
; x
)
≤ T · qC(J ∗b )|b

(
(B \ Iϵ)∆

(n)
)
+ (t̄/δ̄α)J

∗
b , (4.20)

inf
x∈[−ϵ,ϵ]

C
(J ∗b )|b
[0,T ]

((
qE(ϵ, B̃(ϵ), T )

)◦
; x
)
≥ (T − t̄) · qC(J ∗b )|b

(
(B \ Iϵ)∆(n)

)
. (4.21)

Given any ϵ ∈ (0, ϵ(1)], there uniquely exists some n = nϵ ≥ 1 such that ϵ ∈ (ϵ(n+1), ϵ(n)]. This
allows us to set

qδB(ϵ, T ) = T · qC(J ∗b )|b
(
B∆(n)

\B−
)
∨ qC(J ∗b )|b

(
B◦\B∆(n)

)
∨ qC(J ∗b )|b

(
(∂I)ϵ+∆(n)

)
+ t̄ · qC(J ∗b )|b(B◦ \ I)+ (t̄/δ̄α)J

∗
b

(4.22)

and δB(ϵ, T ) = qδB(ϵ, T )/(C
∗
b · T ). First, due to (4.19), we get

lim
T→∞

δB(ϵ, T ) ≤
1

C∗b
·
[ 1

2nϵ
∨ qC(J ∗b )|b

(
(∂I)ϵ+∆(nϵ)

)]
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where nϵ is the unique positive integer satisfying ϵ ∈ (ϵ(n+1), ϵ(n)]. Moreover, as ϵ ↓ 0 we get nϵ → ∞.

Since ∂I is closed, we get ∩r>0(∂I)
r = ∂I, which then implies limr↓0 qC(J ∗b )|b

(
(∂I)r

)
= qC(J ∗b )|b

(
∂I
)
=

0 due to continuity of measures. In summary, we have verified that limϵ↓0 limT→∞ δB(ϵ, T ) = 0.
Now, we are ready to verify conditions (2.37) and (2.38). Specifically, we introduce stopping times

τη|bϵ (x) =∆ min
{
j ≥ 0 : X

η|b
j (x) /∈ Iϵ

}
. (4.23)

Lemma 4.7 (Verifying conditions (2.37) and (2.38)). Let t̄ be characterized as in Lemma 4.2. Given
any measurable B ⊆ R, any ϵ > 0 small enough, and any T > t̄,

C(B◦)− δB(ϵ, T ) ≤ lim inf
η↓0

inf
x∈(−ϵ,ϵ)

P
(
τ
η|b
ϵ (x) ≤ T/η; X

η|b
τ
η|b
ϵ (x)

(x) ∈ B
)

γ(η)T/η

≤ lim sup
η↓0

sup
x∈(−ϵ,ϵ)

P
(
τ
η|b
ϵ (x) ≤ T/η; X

η|b
τ
η|b
ϵ (x)

(x) ∈ B
)

γ(η)T/η
≤ C(B−) + δB(ϵ, T ).

Proof. Recall that γ(η)T/η = C∗b T ·
(
λ(η)

)J ∗b , C(·) = qC(J ∗b )|b( · \I)/C∗b , and δB(ϵ, T ) = qδB(ϵ, T )/(C
∗
b · T ).

By rearranging the terms, it suffices to show that

lim sup
η↓0

sup
x∈(−ϵ,ϵ)

P
(
τ
η|b
ϵ (x) ≤ T/η; X

η|b
τ
η|b
ϵ (x)

(x) ∈ B
)

(
λ(η)

)J ∗b ≤ T · qC(J ∗b )|b(B− \ I) + qδB(ϵ, T ), (4.24)

lim inf
η↓0

inf
x∈(−ϵ,ϵ)

P
(
τ
η|b
ϵ (x) ≤ T/η; X

η|b
τ
η|b
ϵ (x)

(x) ∈ B
)

(
λ(η)

)J ∗b ≥ T · qC(J ∗b )|b(B◦ \ I)− qδB(ϵ, T ). (4.25)

To proceed, recall the definition of set qE(ϵ, B, T ) in Lemma 4.5. Let B̃(ϵ) =∆ B \ Iϵ. Note that{
τη|bϵ (x) ≤ T/η; X

η|b
τ
η|b
ϵ (x)

(x) ∈ B
}
=
{
τη|bϵ (x) ≤ T/η; X

η|b
τ
η|b
ϵ (x)

(x) ∈ B̃(ϵ)
}
=
{
X

η|b
[0,T ](x) ∈ qE(ϵ, B̃(ϵ), T )

}
.

For any ϵ ∈ (0, ϵ̄) and ξ ∈ qE(ϵ, B̃(ϵ), T ), there is t ∈ [0, T ] such that ξ(t) /∈ Iϵ and hence |ξ(t)| ≥
r− ϵ > r− ϵ̄. On the other hand, using part (b) of Lemma 4.2, it holds for all ξ ∈ D(J ∗b −1)|b

[−ϵ,ϵ] [0, T ] that

supt∈[0,T ] |ξ(t)| < r − 2ϵ̄. In summary, we have established that

dJ1,[0,T ]

(
qE(ϵ, B̃(ϵ), T ), D(J ∗b −1)|b

[−ϵ,ϵ] [0, T ]
)
> 0

for all ϵ > 0 small enough. Now let n = nϵ be the unique positive integer such that ϵ ∈ (ϵ(n+1), ϵ(n)].
It follows from Theorem 2.3 that

lim sup
η↓0

sup
x∈[−ϵ,ϵ]

P
(
τ
η|b
ϵ (x) ≤ T/η; X

η|b
τ
η|b
ϵ (x)

(x) ∈ B
)

(
λ(η)

)J ∗b ≤ sup
x∈[−ϵ,ϵ]

C
(J ∗b )|b
[0,T ]

((
qE(ϵ, B̃(ϵ), T )

)−
;x
)

≤ T · qC(J ∗b )|b
(
(B \ Iϵ)∆

(n)
)
+ (t̄/δ̄α)J

∗
b ;

(4.26)

here the last inequality we applied property (4.20). Furthermore,

qC(J ∗b )|b
(
(B \ Iϵ)∆

(n)
)
≤ qC(J ∗b )|b

(
B∆(n)

∪ (Icϵ )
∆(n)

)
due to (E ∪ F )∆ ⊆ E∆ ∪ F∆

= qC(J ∗b )|b
(
B∆(n)

∪ (Icϵ )
∆(n)

∩ Ic
)
+ qC(J ∗b )|b

(
B∆(n)

∪ (Icϵ )
∆(n)

∩ I
)
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≤ qC(J ∗b )|b
(
B∆(n)

\ I
)
+ qC(J ∗b )|b

(
(Icϵ )

∆(n)

∩ I
)

≤ qC(J ∗b )|b
(
B∆(n)

\ I
)
+ qC(J ∗b )|b

(
(∂I)ϵ+∆(n)

)
≤ qC(J ∗b )|b

(
B− \ I

)
+ qC(J ∗b )|b

(
(B∆(n)

∩ Ic) \ (B− ∩ Ic)
)
+ qC(J ∗b )|b

(
(∂I)ϵ+∆(n)

)
Considering the definition of qδB in (4.22), one can plug this bound back into (4.26) and yield the
upper bound (4.24). Similarly, by applying Theorem 2.3 and property (4.21), we obtain

lim inf
η↓0

inf
x∈[−ϵ,ϵ]

P
(
τ
η|b
ϵ (x) ≤ T/η; X

η|b
τ
η|b
ϵ (x)

(x) ∈ B
)

(
λ(η)

)J ∗b ≥ inf
x∈[−ϵ,ϵ]

C
(J ∗b )|b
[0,T ]

((
qE(ϵ, B̃(ϵ), T )

)◦
;x
)

≥ (T − t̄) · qC(J ∗b )|b
(
(B \ Iϵ)∆(n)

)
.

(4.27)

Furthermore, from the preliminary bound (E ∩ F )∆ ⊇ E∆ ∩ F∆ we get

qC(J ∗b )|b
(
(B \ Iϵ)∆(n)

)
≥ qC(J ∗b )|b

(
(B \ I)∆(n)

)
≥ qC(J ∗b )|b

(
B∆(n) ∩ Ic∆(n)

)
.

Together with the fact that B∆ \ I = B∆ ∩ Ic ⊆
(
B∆ ∩ (Ic)∆

)
∪
(
Ic \ (Ic)∆

)
, we yield

qC(J ∗b )|b
(
(B \ Iϵ)∆(n)

)
≥ qC(J ∗b )|b

(
B∆(n) \ I

)
− qC(J ∗b )|b

(
Ic \ Ic∆(n)

)
≥ qC(J ∗b )|b

(
B∆(n) \ I

)
− qC(J ∗b )|b

(
(∂I)∆

(n)
)

≥ qC(J ∗b )|b
(
B◦ \ I

)
− qC(J ∗b )|b

(
(B◦ ∩ Ic) \ (B∆(n) ∩ Ic)

)
− qC(J ∗b )|b

(
(∂I)∆

(n)
)
.

Plugging this bound back into (4.27), we establish the lower bound (4.25) and conclude the proof.

The next two results verify conditions (2.39) and (2.40). Let

Rη|b
ϵ (x) =∆ min

{
j ≥ 0 : X

η|b
j (x) ∈ (−ϵ, ϵ)

}
(4.28)

be the first time X
η|b
j (x) returned to the ϵ-neighborhood of the origin. Under our choice of A(ϵ) =

(−ϵ, ϵ) and I(ϵ) = Iϵ = (sleft+ϵ, sright−ϵ), the event {τη(I(ϵ)\A(ϵ))c(x) > T/η} in condition (2.39) means

that X
η|b
j (x) ∈ Iϵ\(−ϵ, ϵ) for all j ≤ T/η. Also, recall that γ(η)T/η = C∗b T ·

(
λ(η)

)J ∗b . Therefore, to
verify condition (2.39), it suffices to prove the following result.

Lemma 4.8 (Verifying condition (2.39)). Given any k ≥ 1 and ϵ ∈ (0, ϵ̄), it holds for all T ≥ k ·t(ϵ/2)
that

lim
η↓0

sup
x∈I−ϵ

1

λk−1(η)
P
(
X

η|b
j (x) ∈ Iϵ \ (−ϵ, ϵ) ∀j ≤ T/η

)
= 0.

Proof. First,
{
X

η|b
j (x) ∈ Iϵ \ (−ϵ, ϵ) ∀j ≤ T/η

}
=
{
X

η|b
[0,T ](x) ∈ E(ϵ)

}
where

E(ϵ) =∆
{
ξ ∈ D[0, T ] : ξ(t) ∈ Iϵ \ (−ϵ, ϵ) ∀t ∈ [0, T ]

}
.

Recall the definition of D(k)|b
A [0, T ] in (2.18). We claim that E(ϵ) is bounded away from D(k−1)|b

I−ϵ
[0, T ].

This allows us to apply Theorem 2.3 and conclude that

sup
x∈I−ϵ

P
(
X

η|b
[0,T ](x) ∈ E(ϵ)

)
= O

(
λk(η)

)
= o

(
λk−1(η)

)
as η ↓ 0.
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Now it only remains to verify that E(ϵ) is bounded away from D(k−1)|b
I−ϵ

[0, T ], which can be established

if we show that for any ξ ∈ D(k−1)|b
I−ϵ

[0, T ] and ξ′ ∈ E(ϵ),

dJ1,[0,T ](ξ, ξ
′) ≥ ϵ

2
. (4.29)

First, if ξ(t) /∈ Iϵ/2 for some t ≤ T , then by definition of E(ϵ) we get dJ1,[0,T ](ξ, ξ
′) ≥ ϵ

2 . Now suppose

that ξ(t) ∈ Iϵ/2 for all t ≤ T . Let x0 ∈ I−ϵ , (w1, · · · , wk−1) ∈ Rk−1, and (t1, · · · , tk−1) ∈ (0, T ]k−1↑ be

such that ξ = h
(k−1)|b
[0,T ] (x0, w1, · · · , wk−1, t1, · · · , tk−1). With the convention that t0 = 0 and tk = T ,

we have

ξ(t) = yt−tj−1

(
ξ(tj−1)

)
∀t ∈ [tj−1, tj). (4.30)

for each j ∈ [k]. Here y·(x) is the ODE defined in (2.32). Also, note that due to the assumption
T ≥ k · t(ϵ/2), there exists some j ∈ [k] such that tj − tj−1 ≥ t(ϵ/2). However, note that we have
assumed that ξ(tj−1) ∈ Iϵ/2. Combining (4.30) along with property (4.9), we get limt↑tj ξ(t) ∈ [− ϵ

2 ,
ϵ
2 ].

On the other hand, ξ′(t) /∈ (−ϵ, ϵ) for all t ∈ [0, T ], which implies that dJ1,[0,T ](ξ, ξ
′) ≥ ϵ

2 . This
concludes the proof.

Lastly, we establish condition (2.40). Note that the first visit time τηA(ϵ)(x) therein coincides with

R
η|b
ϵ (x) defined in (4.28) due to our choice of A(ϵ) = (−ϵ, ϵ).

Lemma 4.9 (Verifying condition (2.40)). Let t(·) be defined as in (4.8) and

E(η, ϵ, x) =∆
{
Rη|b

ϵ (x) ≤ t(ϵ/2)

η
; X

η|b
j (x) ∈ Iϵ/2 ∀j ≤ Rη|b

ϵ (x)
}
.

For each ϵ ∈ (0, ϵ̄) we have limη↓0 supx∈I−ϵ P
((
E(η, ϵ, x)

)c)
= 0.

Proof. First, note that
(
E(η, ϵ, x)

)c ⊆ {Xη|b
[0,t(ϵ/2)](x) ∈ E∗1 (ϵ) ∪ E∗2 (ϵ) ∪ E∗3 (ϵ)

}
where

E∗1 (ϵ) =
∆
{
ξ ∈ D[0, t(ϵ/2)] : ξ(t) /∈ (−ϵ, ϵ) ∀t ∈ [0, t(ϵ/2)]

}
,

E∗2 (ϵ) =
∆
{
ξ ∈ D[0, t(ϵ/2)] : ∃0 ≤ s ≤ t ≤ t(ϵ/2) s.t. ξ(t) ∈ (−ϵ, ϵ), ξ(s) /∈ Iϵ/2

}
.

Recall the definition of D(k)|b
A [0, T ] in (2.18). We claim that both E∗1 (ϵ) and E

∗
2 (ϵ) are bounded away

from

D(0)|b
I−ϵ

[0, t(ϵ/2)] =
{
{yt(x) : t ∈ [0, t(ϵ/2)]} : x ∈ I−ϵ

}
.

To see why, note that from Assumption 6 and property (4.9), we get yt(ϵ/2)(x) ∈ [− ϵ
2 ,

ϵ
2 ] and yt(x) ∈ Iϵ,

|yt(x)| ≤ |x| for all t and x such that t ∈ [0, t(ϵ/2)] and x ∈ I−ϵ . Therefore,

dJ1,[0,t(ϵ/2)]

(
D(0)|b

I−ϵ
[0, t(ϵ/2)], E∗1 (ϵ)

)
≥ ϵ

2
> 0, (4.31)

dJ1,[0,t(ϵ/2)]

(
D(0)|b

I−ϵ
[0, t(ϵ/2)], E∗2 (ϵ)

)
≥ ϵ

2
> 0. (4.32)

This allows us to apply Theorem 2.3 and obtain supx∈I−ϵ P
((
E(η, ϵ, x)

)c) ≤ supx∈I−ϵ P
(
X

η|b
[0,t(ϵ/2)](x) ∈

E∗1 (ϵ) ∪ E∗2 (ϵ)
)
= O

(
λ(η)

)
as η ↓ 0. To conclude the proof, one only needs to note that λ(η) ∈

RVα−1(η) (with α > 1) and hence limη↓0 λ(η) = 0.

Now we are ready to provide the proof of Theorem 2.6.
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Proof of Theorem 2.6. (a) Since Lemmas 4.7–4.9 have verified Condition 1, part (a) of Theorem 2.6
follows immediately from Theorem 2.7.

(b) Note that the value of σ(·) and a(·) outside of I− = [sleft, sright] has no impact on the first
exit time problem. Therefore, by modifying the value of σ(·) and a(·) outside of I−, we can assume
w.l.o.g. that there is some C > 0 such that 0 ≤ σ(x) ≤ C and |a(x)| ≤ C for all x ∈ R. We start
with a few observations. First, note that under any η ∈ (0, b

2C ), on the event {η|Zj | ≤ b
2C ∀j ≤ t}

the step-size (before truncation) ηa
(
X

η|b
j−1(x)

)
+ ησ

(
X

η|b
j−1(x)

)
Zj of X

η|b
j is less than b for each j ≤ t.

Therefore, X
η|b
j (x) and Xη

j (x) coincide for such j’s. In other words, for any η ∈ (0, b
2C ), on event{

η|Zj | ≤ b
2C ∀j ≤ t

}
we have

X
η|b
j (x) = Xη

j (x) ∀j ≤ t. (4.33)

Second, note that for any b > |sleft| ∨ sright we have J ∗b = 1. More importantly, given any measurable
A ⊆ R such that rA = inf{|x| : x ∈ A} > 0, we claim that

lim
b→∞

qC(1)|b(A) = qC(A). (4.34)

This claim follows from a simple application of the dominated convergence theorem. Indeed, by
definition of qC(1)|b, we get qC(1)|b(A) =

∫
I
{
φb

(
σ(0) · w)

)
∈ A

}
να(dw). For fb(w) =

∆
I
{
φb

(
σ(0) · w)

)
,

we first note that given w ∈ R, we have fb(w) = f(w) =∆ I
{
σ(0) · w

)
for all b > |w| · σ(0). Therefore,

limb→∞ fb(w) = f(w) holds for all w ∈ R. Next, due to rA > 0, we have fb(w) ≤ I
{
|w| ≥ rA/σ(0)

}
for

all b > 0 and w ∈ R. Meanwhile, note that
∫
I
{
|w| ≥ rA/σ(0)

}
να(dw) = (σ(0)/rA)

α <∞. This allows
us to apply dominated convergence theorem and establish (4.34). Similarly, for all b > |sleft| ∨ sright,
we have

C∗b = qC(1)|b(Ic) =

∫
I

{
φb

(
σ(0) · w

)
∈ Ic

}
να(dw) =

∫
I

{
σ(0) · w ∈ Ic

}
να(dw) = qC(Ic) =∆ C∗.

(4.35)

To see why, it suffices to notice that for such b,

φb

(
σ(0) · w

)
/∈ I ⇐⇒ σ(0) · w /∈ I.

Now, we fix t ≥ 0 and B ⊆ Ic. Also, henceforth in the proof we only consider b > |sleft| ∨ sright
large enough such that C∗ = C∗b . An immediate consequence of this choice of b is that J ∗b = ⌈r/b⌉ = 1.
First, note that λ(η) = η−1 ·H(η−1) and hence η ·λ(η) = H(η−1). To analyze the probability of event
A(η, x) = {C∗H(η−1)τη(x) > t, Xη

τη(x)(x) ∈ B}, we arbitrarily pick some T > t and observe that

A(η, x) =
{
C∗H(η−1)τη(x) ∈ (t, T ], Xη

τη(x)(x) ∈ B
}

︸ ︷︷ ︸
=∆A1(η,x,T )

∪
{
C∗H(η−1)τη(x) > T, Xη

τη(x)(x) ∈ B
}

︸ ︷︷ ︸
=∆A2(η,x,T )

.

(4.36)

Let Eb(η, T ) =∆
{
η|Zj | ≤ b

2C ∀j ≤ T
C∗H(η−1)

}
. To analyze the probability of A1(η, x, T ), we further

decompose the event as A1(η, x, T ) =
(
A1(η, x, T ) ∩Eb(η, T )

)
∪
(
A1(η, x, T ) \Eb(η, T )

)
. First, for all

η ∈ (0, b
2C ),

P
(
A1(η, x, T ) ∩ Eb(η, T )

)
= P

({
C∗b η · λ(η)τη|b(x) ∈ (t, T ], X

η|b
τη|b(x)

(x) ∈ B
}
∩ Eb(η, T )

)
due to (4.33) and (4.35)

≤ P

(
C∗b η · λ(η)τη|b(x) ∈ (t, T ], X

η|b
τη|b(x)

(x) ∈ B

)
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= P

(
C∗b η · λ(η)τη|b(x) > t, X

η|b
τη|b(x)

(x) ∈ B

)
−P

(
C∗b η · λ(η)τη|b(x) > T, X

η|b
τη|b(x)

(x) ∈ B

)
.

Using part (a) of Theorem 2.6 and observation (4.35), we get

lim sup
η↓0

sup
x∈Iϵ

P
(
A1(η, x, T ) ∩ Eb(η, T )

)
≤

qC(1)|b(B−)

C∗
· exp(−t)−

qC(1)|b(B◦)

C∗
· exp(−T ). (4.37)

On the other hand, supx∈Iϵ P
(
A1(η, x, T ) \Eb(η, T )

)
≤ P

(
(Eb(η, T ))

c
)
= P

(
η|Zj | > b

2C for some j ≤
T

C∗H(η−1)

)
. Applying Lemma 3.1 (i), we get

lim sup
η↓0

P

(
η|Zj | >

b

2C
for some j ≤ T

C∗H(η−1)

)
= 1− lim inf

η↓0
P

(
Geom

(
H
( b

η · 2C
))

>
T

C∗H(η−1)

)
≤ 1− lim

η↓0
exp

(
−
T ·H(η−1 · b

2C )

C∗H(η−1)

)
= 1− exp

(
− T

C∗
·
(2C
b

)α)
. (4.38)

Similarly,

A2(η, x, T ) ⊆
{
C∗H(η−1)τη(x) > T

}
=

({
C∗H(η−1)τη(x) > T

}
∩ Eb(η, T )

)
∪
({

C∗H(η−1)τη(x) > T
}
\ Eb(η, T )

)
.

On {C∗H(η−1)τη(x) > T} ∩ Eb(η, T ), due to (4.33) we have τη(x) = τη|b(x). Also, from (4.35) we
get C∗ = C∗b . Using part (a) of Theorem 2.6 again, we get

lim sup
η↓0

P

({
C∗H(η−1)τη(x) > T

}
∩ Eb(η, T )

)
≤ lim sup

η↓0
P
(
C∗b η · λ(η)τη|b(x) > T

)
≤ exp(−T ).

(4.39)

Meanwhile, the limit of supx∈Iϵ P
(
C∗H(η−1)τη(x) > T} ∩ Eb(η, T )

)
as η ↓ 0 is again bounded by

(4.38). Collecting (4.37), (4.38), and (4.39), we have shown that for all b > 0 large enough and all
T > t,

lim sup
η↓0

sup
x∈Iϵ

P
(
A(η, x)

)
≤

qC(1)|b(B−)

C∗
· exp(−t)−

qC(1)|b(B◦)

C∗
· exp(−T ) + exp(−T )

+ 2 ·
[
1− exp

(
− T

C∗
·
(2C
b

)α)]
.

In light of claim (4.34), we can drive b → ∞ and obtain lim supη↓0 supx∈Iϵ P
(
A(η, x)

)
≤ qC(B−)

C∗ ·
exp(−t) − qC(B◦)

C∗ · exp(−T ) + exp(−T ). Letting T tend to ∞, we conclude the proof of the upper
bound.

The lower bound can be established analogously. In particular, from the decomposition in (4.36),
we get

inf
x∈Iϵ

P
(
A(η, x)

)
≥ inf

x∈Iϵ
P
(
A1(η, x, T )

)
≥ inf

x∈Iϵ
P
(
A1(η, x, T ) ∩ Eb(η, T )

)
= inf

x∈Iϵ
P

({
C∗b η · λ(η)τη|b(x) ∈ (t, T ], X

η|b
τη|b(x)

(x) ∈ B
}
∩ Eb(η, T )

)
due to (4.33) and (4.35)
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≥ inf
x∈Iϵ

P

(
C∗b η · λ(η)τη|b(x) ∈ (t, T ], X

η|b
τη|b(x)

(x) ∈ B

)
−P

((
Eb(η, T )

)c)
≥ inf

x∈Iϵ
P

(
C∗b η · λ(η)τη|b(x) > t, X

η|b
τη|b(x)

(x) ∈ B

)
− sup

x∈Iϵ
P

(
C∗b η · λ(η)τη|b(x) > T, X

η|b
τη|b(x)

(x) ∈ B

)
−P

((
Eb(η, T )

)c)
.

Using part (a) of Theorem 2.6 and the limit in (4.38), we yield (for all b > 0 large enough and all
T > t)

lim inf
η↓0

inf
x∈Iϵ

P
(
A(η, x)

)
≤

qC(1)|b(B◦)

C∗
· exp(−t)−

qC(1)|b(B−)

C∗
· exp(−T )−

[
1− exp

(
− T

C∗
·
(2C
b

)α)]
.

Sending b→ ∞ and then T → ∞, we conclude the proof of the lower bound.

5 Sample-Path Convergence of Global Dynamics

5.1 Law of the Limiting Markov Chains in Theorems 2.9 and 2.10

Consider some b ∈ (0,∞) such that |sj −mi|/b /∈ Z for all i ∈ [nmin] and j ∈ [nmin − 1]. This allows
us to fix some ϵ̄ ∈ (0, 1 ∧ b) such that

ri >
(
J ∗b (i)− 1)b+ 3ϵ̄, [mi − ϵ̄,mi + ϵ̄] ⊆ [si−1 + ϵ̄, si − ϵ̄] ∀i ∈ [nmin] (5.1)

with ri and J ∗b (i) defined in (2.41) and (2.42), respectively. Recall the definition of qC(k)|b( · ;x) in
(2.34), and define (for i, j ∈ [nmin] with i ̸= j)

qb(i, j) =
∆

qC(J ∗b (i))|b(Ij ;mi), qb(i) =
∆

qC(J ∗b (i))|b(Ici ;mi). (5.2)

First, note that qb(i) =
∑

j∈[nmin]: j ̸=i qb(i, j) +
∑

j∈[nmin−1]
qC(J ∗b (i))|b({sj};mi). From (5.1), we have

|sj −mi| > (J ∗b (i)− 1) · b. By assumption |sj −mi|/b /∈ Z for all j ∈ [nmin − 1], one can then apply

Lemma 4.3 to show that
∑

j∈[nmin−1]
qC(J ∗b (i))|b({sj};mi) = 0. Together with Lemma 4.4, we yield

that qb(i) =
∑

j∈[nmin]: j ̸=i qb(i, j) ∈ (0,∞). Furthermore, based on our choice of ϵ̄ of (5.1) in (5.1),
we can Lemma 4.6 and yield

qb(i, j) > 0 ⇐⇒ J ∗b (i, j) = J ∗b (i).

First, we detail the law of Y ∗|b and πb. Given any minit ∈ V , consider a
(
(Uj)j≥1, (Vj)j≥1

)
jump

process Y
∗|b
t (minit) defined as follows. Set V1 = minit and U1 = 0, and (for any t > 0, l ≥ 1, and

i, j ∈ [ninit] with i ̸= j)

P
(
Ul+1 < t, Vl+1 = mj

∣∣∣ Vl = mi, (Vj)
l−1
j=1, (Uj)

l
j=1

)
= P

(
Ul+1 < t, Vl+1 = mj

∣∣∣ Vl = mi

)
=

{ qb(i,j)
qb(i)

if mi /∈ V ∗b ,
qb(i,j)
qb(i)

·
(
1− exp

(
− qb(i)t

))
if mi ∈ V ∗b .

(5.3)

In other words, conditioning on Vl = mi, the law of Ul+1 and Vl+1 are independent: we have Vl+1 = mj

with probability qb(i, j)/qb(i); as for Ul+1, we set Ul+1 ≡ 0 if mi /∈ V ∗b (i.e., the current value mi is
not a widest minimum), and set Ul+1 as an Exponential RV with rate qb(i) otherwise.

We make two observations. First, if minit ∈ V ∗b , then Y
∗|b
t (minit) is a continuous-time Markov

chain that only visits V ∗b due to the fact that any jump at m /∈ V ∗b is instantaneous. Second, if
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minit /∈ V ∗b , then a series of instantaneous jumps will immediately send Y
∗|b
t (minit) to some m ∈ V ∗b

at time t = 0. This procedure is summarized by the random mapping πb. In particular, consider a

discrete-time Markov chain Ỹ
∗|b
k (·) on V where the one-step transition probability from mi to mj is

qb(i, j)/qb(i). Let

τ
∗|b
DTMC(m) =∆ min{k ≥ 0 : Ỹ

∗|b
k (m) ∈ V ∗b }, pb(i, j) =

∆ P
(
Ỹ
∗|b
τ
∗|b
DTMC(mi)

(mi) = mj

)
. (5.4)

Here, we can view any m ∈ V ∗b as an absorbing state, and pb(i, j) is the absorption probability at

mj under initial condition mi. Returning to the continuous-time jump process Y
∗|b
t , one can see that

Y
∗|b
0 (mi) = mj with probability pb(i, j). Therefore, under the definition

πb(mi) = mj w.p. pb(i, j), (5.5)

the inclusion of random mapping πb in the initial value of Y
∗|b
t

(
πb(mi)

)
only serves to capture all the

instantaneous jumps at t = 0 before the first visit to some m ∈ V ∗b .

Recall the definition of measure qC( · ;x) in (2.35). For i, j ∈ [nmin] with i ̸= j, let

q(i, j) =∆ qC(Ij ;mi). (5.6)

Let Y ∗t (·) be a continuous-time Markov chain over states {mi : i ∈ [nmin]} with generator characterized
by q(i, j) and initial condition Y ∗0 (m) = m.

5.2 Proof of Theorem 2.10

Proof of Theorem 2.10. For any b > maxi∈[nmin], j∈[nmin−1] |mi − sj |, by definitions in (2.42) we have
J ∗b (i, j) = J ∗b (i) = 1 for all i ∈ [nmin] and j ∈ [nmin − 1]. Therefore, for such b > 0 large enough, we
also have λ∗b(η) = η · λ(η) = H(η−1). Henceforth in this proof, we only consider such large b.

Fix some i ∈ [nmin], x ∈ Ii, and 0 < t1 < t2 < · · · < tk. Also, pick some closed set A ⊆ Rk.
Observe that

P

((
Xη
⌊t1/H(η−1)⌋(x), · · · , X

η
⌊tk/H(η−1)⌋(x)

)
∈ A

)
(5.7)

≤ P

((
X

η|b
⌊t1/H(η−1)⌋(x), · · · , X

η|b
⌊tk/H(η−1)⌋(x)

)
∈ A, X

η|b
j (x) = Xη

j (x) ∀j ≤ ⌊tk/H(η−1)⌋
)

+P

((
Xη
⌊t1/H(η−1)⌋(x), · · · , X

η
⌊tk/H(η−1)⌋(x)

)
∈ A,X

η|b
j (x) ̸= Xη

j (x) for some j ≤ ⌊tk/H(η−1)⌋
)

≤ P

((
X

η|b
⌊t1/H(η−1)⌋(x), · · · , X

η|b
⌊tk/H(η−1)⌋(x)

)
∈ A

)
︸ ︷︷ ︸

(I)

+P

(
X

η|b
j (x) ̸= Xη

j (x) for some j ≤ ⌊tk/H(η−1)⌋
)

︸ ︷︷ ︸
(II)

.

For term (I), it follows from Theorem 2.9 that lim supη↓0 (I) ≤ P
((
Y
∗|b
t1 (mi), · · · , Y ∗|btk

(mi)
)
∈ A

)
.

Here, the process Y
∗|b
t (mi) defined in Section 5.1 is simply an irreducible continuous-time Markov

chain with generator qb(i, j). Indeed, any pair of nodes mi and mj would communicate with each
other on the b-typical transition graph Gb (see Definition 2.3) due to J ∗b (i, j) = J ∗b (i) = 1 for all
i ∈ [nmin] and j ∈ [nmin − 1], which implies mi ∈ V ∗b for all i ∈ [nmin].

For term (II), we make two observations. First, recall that C ∈ [1,∞) is the constant in Assumption
4 such that supx∈R |a(x)| ∨ σ(x) ≤ C. Under any η ∈ (0, b

2C ), on the event {η|Zj | ≤ b
2C ∀j ≤

⌊tk/H(η−1)⌋} the step-size (before truncation) ηa
(
X

η|b
j−1(x)

)
+ ησ

(
X

η|b
j−1(x)

)
Zj of X

η|b
j is less than b

for each j ≤ ⌊tk/H(η−1)⌋. Therefore, X
η|b
j (x) and Xη

j (x) coincide for such j’s. In other words, for
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any η ∈ (0, b
2C ), we have {η|Zj | ≤ b

2C ∀j ≤ ⌊tk/H(η−1)⌋} ⊆ {Xη|b
j (x) = Xη

j (x) ∀j ≤ ⌊tk/H(η−1)⌋}.
which leads to (recall that H(·) = P(|Z1| > ·))

lim sup
η↓0

(II) ≤ lim sup
η↓0

P

(
∃j ≤ ⌊tk/H(η−1)⌋ s.t. η|Zj | >

b

2C

)
≤ lim sup

η↓0

tk
H(η−1)

·H(η−1 · b

2C
) = tk ·

(
2C

b

)α

due to H(x) ∈ RV−α(x) as x→ ∞. In summary,

lim sup
η↓0

P
((
Xη
⌊t1/H(η−1)⌋(x), · · · , X

η
⌊tk/H(η−1)⌋(x)

)
∈ A

)
≤ P

((
Y
∗|b
t1 (mi), · · · , Y ∗|btk

(mi)
)
∈ A

)
+tk·

(2C
b

)α
.

Furthermore, note that for all b large enough, we have qb(i, j) = q(i, j) for all i, j ∈ [nmin] with
i ̸= j. To see why, we fix some i, j ∈ [nmin] with i ̸= j. For all b large enough, we have J ∗b (i, j) = 1,
and hence (see (5.2) and (5.6) for definitions of qb(i, j) and q(i, j))

q(i, j) = να

({
w ∈ R : mi + σ(mi) · w ∈ Ij

})
, qb(i, j) = να

({
w ∈ R : mi + φb

(
σ(mi) · w

)
∈ Ij

})
.

Suppose that Ij has bounded support (i.e., j = 2, 3, · · · , nmin − 1 so that Ij is not the leftmost or
the rightmost attraction field), then it holds for all b large enough that mi − b /∈ Ij and mi + b /∈ Ij .
Under such large b, for mi + φb

(
σ(mi) · w

)
∈ Ij to hold we must have |σ(mi) · w| < b, thus implying

mi + φb

(
σ(mi) · w

)
= mi + σ(mi) · w and hence qb(i, j) = q(i, j). Next, consider the case where

j = 1 so Ij = I1 = (−∞, s1) is the leftmost attraction field. For any b large enough we must have
mi−z ∈ (−∞, s1) = I1 for all z ≥ b. This also impliesmi+φb

(
σ(mi)·w

)
∈ I1 ⇐⇒ mi+σ(mi)·w ∈ I1.

The same argument can be applied to the case with j = nmin (that is, Ij = (snmin−1,∞) is the
rightmost attraction field).

Now that we know qb(i, j) = q(i, j) for all b large enough, the claim Y
∗|b
t (mi) = Y ∗t (mi) ∀t ≥ 0 must

hold for all b large enough as both CTMCs have the same generator. Therefore, for the closed set A ⊆
Rk, limb→∞P

((
Y
∗|b
t1 (mi), · · · , Y ∗|btk

(mi)
)
∈ A

)
= P

((
Y ∗t1(mi), · · · , Y ∗tk(mi)

)
∈ A

)
. Together with the

fact that limb→∞
(
2C
b

)α
= 0, in (5.7) we obtain lim supη↓0 P

((
Xη
⌊t1/H(η−1)⌋(x), · · · , X

η
⌊tk/H(η−1)⌋(x)

)
∈

A
)
≤ P

((
Y ∗t1(mi), · · · , Y ∗tk(mi)

)
∈ A

)
. From the arbitrariness of the closed set A, we conclude the

proof with Portmanteau theorem.

5.3 Proof of Lemmas 2.12 and 2.13

Proof of Lemma 2.12. Fix some k ≥ 1 and 0 < t1 < t2 < · · · < tk. Pick some open set G ⊆ Sk
where Sk is the k-fold product space of S with uniform metric d(k)

(
(x1, · · · , xk), (y1, · · · , yk)

)
=

maxi∈[k] d(xi, yi). By Portmanteau theorem, it suffices to show that lim infη↓0 P
(
(Y η

t1 , · · · , Y
η
tk
) ∈

G
)
≥ P

(
(Y ∗t1 , · · · , Y

∗
tk
) ∈ G

)
.

By part (ii) of Condition 2, limn→∞P
(
d(k)(Ŷ η,ϵ,Y η) ≥ ϵ

)
= 0 holds for all ϵ > 0 small enough

where Ŷ η,ϵ = (Ŷ η,ϵ
t1 , · · · , Ŷ η,ϵ

tk
) and Y η = (Y η

t1 , · · · , Y
η
tk
). Meanwhile,

P
(
(Y η

t1 , · · · , Y
η
tk
) ∈ G

)
≥ P

(
(Y η

t1 , · · · , Y
η
tk
) ∈ G, d(k)(Ŷ η,ϵ,Y η) < ϵ

)
≥ P

(
(Ŷ η,ϵ

t1 , · · · , Ŷ η,ϵ
tk

) ∈ Gϵ, d
(k)(Ŷ η,ϵ,Y η) < ϵ

)
≥ P

(
(Ŷ η,ϵ

t1 , · · · , Ŷ η,ϵ
tk

) ∈ Gϵ

)
−P

(
d(k)(Ŷ η,ϵ,Y η) ≥ ϵ

)
.
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Here, Gϵ is the ϵ-shrinkage of set G and note that Gϵ is open. By part (i) of Condition 2, we get

lim infη↓0 P
(
(Ŷ η,ϵ

t1 , · · · , Ŷ η,ϵ
tk

) ∈ Gϵ

)
≥ P

(
(Y ∗t1 , · · · , Y

∗
tk
) ∈ Gϵ). In summary, we have shown that

lim infη↓0 P
(
(Y η

t1 , · · · , Y
η
tk
) ∈ G

)
≥ P

(
(Y ∗t1 , · · · , Y

∗
tk
) ∈ Gϵ

)
. Let ϵ ↓ 0 and we conclude the proof due

to continuity of measures and ∪ϵ>0Gϵ = G for the open set G.

Proof of Lemma 2.13. Fix some k ∈ N and 0 < t1 < t2 < · · · < tk < ∞. Set t = tk. Pick

some ϵ > 0. By assumption, one can fix some J(ϵ) > 0 such that P(
∑J(ϵ)

j=1 Uj ≤ t) < ϵ as well

as N(ϵ) such that P(
∑J(ϵ)

j=1 U
n
j ≤ t) < ϵ for all n ≥ N(ϵ). Also, we can fix ∆(ϵ) > 0 such that

P
(∑j

i=1 Ui ∈
⋃

l∈[k][tl − ∆(ϵ), tl + ∆(ϵ)] for some j ≤ J(ϵ)
)
< ϵ. Throughout the proof, we may

abuse the notation slightly and write N = N(ϵ), J = J(ϵ) and ∆ = ∆(ϵ) when there is no ambiguity.
For any probability measure µ, let Lµ(X) be the law of the random element X under µ. Due to S

being separable, we can apply Skorokhod’s representation theorem and construct a probability space
(Ω̃, F̃ ,Q) that supports random variables (Ũn

1 , Ṽ
n
1 , Ũ

n
2 , Ṽ

n
2 · · · )n≥1 and (Ũ1, Ṽ1, Ũ2, Ṽ2, · · · ) such that

the following conditions hold:

• LP(U
n
1 , V

n
1 , U

n
2 , V

n
2 , · · · ) = LQ(Ũn

1 , Ṽ
n
1 , Ũ

n
2 , Ṽ

n
2 · · · ) for all n ≥ 1;

• LP(U1, V1, U2, V2, · · · ) = LQ(Ũ1, Ṽ1, Ũ2, Ṽ2, · · · );

• Ũn
j

Q−a.s.−−−−−→ Ũj and Ṽ n
j

Q−a.s.−−−−−→ Ṽj as n→ ∞ for all j ∈ [J ].

This allows us to construct a coupling between processes Yt and Y
n
t on (Ω̃, F̃ ,Q) by setting Yt as the(

(Ũj)j≥1, (Ṽj)j≥1

)
jump process and (for each n ≥ 1) Y n

t as the
(
(Ũn

j )j≥1, (Ṽ
n
j )j≥1

)
jump process.

Furthermore, define processes

Y n,↓J
s = Y n

s∧
∑J

j=1 Ũn
j

, Y ↓Js = Ys∧
∑J

j=1 Ũj
.

We make a few observations under Q. First, on event {
∑J

j=1 Ũj > t,
∑J

j=1 Ũ
n
j > t}, we have

Y n
s = Y n,↓J

s and Ys = Y ↓Js for all s ∈ [0, t]. Next, for each i ∈ [k] we define

I←i (∆) = max{j ≥ 0 : Ũ1 + · · · Ũj ≤ ti −∆}, I→i (∆) = min{j ≥ 0 : Ũ1 + · · · Ũj ≥ ti +∆}.

On event An(∆) = {
∑j

i=1 Ũi /∈
⋃

l∈[k][tl−∆, tl+∆] ∀j ≤ J}∩{
∑J

j=1 Ũj > t,
∑J

j=1 Ũ
n
j > t}, we have

I→i (∆) = I←i (∆) + 1 for all i ∈ [k]. Therefore, on this event it holds Q-a.s. that (for all i ∈ [k])

lim
n→∞

I←i (∆)∑
j=1

Ũn
j =

I←i (∆)∑
j=1

Ũj ≤ ti −∆, lim
n→∞

I←i (∆)+1∑
j=1

Ũn
j =

I←i (∆)+1∑
j=1

Ũj ≥ ti +∆,

lim
n→∞

Ṽ n
I←i (∆) = ṼI←i (∆).

Therefore, on this event it holds Q-a.s. that limn→∞ Y n
ti = limn→∞ Ṽ n

I←i (∆) = ṼI←i (∆) = Yti for all

i ∈ [k]. As a result, for any g : Sk → R that is bounded and continuous, note that (let Y n =
(Y n

t1 , · · · , Y
n
tk
), Y = (Yt1 , · · · , Ytk), and ∥g∥ = supy∈Sk |g(y)|)

lim sup
n→∞

∣∣∣Eg(Y n)−Eg(Y )
∣∣∣ ≤ lim sup

n→∞
EQ

∣∣∣g(Y n)− g(Y )
∣∣∣

= lim sup
n→∞

EQ

∣∣∣g(Y n)− g(Y )
∣∣∣IAn(∆) + lim sup

n→∞
EQ

∣∣∣g(Y n)− g(Y )
∣∣∣I(An(∆))c

≤ 0 + ∥g∥ lim sup
n→∞

Q
((
An(∆)

)c)
due to Y n Q−a.s.−−−−−→ Y on An(∆)
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≤ ∥g∥ ·
(
lim sup
n→∞

Q(

J∑
i=1

Ũj ≤ t) + lim sup
n→∞

Q(

J∑
i=1

Ũn
j ≤ t)

+ lim sup
n→∞

Q
( j∑

i=1

Ũi ∈
⋃
l∈[k]

[tl −∆, tl +∆] for some j ≤ J
))

≤ ∥g∥ · 3ϵ.

The last inequality follows from our choice of J = J(ϵ), N = N(ϵ), and ∆ = ∆(ϵ) at the beginning of
the proof. From the arbitrariness of the mapping g and ϵ > 0, we conclude the proof with Portmanteau
theorem.

5.4 Proof of Propositions 2.14 and 2.15

In this section, we fix some b ∈ (0,∞) be such that |sj−mi|/b /∈ Z for all i ∈ [nmin] and j ∈ [nmin−1].
This allows us to fix some ϵ̄ ∈ (0, 1 ∧ b) such that (5.1) holds.

In our proof of Propositions 2.14 and 2.15, the key tools are the first exit analysis results, i.e.,
Theorem 2.6 and technical lemmas developed in Section 4.3. Note that Theorem 2.6 is applied on some
open interval I with bounded support. Returning to the potential U characterized in Assumption 7,
while for all i = 2, · · · , nmin the attraction field Ii does have bounded support, for i = 1 or nmin (that
is, the leftmost or the rightmost attraction field) note that I1 = (−∞, s1) and Inmin

= (snmin−1,∞) are
not bounded. Besides, for technical reasons, in our analysis below we will bound the probability that
the heavy-tailed dynamics visit S(δ) =∆

⋃
i∈[nmin−1][si− δ, si+ δ] (i.e., the union of the δ-neighborhood

of any the boundary point si) and show that X
η|b
j (x) is almost always outside of S(δ). As a result,

we will frequently apply results such as Theorem 2.6 onto sets of form

Ii;δ,M = (si−1 + δ, si − δ) ∩ (−M,M) = (Ii)δ ∩ (−M,M)

for some δ,M > 0. For anyM > 0 large enough such that −M < m1 < s1 < · · · < snmin−1 < mnmin
<

M , we have Ii;δ,M = (si−1 + δ, si − δ)∩ (−M,M) = (si−1 + δ, si − δ) for all i = 2, 3, · · · , nmin − 1 (i.e.,
any attraction field that is not the leftmost or the rightmost one); also, we have I1;δ,M = (s0 + δ, s1 −
δ)∩ (−M,M) = (−M, s1− δ) (due to s0 = −∞) and Inmin;δ,M = (snmin−1+ δ, snmin − δ)∩ (−M,M) =
(snmin−1 + δ,M) (due to snmin = ∞).

We first prepare a technical lemma and show that, during any transition between the attraction

fields, X
η|b
j (x) is unlikely to get too close to any of the boundary points si’s or exit a wide enough

compact set. Let

σ
η|b
i;ϵ (x) =

∆ min
{
j ≥ 0 : X

η|b
j (x) ∈

⋃
l ̸=i

(ml − ϵ,ml + ϵ)
}
, (5.8)

τ
η|b
i;δ,M (x) =∆ min

{
j ≥ 0 : X

η|b
j (x) /∈ Ii;δ,M

}
. (5.9)

Lemma 5.1. Let Assumptions 1, 2, 3, 4 and 7 hold. Let b ∈ (0,∞) be such that |sj −mi|/b /∈ Z for
all i ∈ [nmin] and j = 0, 1, · · · , nmin. There exists M > 0 such that

max
i∈[nmin]

qC(J ∗b (i))|b((−M,M)c;mi

)
= 0, (5.10)

Furthermore, given any ∆ > 0, it holds for all δ > 0 small enough and all ϵ > 0 small enough that

lim sup
η↓0

max
i∈[nmin]

sup
x∈[mi−ϵ,mi+ϵ]

P
(
∃j < σ

η|b
i;ϵ (x) s.t. X

η|b
j (x) ∈ S(δ) or

∣∣Xη|b
j (x)

∣∣ ≥M + 1
)
< ∆. (5.11)
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Proof. In light of Lemma 4.6, it holds for all M > 0 large enough such that

qC(J ∗b (i))|b((−M,M)c;mi) = 0 ∀i ∈ [nmin].

This concludes the proof of (5.10).
Henceforth in this proof, we fix such large M satisfying |M − mi|/b /∈ Z ∀i ∈ [nmin] and M >

maxi∈[nmin](J ∗b (i) − 1)b + ϵ̄, where ϵ̄ > 0 is the constant in (5.1). Also, we fix some ϵ ∈ (0, ϵ̄), and
show that (5.11) holds for such ϵ.

Recall the definition of τ
η|b
i;δ,M (x) in (5.9) and Ii;δ,M = (si−1 + δ, si − δ) ∩ (−M,M). We make

a few observations regarding the stopping time τ
η|b
i;2δ,M (x) = min

{
j ≥ 0 : X

η|b
j (x) /∈ Ii;2δ,M

}
with

δ > 0. First, due to Ii;2δ,M ⊆ Ii;δ,M , we must have τ
η|b
i;2δ,M (x) ≤ τ

η|b
i;δ,M (x) ≤ σ

η|b
i;ϵ (x) and X

η|b
j (x) /∈

S(δ), |Xη|b
j (x)| < M for all j < τ

η|b
i;2δ,M (x). Next, on event

A0(η, δ, x) =
∆

{
X

η|b
τ
η|b
i;2δ,M (x)

(x) ∈ (−M,M); X
η|b
τ
η|b
i;2δ,M (x)

(x) /∈ S(2δ)
}
,

there exists some j ∈ [nmin], j ̸= i such that X
η|b
τ
η|b
i;2δ,M (x)

(x) ∈ Ij;2δ,M . Now define

A1(η, δ, x) =
∆

{
∃j < σ

η|b
i;ϵ (x) s.t. X

η|b
j (x) ∈ S(δ)

}
, A2(η, x) =

∆

{
∃j < σ

η|b
i;ϵ (x) s.t. |X

η|b
j (x)| ≥M + 1

}
.

Let R
η|b
j;ϵ (x) =∆ min{k ≥ 0 : X

η|b
k (x) ∈ (mj − ϵ,mj + ϵ)}. From the strong Markov property at

τ
η|b
i;2δ,M (x),

max
i∈[nmin]

sup
x∈[mi−ϵ,mi+ϵ]

P

((
A1(η, δ, x) ∪A2(η, x)

)
∩A0(η, δ, x)

)
≤ max

i∈[nmin]
sup

x∈[mi−ϵ,mi+ϵ]

P

(
A1(η, δ, x) ∪A2(η, x)

∣∣∣∣ A0(η, δ, x)

)
≤ max

j∈[nmin]
sup

y∈[sj−1+2δ,sj−2δ]∩(−M,M)

P

({
X

η|b
k (x) ∈ [sj−1 + δ, sj − δ] ∩ (−M − 1,M + 1) ∀∃k < R

η|b
j;ϵ (x)

}c
)

︸ ︷︷ ︸
pj(η)

.

For any j ∈ [nmin] and any δ > 0 small enough, b y applying Lemma 4.9 onto Ij ∩ (−M − 1,M + 1)
(with parameter ϵ therein set as 2δ) we get limη↓0 pj(η) = 0. In summary, we have shown that

lim supη↓0 maxi∈[nmin] supx∈[mi−ϵ,mi+ϵ] P
((
A1(η, δ, x)∪A2(η, x)

)
∩A0(η, δ, x)

)
= 0. Meanwhile, to es-

tablish (5.11) it only remains to show that lim supη↓0 maxi∈[nmin] supx∈[mi−ϵ,mi+ϵ] P
((
A0(η, δ, x)

)c)
<

∆. This can be proved if we show that for all δ > 0 small enough,

lim sup
η↓0

max
i∈[nmin]

sup
x∈[mi−ϵ,mi+ϵ]

P

(
X

η|b
τ
η|b
i;2δ,M (x)

(x) /∈ (−M,M)

)
= 0,

lim sup
η↓0

max
i∈[nmin]

sup
x∈[mi−ϵ,mi+ϵ]

P

(
X

η|b
τ
η|b
i;2δ,M (x)

(x) ∈ S(2δ)

)
< ∆.

To proceed, we fix some i ∈ [nmin]. Note that Ii;δ,M ⊂ Ii and hence Ici;δ,M ⊃ Ici . First, our choice

of M at the beginning ensures qC(J ∗b (i))|b((−M,M)c;mi) = 0. By applying part (a) of Theorem 2.6
onto Ii;δ,M , we obtain

lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P

(
X

η|b
τ
η|b
i;2δ,M (x)

(x) /∈ (−M,M)

)
= 0.
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Next, recall the assumption |sj − mi|/b /∈ Z for all j ∈ [nmin − 1]. From Lemma 4.3, we get
qC(J ∗b (i))|b({s1, · · · , snmin};mi

)
= 0, which then implies qC(J ∗b (i))|b(S(2δ);mi

)
< qb(i) ·∆ for all δ > 0

small enough. Meanwhile, due to Ii;2δ,M ⊂ Ii, we have I
c
i;2δ,M ⊃ Ici and hence qC(J ∗b (i))|b

(
Ici;2δ,M ;mi

)
≥

qb(i). Applying part (a) of Theorem 2.6 again, we yield (for all δ > 0 small enough)

lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P

(
X

η|b
τ
η|b
i;2δ,M (x)

(x) ∈ S(2δ)

)
≤

qC(J ∗b (i))|b
(
S(2δ);mi

)
qC(J ∗b (i))|b

(
Ici;2δ,M ;mi

) < ∆.

This concludes the proof of (5.11).

The next result is an adaptation of the first exit time analysis in Section 2.3 to the current setup.

Proposition 5.2. Let Assumptions 1, 2, 3, 4 and 7 hold. Let b ∈ (0,∞) be such that |sj −mi|/b /∈ Z
for all i ∈ [nmin] and j = 0, 1, · · · , nmin. There exists ϵ̄ > 0 such that the following claims hold.

(i) Let R
η|b
i;ϵ (x) =

∆ min{j ≥ 0 : X
η|b
j (x) ∈ (mi − ϵ,mi + ϵ)}. For any ϵ ∈ (0, ϵ̄), t > 0 and i ∈ [nmin],

lim inf
η↓0

inf
x∈[si−1+ϵ,si−ϵ]

P

(
R

η|b
i;ϵ (x) · λ

∗
b(η) ≤ t, X

η|b
j (x) ∈ Ii ∀j ≤ R

η|b
i;ϵ (x)

)
= 1.

(ii) Let i, j ∈ [nmin] be such that i ̸= j. Let σ
η|b
i;ϵ (x) =

∆ min{j ≥ 0 : X
η|b
j (x) ∈

⋃
l ̸=i(ml − ϵ,ml + ϵ)}.

If mi ∈ V ∗b , then for any ϵ ∈ (0, ϵ̄) and any t ≥ 0,

lim inf
η↓0

inf
x∈[mi−ϵ,mi+ϵ]

P

(
σ
η|b
i;ϵ (x) · λ

∗
b(η) > t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

)
≥ exp

(
− qb(i) · t

)
· qb(i, j)
qb(i)

,

lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P

(
σ
η|b
i;ϵ (x) · λ

∗
b(η) > t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

)
≤ exp

(
− qb(i) · t

)
· qb(i, j)
qb(i)

.

If mi /∈ V ∗b , then for any ϵ ∈ (0, ϵ̄) and any t ≥ 0,

qb(i, j)

qb(i)
≤ lim inf

η↓0
inf

x∈[mi−ϵ,mi+ϵ]
P

(
σ
η|b
i;ϵ (x) · λ

∗
b(η) ≤ t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

)
≤ lim sup

η↓0
sup

x∈[mi−ϵ,mi+ϵ]

P

(
σ
η|b
i;ϵ (x) · λ

∗
b(η) ≤ t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

)
≤ qb(i, j)

qb(i)
.

Proof. Throughout this proof, the constant ϵ̄ ∈ (0, 1 ∧ b) is as specified in (5.1).
(i) Fix some ϵ ∈ (0, ϵ̄). Pick some M > 0 large enough such that |M | > supx∈[si−1+ϵ,si−ϵ] |x| + ϵ̄.

Let

ti(x, ϵ) =
∆ inf{t ≥ 0 : yt(x) ∈ (mi − ϵ,mi + ϵ)} (5.12)

where y·(x) solves the ODE dyt(x)/dt = −U ′(yt(x)) and initial condition y0(x) = x. Set

T = sup
{
ti(x,

ϵ

2
) : x ∈ [−M + ϵ,M − ϵ] ∩ [si−1 + ϵ, si − ϵ]

}
By Assumption 7, we have ti(x,

ϵ
2 ) <∞ for all x ∈ [−M + ϵ,M − ϵ] ∩ [si−1 + ϵ, si − ϵ], with ti( · , ϵ2 )

being continuous over x ∈ [−M + ϵ,M − ϵ] ∩ [si−1 + ϵ, si − ϵ]. This implies T <∞. Next, recall that
λ∗b(η) ∈ RVJ ∗b (V )·(α−1)+1(η) as η ↓ 0. Due to J ∗b (V ) ≥ 1, we have J ∗b (V ) · (α − 1) + 1 > 1. This

implies t
λ∗b (η)

> T
η for all η > 0 sufficiently small, and hence (for such small η)

inf
x∈[si−1+ϵ,si−ϵ]

P

(
R

η|b
i;ϵ (x) · λ

∗
b(η) ≤ t, X

η|b
j (x) ∈ Ii ∀j ≤ R

η|b
i;ϵ (x)

)
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≥ inf
x∈[si−1+ϵ,si−ϵ]

P

(
R

η|b
i;ϵ (x) ≤ T/η, X

η|b
j (x) ∈ Ii ∀j ≤ R

η|b
i;ϵ (x)

)
.

By applying Lemma 4.9 onto (−M,M) ∩ Ij , we conclude the proof of part (i).

(ii) Recall that λ∗i;b(η) =∆ η · λJ ∗b (i)(η). To prove claims in part (ii), It suffices to establish the
following upper and lower bounds: for all i, j ∈ [nmin] such that i ̸= j, all ϵ ∈ (0, ϵ̄), and all t ≥ 0,

lim inf
η↓0

inf
x∈[mi−ϵ,mi+ϵ]

P

(
σ
η|b
i;ϵ (x) · λ

∗
i;b(η) > t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

)
≥ exp

(
− qb(i) · t

)
· qb(i, j)
qb(i)

, (5.13)

lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P

(
σ
η|b
i;ϵ (x) · λ

∗
i;b(η) > t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

)
≤ exp

(
− qb(i) · t

)
· qb(i, j)
qb(i)

. (5.14)

To see why, we first consider the case with mi ∈ V ∗b , which implies J ∗b (i) = J ∗b (V ); see (2.44) for the
definition of J ∗b (V ). As a result, we have λ∗i;b(η) = λ∗b(η) =∆ η · λJ ∗b (V )(η) and the upper and lower
bounds in part (ii) follow immediately from the (5.13) and (5.14).

Next, in case that mi /∈ V ∗b , we have J ∗b (i) < J ∗b (V ), and hence
λ∗i;b(η)

λ∗b (η)
→ ∞ as η ↓ 0. If t = 0,

then the upper and lower bounds in part (ii) are still immediate consequences of (5.13) and (5.14).
Now, we focus on the case where t > 0 and start from the lower bound. Given any T > 0, we have

t · λ∗i;b(η)

λ∗b (η)
> T eventually for all η small enough. Therefore,

inf
x∈[mi−ϵ,mi+ϵ]

P

(
σ
η|b
i;ϵ (x) · λ

∗
b(η) ≤ t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

)
≤ inf

x∈[mi−ϵ,mi+ϵ]
P

(
σ
η|b
i;ϵ (x) · λ

∗
i;b(η) ≤ T, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

)
= inf

x∈[mi−ϵ,mi+ϵ]
P

(
X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

)
− sup

x∈[mi−ϵ,mi+ϵ]

P

(
σ
η|b
i;ϵ (x) · λ

∗
i;b(η) > T, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

)
.

Applying (5.13) and (5.14), we get

lim inf
η↓0

inf
x∈[mi−ϵ,mi+ϵ]

P

(
σ
η|b
i;ϵ (x) · λ

∗
b(η) ≤ t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

)
≥ qb(i, j)

qb(i)
·
(
1− exp

(
− qb(i) · T

))
.

Let T tend to ∞, and we conclude the proof of the lower bound in part (ii) for the case wheremi /∈ V ∗b .
As for the upper bound, note that

sup
x∈[mi−ϵ,mi+ϵ]

P

(
σ
η|b
i;ϵ (x) · λ

∗
b(η) ≤ t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

)
≤ sup

x∈[mi−ϵ,mi+ϵ]

P

(
X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

)
.

Applying (5.14) with t = 0, we conclude the proof of the upper bound in the case where mi /∈ V ∗b .
The rest of this proof is devoted to establishing (5.13) and (5.14). Here, we state one fact that will

be applied in the analysis below. By assumption |sj −mi|/b /∈ Z for all j ∈ [nmin − 1], one can apply

Lemma 4.3 and obtain qC(J ∗b (i))|b({s1, · · · , snmin−1};mi

)
= 0. Due to Ij = (sj−1, sj), we then have

qC(J ∗b (i))|b
(
Ij ;mi

)
= qC(J ∗b (i))|b

(
I−j ;mi

)
∀i, j ∈ [nmin] with i ̸= j. (5.15)

Proof of Lower Bound (5.13).

Recall that Ii;δ,M = (si−1 + δ, si − δ) ∩ (−M,M) and τ
η|b
i;δ,M (x) = min{k ≥ 0 : X

η|b
k (x) /∈ Ii;δ,M}.

Now, observe that (for any δ > 0){
σ
η|b
i;ϵ (x) · λ

∗
i;b(η) > t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

}
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⊇
{
τ
η|b
i;δ,M (x) · λ∗i;b(η) > t; X

η|b
τ
η|b
i;δ,M (x)

(x) ∈ Ij;δ,M+1

}
︸ ︷︷ ︸

(I)

∩
{
X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

}
︸ ︷︷ ︸

(II)

.

Given any T > 0, strong Markov property at τ
η|b
i;δ,M (x) implies that (for all η > 0 small enough)

inf
x∈[mi−ϵ,mi+ϵ]

P
(
(II)

∣∣∣ (I)) ≥ inf
y∈Ij;δ,M+1

P

(
X

η|b
σ
η|b
i;ϵ (y)

(y) ∈ Ij

)
≥ inf

y∈Ij;δ,M+1

P

(
R

η|b
j;ϵ (y) ≤ T/η; X

η|b
k (y) ∈ Ij ∀k ≤ R

η|b
j;ϵ (y)

)
.

Recall the definition of tj(x, ϵ) in (5.12), and set T = sup
{
tj(x,

ϵ
2 ) : x ∈ [−M − 1,M + 1] ∩ [sj−1 +

δ, sj − δ]
}
<∞. By applying Lemma 4.9 again, we yield

lim inf
η↓0

inf
x∈[mi−ϵ,mi+ϵ]

P
(
(II)

∣∣∣ (I))
≥ lim inf

η↓0
inf

y∈Ij;δ,M+1

P

(
R

η|b
j;ϵ (y) ≤ T/η; X

η|b
k (y) ∈ Ij ∀k ≤ R

η|b
j;ϵ (y)

)
= 1.

(5.16)

Next, we move onto the analysis of event (I). Let M ∈ (0,∞) be such that the claim (5.10) of
Lemma 5.1 holds. Fix some ∆ > 0. Meanwhile, by assumption |sj −mi|/b /∈ Z for all j ∈ [nmin − 1],

one can apply Lemma 4.3 and obtain qC(J ∗b (i))|b({s1, · · · , snmin−1};mi

)
= 0. Due to the continuity of

measures, it then holds for all δ > 0 small enough that (recall that qb(i) = qC(J ∗b (i))|b(Ici ;mi); see (5.2))

qC(J ∗b (i))|b
(
(si−1 − δ, si + δ)c;mi

)
≤ qC(J ∗b (i))|b(Ici ;mi

)
+ qC(J ∗b (i))|b

(
[si−1 − δ, si−1 + δ] ∪ [si − δ, si + δ];mi

)
< (1 + ∆) · qb(i).

Therefore, for the set Ici;δ,M =
(
(−M,M)∩ (si−1+ δ, si− δ)

)c
, it holds for all δ > 0 small enough that

qC(J ∗b (i))|b
(
Ici;δ,M ;mi

)
≤ qC(J ∗b (i))|b

(
(−M,M)c;mi

)
+ qC(J ∗b (i))|b

(
(si−1 + δ, si − δ)c;mi

)
= 0 + qC(J ∗b (i))|b

(
(si−1 + δ, si − δ)c;mi

)
using (5.10)

< (1 + ∆) · qb(i).

(5.17)

On the other hand, recall the definition of qb(i, j) = qC(J ∗b (i))|b(Ij ;mi) in (5.2), and note that

qC(J ∗b (i))|b(Ici;δ,M ;mi

)
≥ qC(J ∗b (i))|b(Ici ;mi

)
= qb(i) (5.18)

due to Ii;δ,M ⊆ Ii and hence Ici;δ,M ⊇ Ici . Next, observe that

(I) =
{
τ
η|b
i;δ,M (x) · λ∗i;b(η) > t; X

η|b
τ
η|b
i;δ,M (x))

(x) ∈ Ij

}
︸ ︷︷ ︸

(III)

∩
{
X

η|b
τ
η|b
i;δ,M (x)

(x) ∈ Ij;δ,M+1

}
︸ ︷︷ ︸

(IV)

.

By applying part (a) of Theorem 2.6 onto Ii;δ,M , we yield (for any δ small enough)

lim inf
η↓0

inf
x∈[mi−ϵ,mi+ϵ]

P
(
(III)

)
≥ exp

(
− qC(J ∗b (i))|b

(
Ici;δ,M ;mi

)
· t
)
·

qC(J ∗b (i))|b
(
Ij ;mi

)
qC(J ∗b (i))|b

(
Ici;δ,M ;mi

)
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>
exp

(
− (1 + ∆)qb(i) · t

)
1 + ∆

· qb(i, j)
qb(i)

.

In the last inequality, we applied (5.17) and (5.18). On the other hand, due to τ
η|b
i;δ,M (x) ≤ σ

η|b
i;ϵ (x),

we obtain lim supη↓0 supx∈[mi−ϵ,mi+ϵ] P
(
(IV)

c
)
< ∆ for all δ > 0 small enough by applying (5.11) of

Lemma 5.1. In summary, for all δ > 0 small enough,

lim inf
η↓0

inf
x∈[mi−ϵ,mi+ϵ]

P
(
(I)
)
≥

exp
(
− (1 + ∆)qb(i) · t

)
1 + ∆

· qb(i, j)
qb(i)

−∆. (5.19)

Combining (5.16) and (5.19), we yield lim infη↓0 infx∈[mi−ϵ,mi+ϵ] P
(
σ
η|b
i;ϵ (x) · λ∗b(η) > t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈

Ij

)
≥ exp(−(1+∆)qb(i)·t)

1+∆ · qb(i,j)
qb(i)

−∆. Let ∆ ↓ 0 and we conclude the proof of the lower bound.

Proof of Upper Bound (5.14).

Let (I) =
{
σ
η|b
i;ϵ (x)·λ∗i;b(η) > t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

}
. Given someM > 0 and δ > 0, define event (II) ={

X
η|b
τ
η|b
i;δ,M (x)

(x) ∈ (−M−1,M+1)\S(δ)
}
.We start from the decomposition (I) =

(
(I)\(II)

)
∪
(
(I)∩(II)

)
.

First, arbitrarily pick some ∆ > 0, and let M ∈ (0,∞) be such that the claim (5.10) of Lemma 5.1
holds. The claim

lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P
(
(I) \ (II)

)
≤ lim sup

η↓0
sup

x∈[mi−ϵ,mi+ϵ]

P
(
(II)

c
)
< ∆ (5.20)

for all δ > 0 small enough follows directly from (5.11) of Lemma 5.1. Next, on event (I) ∩ (II), there

exists someK ∈ [nmin],K ̸= i such thatX
η|b
τ
η|b
i;δ,M (x)

(x) ∈ (−M−1,M+1)∩(sK−1+δ, sK−δ) = IK;δ,M+1.

For each k ∈ [nmin] with k ̸= i, define event

(k) = (I) ∩ (II) ∩
{
X

η|b
τ
η|b
i;δ,M (x)

(x) ∈ Ik;δ,M+1

}
and note that

⋃
k∈[nmin]: k ̸=i (k) = (I) ∩ (II). To proceed, consider the following decomposition

(k) =

(
(k) ∩

{(
σ
η|b
i;ϵ (x)− τ

η|b
i;δ,M (x)

)
· λ∗i;b(η) > ∆

})
︸ ︷︷ ︸

(k,1)

∪
(
(k) ∩

{(
σ
η|b
i;ϵ (x)− τ

η|b
i;δ,M (x)

)
· λ∗i;b(η) ≤ ∆

})
︸ ︷︷ ︸

(k,2)

.

We fix some k ∈ [nmin] with k ̸= i and analyze the probability of events (k, 1) and (k, 2) separately.
First, recall that λ∗i;b(η) = η ·λJ ∗b (i)(η) ∈ RVJ ∗b (i)·(α−1)+1(η), so given any T > 0 it holds for all η > 0

small enough that ∆
λ∗i;b(η)

> T
η . Now, we pick T = sup

{
tk(x,

ϵ
2 ) : x ∈ I−k;δ,M+1

}
with tk(·, ·) defined

in (5.12), and observe that

lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P
(
(k, 1)

)
≤ lim sup

η↓0
sup

x∈[mi−ϵ,mi+ϵ]

P

(
(k) ∩

{
σ
η|b
i;ϵ (x)− τ

η|b
i;δ,M (x) > T/η

})
≤ lim sup

η↓0
sup

x∈[mi−ϵ,mi+ϵ]

P

(
X

η|b
τ
η|b
i;δ,M (x)

(x) ∈ Ik;δ,M+1; σ
η|b
i;ϵ (x)− τ

η|b
i;δ,M (x) > T/η

)
≤ lim sup

η↓0
sup

y∈Ik;δ,M+1

P

(
σ
η|b
i;ϵ (y) > T/η

)
due to strong Markov property at τ

η|b
i;δ,M (x)
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≤ lim sup
η↓0

sup
y∈Ik;δ,M+1

P

(
X

η|b
j (y) /∈ (mk − ϵ,mk + ϵ) ∀j ≤ T/η

)
= 0 due to Lemma 4.9. (5.21)

Next, for all k ̸= i,

sup
x∈[mi−ϵ,mi+ϵ]

P
(
(k, 2)

)
≤ sup

x∈[mi−ϵ,mi+ϵ]

P

(
τ
η|b
i;δ,M (x) · λ∗i;b(η) > t−∆; X

η|b
τ
η|b
i;δ,M (x)

(x) ∈ Ik;δ,M+1; X
η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

)
≤ sup

x∈[mi−ϵ,mi+ϵ]

P

(
τ
η|b
i;δ,M (x) · λ∗i;b(η) > t−∆; X

η|b
τ
η|b
i;δ,M (x)

(x) ∈ Ik

)
· sup
x∈[mi−ϵ,mi+ϵ]

P

(
X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

∣∣∣∣ τη|bi;δ,M (x) · λ∗i;b(η) > t−∆; X
η|b
τ
η|b
i;δ,M (x)

(x) ∈ Ik;δ,M+1

)
≤ sup

x∈[mi−ϵ,mi+ϵ]

P

(
τ
η|b
i;δ,M (x) · λ∗i;b(η) > t−∆; X

η|b
τ
η|b
i;δ,M (x)

(x) ∈ Ik︸ ︷︷ ︸
(k,I)

)
· sup
y∈Ik;δ,M+1

P

(
X

η|b
σ
η|b
i;ϵ (y)

(y) ∈ Ij︸ ︷︷ ︸
(k,II)

)
.

In the last inequality we applied the strong Markov property at τ
η|b
i;δ,M (x). Applying part (a) of

Theorem 2.6 onto Ii;δ,M and the bound (5.18), we yield (for any δ small enough)

lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P
(
(k,I)

)
≤ exp

(
− qC(J ∗b (i))|b

(
Ici;δ,M ;mi

)
· (t−∆)

)
·

qC(J ∗b (i))|b
(
I−k ;mi

)
qC(J ∗b (i))|b

(
Ici;δ,M ;mi

)
≤ exp

(
− qb(i) · (t−∆)

)
· qb(i, k)
qb(i)

. (5.22)

Here, we also applied (5.15) to show that qC(J ∗b (i))|b(I−k ;mi

)
= qC(J ∗b (i))|b(Ik;mi

)
= qb(i, k). Next, we

analyze the probability of event (k,II). If k = j, we apply the trivial upper bound P((k,II)) ≤ 1. If

k ̸= j, recall that R
η|b
k;ϵ(x) = min{n ≥ 0 : X

η|b
n (x) ∈ (mk − ϵ,mk + ϵ)} is the first time X

η|b
n (x) visits

the ϵ-neighborhood of mk, and note that

sup
y∈Ik;δ,M+1

P((k,II)) ≤ sup
y∈Ik;δ,M+1

P

(
∃n < R

η|b
k;ϵ(y) s.t. X

η|b
n (y) /∈ Ik; δ2 ,M+2

)
.

Indeed, on event (k,II), the first local minimum visited by X
η|b
n (y) is mj even though the initial value

X
η|b
0 (y) = y belongs to Ik;δ,M+1 ⊂ Ik; this implies that X

η|b
n (y) must have left Ik (and hence Ik; δ2 ,M+2)

before visiting the neighborhood of mk. Applying Lemma 4.9 onto Ik ∩ (−M − 2,M + 2) (with the
parameter ϵ therein set as δ), we obtain lim supη↓0 supy∈Ik;δ,M+1

P((k,II)) = 0 for all δ > 0 small
enough in the case of k ̸= j. Combining this result with (5.20), (5.21), and (5.22), we yield that

lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P

(
σ
η|b
i;ϵ (x) · λ

∗
i;b(η) > t, X

η|b
σ
η|b
i;ϵ (x)

(x) ∈ Ij

)
≤ lim sup

η↓0
sup

x∈[mi−ϵ,mi+ϵ]

P
(
(II)

c
)

+
∑

k∈[nmin]: k ̸=i

lim sup
η↓0

sup
x∈[mi−ϵ,mi+ϵ]

P
(
(k,I)

)
· lim sup

η↓0
sup

y∈Ik;δ,M

P
(
(k,II)

)
≤ lim sup

η↓0
sup

x∈[mi−ϵ,mi+ϵ]

P
(
(II)

c
)
+ lim sup

η↓0
sup

x∈[mi−ϵ,mi+ϵ]

P
(
(j,I)

)
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≤ ∆+ exp
(
− qb(i) · (t−∆)

)
· qb(i, j)
qb(i)

.

Let ∆ ↓ 0 and we conclude the proof of the upper bound.

Now, we are ready to prove Proposition 2.14.

Proof of Proposition 2.14. Recall that Y
∗|b
t (mi) is a

(
(Uj)j≥1, (Vj)j≥1

)
jump process with U1 = 0,

Vi = mi, and the law of
(
(Uj)j≥2, (Vj)j≥2

)
specified in (5.3). To prove the weak convergence claim

in terms of finite dimensional distributions, it suffices to verify the conditions in Lemma 2.13. In

particular, since Y
∗|b
t (mi) is a continuous-time Markov chain that is irreducible with finitely many

states, the only condition we need to check is the following: Given ϵ > 0 and η > 0, let Uη
k =((

τ̂
η,ϵ|b
k (x)− τ̂

η,ϵ|b
k−1 (x)

)
· λ∗b(η) and V η

k = mÎη,ϵ|b
k (x)

(for definitions, see (2.46)–(2.48)); it holds for all

ϵ > 0 small enough that (Uη
1 , V

η
1 , U

η
2 , V

η
2 , · · · ) converges in distribution to (U1, V1, U2, V2, · · · ) as η ↓ 0.

This is equivalent to proving that, for each N ≥ 1, (Uη
1 , V

η
1 , · · · , U

η
N , V

η
N ) converges in distribution to

(U1, V1, · · · , UN , VN ) as η ↓ 0.
Fix someN = 1, 2, · · · . First, from part (i) of Proposition 5.2, we get

(
Uη
1 , V

η
1 ) ⇒ (0,mi) = (U1, V1)

as η ↓ 0. Next, for any n ≥ 1, any tl ∈ (0,∞), any vl ∈ {mi : i ∈ [nmin]}, and t > 0, i, j ∈ [nmin] with
i ̸= j, it follows directly from part (ii) of Proposition 5.2 that

lim
η↓0

P

(
Uη
n+1 ≤ t, V η

n+1 = mj

∣∣∣∣ V η
n = mi, V

η
l = vl ∀l ∈ [n− 1], Uη

l ≤ tl ∀l ∈ [n]

)

=

{ qb(i,j)
qb(i)

if mi /∈ V ∗b ,
qb(i,j)
qb(i)

·
(
1− exp

(
− qb(i)t

))
if mi ∈ V ∗b .

This coincides with the conditional law of P
(
Un+1 < t, Vn+1 = mj

∣∣∣ Vn = mi, (Vj)
n−1
j=1 , (Uj)

n
j=1

)
specified in (5.3). By arguing inductively, we conclude the proof.

Lastly, we give the proof of Proposition 2.15.

Proof of Proposition 2.15. If X
η|b
⌊t/λ∗b (η)⌋

(x) ∈
⋃

l∈[nmin]
(ml − ϵ,ml + ϵ), then due to the definition of

X̂
η,ϵ|b
t (x) as the marker of the last visited local minimum (under time scaling of λ∗b(η); see (2.46)-(2.48)

for the definition of the process X̂
η,ϵ|b
t (x)), we must have |Xη|b

⌊t/λ∗b (η)⌋
(x)− X̂

η,ϵ|b
t (x)| < ϵ. Therefore, it

suffices to show that for any ϵ ∈ (0, ϵ̄) (with ϵ̄ specified in (5.1))

lim
η↓0

P
(
X

η|b
⌊t/λ∗b (η)⌋

(x) ∈
⋃

l∈[nmin]

(ml − ϵ,ml + ϵ)
)
= 1.

To proceed, pick some δt ∈ (0, t
3 ), δ > 0, and M > 0. Recall that H(·) = P(|Z1| > ·) and S(δ) =⋃

i∈[nmin−1][si − δ, si + δ]. Define event

(I) =
{
X

η|b
⌊t/λ∗b (η)⌋−⌊2δt/H(η−1)⌋(x) ∈ (−M,M)\S(δ)

}
.

Let t1(η) = ⌊t/λ∗b(η)⌋ − ⌊2δt/H(η−1)⌋. On event (I), let Rη =∆ min{j ≥ t1(η) : X
η|b
j (x) ∈⋃

l∈[nmin]
(ml − ϵ

2 ,ml +
ϵ
2 )} and set Îη by the rule Îη = j ⇐⇒ X

η|b
Rη (x) ∈ Ij . Now we can de-

fine event

(II) =
{
Rη − t1(η) ≤ δt/H(η−1)

}
.
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On event (I) ∩ (II) we have ⌊t/λ∗b(η)⌋ − ⌊2δt/H(η−1)⌋ ≤ Rη ≤ ⌊t/λ∗b(η)⌋. Let τη =∆ min{j ≥ Rη :

X
η|b
j (x) /∈ (mÎη − ϵ,mÎη + ϵ)}, and define event

(III) =
{
τη −Rη > 2δt/H(η−1)

}
.

On event (I) ∩ (II) ∩ (III), we have τη > ⌊t/λ∗b(η)⌋ ≥ Rη, and hence X
η|b
⌊t/λ∗b (η)⌋

(x) ∈
⋃

l∈[nmin]
(ml −

ϵ,ml + ϵ). Furthermore, we claim that for any ∆ > 0 there exist δt ∈ (0, t
3 ), δ > 0, and M > 0 such

that

lim inf
η↓0

P
(
(I)
)
≥ 1−∆, (5.23)

lim inf
η↓0

P
(
(II)

∣∣∣ (I)) ≥ 1, (5.24)

lim inf
η↓0

P
(
(III)

∣∣∣ (I) ∩ (II)
)
≥ 1−∆. (5.25)

An immediate consequence is that lim infη↓0 P((I)∩(II)∩(III)) ≥ (1−∆)2. Let ∆ ↓ 0 and we conclude
the proof. Now it only remains to establish (5.23) (5.24) (5.25). Throughout the remainer of this
proof, we fix some ϵ ∈ (0, ϵ̄) and ∆ > 0.

Proof of (5.23).

Let IM,δ = (−M,M)\S(δ). Recall the definition of τ̂
η,ϵ|b
j (x) in (2.46)(2.47). For any N ∈ Z+, on

event(N−1⋂
k=1

{
X

η|b
j (x) ∈ IM,δ ∀j ∈

[
τ̂
η,ϵ|b
k (x), τ̂

η,ϵ|b
k+1 (x)

]}
︸ ︷︷ ︸

Ak(η)

)
∩
{
τ̂
η,ϵ|b
1 (x) ≤ t1(η)

}
︸ ︷︷ ︸

B1(η)

∩
{
τ
η,ϵ|b
N > ⌊t/λ∗b(η)⌋

}
︸ ︷︷ ︸

B2(η)

we have X
η|b
j (x) ∈ IM,δ for all j ∈ [τ̂

η,ϵ|b
1 (x), τ̂

η,ϵ|b
N (x)] and τ̂

η,ϵ|b
1 (x) ≤ t1(η) < τ̂

η,ϵ|b
N (x), thus implying

X
η|b
t1(η)

(x) ∈ IM,δ. Therefore, it suffices to show the existence of some M , N , and δ such that

lim sup
η↓0

[
P
(
Bc

1(η)
)
+P

(
Bc

2(η)
)
+

N−1∑
k=1

P
(
Ac

k(η)
)]

< ∆ ∀δt ∈ (0, t/3). (5.26)

Recall that t1(η) = ⌊t/λ∗b(η)⌋ − ⌊2δt/H(η−1)⌋. Fix some u ∈ (0, t/3). First, due to λ∗b(η) =

η ·
(
η−1H(η−1)

)J ∗b (V )
and J ∗b (V ) ≥ 1, if δt ∈ (0, t/3) then it holds eventually for all η small enough

that t1(η) > u/λ∗b(η). Let i ∈ [nmin] be such that x ∈ Ii and let R
η|b
i;ϵ (x) = min{j ≥ 0 : X

η|b
j (x) ∈

[mi−ϵ,mi+ϵ]}. Since τ̂η,ϵ|b1 (x) is the first visit time to
⋃

l∈[nmin]
(ml−ϵ,ml+ϵ) (i.e., the ϵ-neighborhood

of any local minima ml), we have τ̂
η,ϵ|b
1 (x) ≤ R

η|b
i;ϵ (x), and hence

lim sup
η↓0

P
(
Bc

1(η)
)
≤ lim sup

η↓0
P
(
τ̂
η,ϵ|b
1 (x) > u/λ∗b(η)

)
≤ lim sup

η↓0
P
(
λ∗b(η) ·R

η|b
i;ϵ (x) > u

)
= 0 using Proposition 5.2 (i).

(5.27)

We move onto the analysis of eventB2(η) and the choice ofN . Recall that Y
∗|b
t (x) is the irreducible,

continuous-time Markov chain over V ∗b with law specified in (5.3). In particular, we can fix some N
large enough such that P(U1 + · · · + UN ≤ t) < ∆/2. Then from the weak convergence stated in
Proposition 2.14, we get

lim sup
η↓0

P
(
Bc

2(η)
)
≤ lim sup

η↓0
P

( N∑
n=1

(
τη,ϵ|bn (x)− τ

η,ϵ|b
n−1 (x)

)
· λ∗b(η) ≤ t

)
≤ P(U1 + · · ·+ UN ≤ t) < ∆/2.

(5.28)
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Meanwhile, recall that σ
η|b
k;ϵ(x) = min{j ≥ 0 : X

η|b
j (x) ∈

⋃
l ̸=k(ml − ϵ,ml + ϵ)} (i.e., the first time

X
η|b
j (x) visits the ϵ-neighborhood of some ml that is different from mk); also, for all k ≥ 2, τ̂

η,ϵ|b
k (x) is

the first time since τ̂
η,ϵ|b
k−1 (x) that X

η|b
j (x) visits the ϵ-neighborhood of some ml that is different from

the one visited at τ̂
η,ϵ|b
k−1 (x). From the strong Markov property at τ̂

η,ϵ|b
k (x), we then get

sup
k≥1

P
(
Ac

k(η)
)
≤ max

l∈[nmin]
sup

y∈[ml−ϵ,ml+ϵ]

P
(
∃j < σ

η|b
l;ϵ (y) s.t. X

η|b
j (y) ∈ S(δ) or

∣∣Xη|b
j (y)

∣∣ ≥M
)
.

Applying Lemma 5.1, we are able to fix someM > 0 and δ ∈ (0, ϵ/2) such that lim supη↓0 P
(
Ac

k(η)
)
≤

∆
2N ∀k ∈ [N − 1]. Combining this bound with (5.27) and (5.28), we finish the proof of (5.26). As a
concluding remark, note that our proof of claim (5.23) relies on the specific choices of M and δ but
allows for arbitrary δt ∈ (0, t/2). In the proof of claims (5.24) and (5.25) below, we adopt the same
choice of M and δ so these two parameters will be fixed henceforth in this proof.

Proof of (5.24).
We show that the claim holds for all δt ∈ (0, t/3). Due to H(x) ∈ RV−α(x) and α > 1, given

any T > 0 we have T/η < δt/H(η−1) eventually for all η small enough. Recall that Ij;δ,M =
(sj−1 + δ, sj − δ)∩ (−M,M). By Markov property at t1(η), for any T > 0 it holds for all η > 0 small
enough that

P
(
(II)

c
∣∣∣ (I)) ≤ max

k∈[nmin]
sup

y∈Ik;δ,M

P

(
X

η|b
j (y) /∈

⋃
l∈[nmin]

(ml −
ϵ

2
,ml +

ϵ

2
) ∀j ≤ δt/H(η−1)

)

≤ max
k∈[nmin]

sup
y∈Ik;δ,M

P

(
R

η|b
k;ϵ/2(y) > δt/H(η−1)

)
≤ max

k∈[nmin]
sup

y∈Ik;δ,M

P

(
R

η|b
k;ϵ/2(y) > T/η

)
where R

η|b
k;ϵ/2(y) = min{j ≥ 0 : X

η|b
j (y) ∈ (mk − ϵ

2 ,mk + ϵ
2 )}.

Let tk(x, ϵ) =
∆ inf{t ≥ 0 : yt(x) ∈ (mk − ϵ,mk + ϵ)}. By Assumption 7, tk(x,

ϵ
4 ) < ∞ for all x ∈

[−M−1,M+1]∩[sk−1+ δ
2 , sk−

δ
2 ], with tk( · , ϵ4 ) being continuous over [−M−1,M+1]∩[sk−1+ δ

2 , sk−
δ
2 ].

As a result, we can fix T ∈ (0,∞) large enough such that

T > sup
{
tk(x,

ϵ

4
) : x ∈ [−M − 1,M + 1] ∩ [sk−1 +

δ

2
, sk − δ

2
]
}

∀k ∈ [nmin].

For each k ∈ [nmin], by applying Lemma 4.9 onto (−M − 1,M + 1) ∩ (sk−1, sk), we are able to show

that lim supη↓0 supy∈Ik;δ,M
P
(
R

η|b
k;ϵ/2(y) > T/η

)
= 0. This concludes the proof of claim (5.24).

Proof of (5.25).
We show that claim (5.25) holds for all δt ∈ (0, t/3) small enough. By strong Markov property at

Rη,

P
(
(III)

c
∣∣∣ (I) ∩ (II)

)
≤ max

k∈[nmin]
sup

y∈[mk−ϵ/2,mk+ϵ/2]

P
(
∃j ≤ 2δt

H(η−1)
s.t. X

η|b
j (y) /∈ (mk − ϵ,mk + ϵ)

)
.

Also, note that ϵ < ϵ̄ < b; see (5.1). For each k ∈ [nmin], by applying part (a) of Theorem 2.6 onto
(mk − ϵ,mk + ϵ), we obtain some ck,ϵ ∈ (0,∞) such that for any u > 0,

lim sup
η↓0

sup
y∈[mk−ϵ/2,mk+ϵ/2]

P
(
∃j ≤ u

H(η−1)
s.t. X

η|b
j (y) /∈ (mk − ϵ,mk + ϵ)

)
≤ 1− exp(−ck,ϵ · u).

By picking δt small enough, we ensure that 1− exp(−ck,ϵ ·2δt) < ∆ for all k ∈ [nmin], thus completing
the proof of claim (5.25).
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5.5 Proof of Corollary 2.11

Proof of Corollary 2.11. For simplicity of notations we focus on the case where T = 1, but the proof
below can be easily generalized for arbitrary T > 0.

Fix some b > 0 such that Gb is irreducible and |sj −mi|/b /∈ Z for all i ∈ [nmin] and j ∈ [nmin − 1].

Also, fix some x ∈
⋃

i∈[nmin]
Ii and let T η

narrow =∆
∫ 1

0
I
{
X

η|b
⌊t/λ∗b (η)⌋

(x) ∈
⋃

j: j /∈V ∗b
Ij
}
dt. The goal is

to show that T η
narrow

P−→ 0 as η ↓ 0. To proceed, let Kη
N =∆

∑N−1
n=1 Iη

N (n) where IηN (n) =∆ I

{
∃t ∈

( n
N ,

n+1
N ] s.t. X

η|b
⌊t/λ∗b (η)⌋

∈
⋃

j: j /∈V ∗b
Ij

}
, and note that

T η
narrow =

N−1∑
n=0

∫ (n+1)/N

n/N

I

{
X

η|b
⌊t/λ∗b (η)⌋

(x) ∈
⋃

j: j /∈V ∗b

Ij

}
dt ≤ 1

N
+

N−1∑
n=1

1

N
· Iη

N (n) =
1 +Kη

N

N
.

The proof hinges on the following claims: there exist some C ∈ (0,∞) and a family of events Aη
N such

that

(i) for all positive integer N large enough, limη↓0 P(Aη
N ) = 1;

(ii) for all positive integer N large enough, there exists η̄ = η̄(N) > 0 such that under any η ∈ (0, η̄),

P(Kη
N ≥ j | Aη

N ) ≤ P

(
Binom(N,

2C

N
) ≥ j

)
∀j = 1, 2, · · · , N.

Here, Binom(n, p) is the Binomial RV representing the number of successful trials among n Bernoulli
trials with success rate p. Then given any N large enough, η ∈ (0, η̄(N)) and any β ∈ (0, 1),

P

(
T η
narrow ≥ 1 + 2C +

√
Nβ

N︸ ︷︷ ︸
=∆ δ(N.β)

)
≤ P(Kη

N ≥ 2C +
√
Nβ)

= P
(
{Kη

N ≥ 2C +
√
Nβ} ∩Aη

N

)
+P

(
{Kη

N ≥ 2C +
√
Nβ} \Aη

N

)
≤ P

(
Binom(N,

2C

N
) ≥ 2C +

√
Nβ

)
+P

(
(Aη

N )c
)

by claim (ii)

≤ P

((
Binom(N,

2C

N
)− 2C

)2
≥ Nβ

)
+P

(
(Aη

N )c
)

≤
var
[
Binom(N, 2CN )

]
Nβ

+P
(
(Aη

N )c
)

by Markov’s inequality

≤ 2C

Nβ
+P

(
(Aη

N )c
)
.

Using claim (i) and by driving η ↓ 0, we get lim supη↓0 P
(
T η
narrow ≥ δ(N, β)

)
≤ 2C/Nβ for all N

large enough. Lastly, note that C/Nβ → 0 as N → ∞; also, under our choice of β ∈ (0, 1) we have

limN→∞ δ(N, β) = 0. This implies T η
narrow

P−→ 0 as η ↓ 0.
Now, it only remains to verify claims (i) and (ii). First, we specify the choice of events Aη

N . Let
tN (n) = n/N . For some ϵ > 0, let

Aη
N (n) =∆

{
X

η|b
⌊tN (k)/λ∗b (η)⌋

(x) ∈
⋃

i: mi∈V ∗b

(mi − ϵ,mi + ϵ) ∀k ∈ [n]
}

and let Aη
N = Aη

N (N). Note that Aη
N (1) ⊇ Aη

N (2) ⊇ · · · ⊇ Aη
N (N) = Aη

N . Furthermore, in Theorem

2.9 note that the limiting CTMC Y
∗|b
t only visits V ∗b . As a result, given any positive integer N , one

can find ϵ = ϵ(N) > 0 small enough such that limη↓0 P(Aη
N ) = 1.
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Next, let
(
Ĩη
N (n)

)
n∈[N−1] be a random vector with law L

((
Iη
N (n)

)
n∈[N−1]

∣∣∣ Aη
N

)
. Suppose there

exists some C ∈ (0,∞) such that for all N large enough, there is η̄ = η̄(N) > 0 for the following claim
to hold: Given any n ∈ [N − 1] and sequence ij ∈ {0, 1} ∀j ∈ [n− 1],

P
(
Ĩη
N (n) = 1

∣∣∣ Ĩη
N (j) = ij ∀j ∈ [n− 1]

)
< 2C/N ∀η ∈ (0, η̄). (5.29)

Then given any N sufficiently large and any η ∈ (0, η̄(N)), there exists a coupling between iid Bernoulli

RVs (IN (n))n∈[N−1] with success rate 2C/N and (Ĩη
N (n))n∈[N−1] such that Ĩη

N (n) ≤ IN (n) ∀n ∈
[N−1] almost surely. This coupling between (IN (n))n∈[N−1] and (Ĩη

N (n))n∈[N−1] immediately verifies
claim (ii).

Lastly, we prove condition (5.29) under the choice of C > maxi: mi∈V ∗b qb(i) with qb(i) defined in

Section 5.1. Besides, due to limx→0
1−exp(−x)

x = 1, it holds for all N large enough that

1− exp
(
− C · 1

N

)
<

√
2C/N. (5.30)

Henceforth in this proof, we fix such large N . Now, given any n ∈ [N−1] and sequence ij ∈ {0, 1} ∀j ∈
[n− 1], observe that

P
(
Ĩη
N (n) = 1

∣∣∣ Ĩη
N (j) = ij ∀j ∈ [n− 1]

)
=

P
(
Ĩη
N (n) = 1; Ĩη

N (j) = ij ∀j ∈ [n− 1]
)

P
(
Ĩη
N (j) = ij ∀j ∈ [n− 1]

)
=

P
({

Iη
N (n) = 1; Iη

N (j) = ij ∀j ∈ [n− 1]
}
∩Aη

N

)/
P(Aη

N )

P
({

Iη
N (j) = ij ∀j ∈ [n− 1]

}
∩Aη

N

)/
P(Aη

N )

≤
P
({

Iη
N (n) = 1; Iη

N (j) = ij ∀j ∈ [n− 1]
}
∩Aη

N (n)
)

P
({

Iη
N (j) = ij ∀j ∈ [n− 1]

}
∩Aη

N

) due to Aη
N (n) ⊇ Aη

N

=
P
({

Iη
N (n) = 1; Iη

N (j) = ij ∀j ∈ [n− 1]
}
∩Aη

N (n)
)

P
({

Iη
N (j) = ij ∀j ∈ [n− 1]

}
∩Aη

N (n)
) ·

P
({

Iη
N (j) = ij ∀j ∈ [n− 1]

}
∩Aη

N (n)
)

P
({

Iη
N (j) = ij ∀j ∈ [n− 1]

}
∩Aη

N

)
= P

(
Iη
N (n) = 1

∣∣∣{Iη
N (j) = ij ∀j ∈ [n− 1]

}
∩Aη

N (n)
)

︸ ︷︷ ︸
=∆pη

1

·
P
({

Iη
N (j) = ij ∀j ∈ [n− 1]

}
∩Aη

N (n)
)

P
({

Iη
N (j) = ij ∀j ∈ [n− 1]

}
∩Aη

N

)
︸ ︷︷ ︸

=∆pη
2

.

For term pη1 , by Markov property of X
η|b
j (x) at j = ⌊tN (n)/λ∗b(η)⌋,

pη1 ≤ sup
y∈

⋃
i: mi∈V ∗b

(mi−ϵ,mi+ϵ)

P

(
X

η|b
j (y) /∈

⋃
i: mi∈V ∗b

(mi − ϵ,mi + ϵ) for some j ≤ ⌊ 1/N

λ∗b(η)
⌋
)

≤ max
i: mi∈V ∗b

sup
y∈(mi−ϵ,mi+ϵ)

P

(
X

η|b
j (y) /∈ Ii for some j ≤ ⌊ 1/N

λ∗b(η)
⌋
)
.

By part (ii) of Proposition 5.2, there is some η̄ = η̄(N) > 0 such that for all η ∈ (0, η̄), we have
pη1 < 1− exp(−C · 1/N) <

√
2 · C/N due to our choice of C > maxi: mi∈V ∗b qb(i) and the choice of N

in (5.30). As for term pη2 , note that for any event B, we have

P(B ∩Aη
N (n))

P(B ∩Aη
N )

≤ P(B)

P(B)−P
(
(Aη

N )c
) → 1 as η ↓ 1 due to lim

η↓0
P(Aη

N ) = 1. (5.31)
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In the definition of pη2 , note that there are only finitely many choices of n ∈ [N − 1] and finitely
many combinations for ij ∈ {0, 1} ∀j ∈ [n − 1]. By considering each of the finitely many choices for
B = {Iη

N (j) = ij ∀j ∈ [n − 1]} in (5.31), we can find some η̄ = η̄(N) such that pη2 <
√
2 ∀η ∈ (0, η̄)

uniformly for all the choices of n ∈ [N − 1] and sequence ij . Combining the bounds pη1 <
√
2C/N and

pη2 <
√
2 (for all η small enough), we verify condition (5.29) and conclude the proof.
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random walks with regularly varying increments. The Annals of Probability, 47(6):3551–3605,
2019.
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[47] K.-i. Sato, S. Ken-Iti, and A. Katok. Lévy Processes and Infinitely Divisible Distributions. Cam-
bridge university press, 1999.

[48] E. Scalas, R. Gorenflo, and F. Mainardi. Fractional calculus and continuous-time finance. Physica
A: Statistical Mechanics and its Applications, 284(1-4):376–384, 2000.

[49] A. Shwartz and A. Weiss. Large deviations for performance analysis: queues, communication and
computing, volume 5. CRC Press, 1995.

[50] R. B. Sowers. Large deviations for a reaction-diffusion equation with non-gaussian perturbations.
The Annals of Probability, 20(1):504–537, 1992.

[51] A. D. Ventsel’ and M. I. Freidlin. On small random perturbations of dynamical systems. Russian
Mathematical Surveys, 25(1):1, feb 1970.

[52] X. Wang, S. Oh, and C.-H. Rhee. Eliminating sharp minima from SGD with truncated heavy-
tailed noise. In International Conference on Learning Representations, 2022.

[53] W. Wei, Q. Huang, and J. Duan. Large deviations for sde driven by heavy-tailed l\’evy processes.
arXiv preprint arXiv:2101.03856, 2021.

91


	Introduction
	Main Results
	Preliminaries
	Sample-Path Large Deviations
	The Untruncated Case
	The Truncated Case
	Results for Stochastic Differential Equations

	First Exit Time Analysis
	Results for Stochastic Difference Equations
	General Framework
	Results for Stochastic Differential Equations

	Sample-Path Convergence of Global Dynamics
	Problem Setting and Main Results
	General Framework
	Results for Stochastic Differential Equations


	Uniform M-Convergence and Sample Path Large Deviations 
	Technical Lemmas
	Proof of Theorem 2.1
	Proof of Theorems 2.2 and 2.3
	Proof of Proposition 3.16


	First Exit Time Analysis
	Proof of Theorem 2.7
	Technical Lemmas for measures (k)|b(  )
	Proof of Theorem 2.6

	Sample-Path Convergence of Global Dynamics
	Law of the Limiting Markov Chains in Theorems 2.9 and 2.10
	Proof of Theorem 2.10
	Proof of Lemmas 2.12 and 2.13
	Proof of Propositions 2.14 and 2.15
	Proof of Corollary 2.11


