
Space-Filling Design for Nonlinear Models

Chang-Han Rhee*, Enlu Zhou**, and Peng Qiu***

*Industrial Engineering and Management Sciences, Northwestern University,
Evanston, IL, 60613, USA

**H. Milton Stewart School of Industrial and Systems Engineering, Georgia
Institute of Technology, Atlanta, GA, 30332, USA

***Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of
Technology and Emory University, Atlanta, GA, 30332, USA

February 28, 2023

Abstract

Performing a computer experiment can be viewed as observing a mapping between the model in-

put parameters and the corresponding outputs predicted by the computer model to understand

the input-output relationship. In view of this, experimental design for computer experiments

can be thought of as devising an efficient procedure for finding configurations of design points

in the input space so that their images represent the manifold parametrized by such a mapping

(i.e., computer experiments) faithfully. Traditional space-filling designs aim to achieve this

goal by filling the input space with design points that are as “uniform” as possible in the input

space. However, the resulting design points may be non-uniform in the model output space

and hence fail to unveil the input-output relationship or even become misleading in case the

computer experiments are non-linear. In this paper, we propose an iterative algorithm that

fills in the model output manifold uniformly—rather than the input space uniformly—so that

one could obtain an efficient and reliable understanding of input-output relationship with the

minimal number of design points.

1 Introduction

Due to the advances of modern computing machineries, experimentation via computer simulation

has become an integral element of science and engineering. Due to its deterministic nature, however,

designing computer simulation experiments requires a different approach from traditional design of

physical experiments.

Let f : P ⊆ Rm → Rn denote a function that maps the input variable x ∈ Rm to the output

f(x) ∈ Rn of a computer model. The coordinates of x may consist of 1) deterministic variables that

1

can be set by an engineer or scientist—a.k.a. control variables; 2) deterministic variables that specify

the mathematical model of the computer code—a.k.a. model parameters; 3) random variables that

represent the inherently uncertain components of the model—a.k.a. environmental variables; or any

combination of them. In general we can write x = (xc, xp, xe) where xc ∈ Rmc is the set of control

variables, xp ∈ Rmp is the set of model parameters, and xe ∈ Rme is the set of environmental

variables, and mc +mp +me = m. Typical objectives of (computer) experiments are

(O1) predicting f(x) “well” for all x in the domain P of interest;

(O2) identifying x such that f(x) meets certain criteria—i.e., finding L(C) ≜ {x ∈ P : f(x) ∈ C};

(O3) finding the extreme values (and the optima) of f(·).

In case the environmental variables are present so that me > 0, the above objectives are often

formulated in terms of µ(xc, xp) ≜ E f(xc, xp, Xe)—instead of f(xc, xp, xe)—where Xe is a random

vector whose distribution reflects the uncertainties in the environmental variables. In this article,

we focus on the case the environmental variable is not present (me = 0), and hence, the function

of our interest can be evaluated deterministically. The case where the environmental variables are

present so that µ(xc, xp) cannot be evaluated without statistical errors will be pursued elsewhere.

In many circumstances, each computer experiment—i.e., evaluation of f(·) at a given point x—is

computationally expensive, and hence, the design of computer experiments requires careful selection

of design points x1, . . . , xk such that the resulting experimental data (x1, f(x1)), . . . , (xk, f(xk)) is

most conducive to the above goals. Since, in computer experiments, repeated observations (i.e.,

evaluations of f) with the same input variable produce the identical output, the design should

not include duplicate points. At the same time, all portions of the experimental region should

be explored. In view of these, a widely adopted principle for the design of computer experiments

is to spread the design points evenly throughout the input domain P. This type of experimental

designs are called space-filling design. The exact meaning of “spreading design points evenly” is not

obvious, and based on different interpretations many different space-filling designs were proposed

in the literature. Detailed discussion of each space-filling design is beyond the scope of this article.

We emphasize here that, while “spreading out evenly” does not necessarily coincide precisely with

being distributed uniformly in P in probabilistic sense, there is close connection, and for the purpose

of our discussion, it is enough to consider the uniform distribution as a representative example of

space-filling design. For detailed discussion of traditional space-filling design, see for example,

Santner et al. (2013) and the references therein.

In this paper, we argue that in case the computer model is nonlinear, a design scheme that

spreads the output {f(x1), . . . , f(xk)} evenly in the output space (rather than spreading {x1, . . . , xk}
evenly in the input space) can be more efficient for achieving the above mentioned objectives.

Spreading the output evenly in the output space corresponds to sampling uniformly from the man-

ifold M ≜ f(P). We will make what we mean by this clear in rigorous mathematical terms in

2

Section 2, but here we first explain our motivation and objective at an intuitive level through an

illustrative example. Consider a mapping f : P ⊆ R2 → R3

f(θ1, θ2) ≜

 e−θ1t1 + e−θ2t1

e−θ1t2 + e−θ2t2

e−θ1t3 + e−θ2t3

on P = [0, 100]2 and the associated manifold

M = {(e−θ1t1 + e−θ2t1 , e−θ1t2 + e−θ2t2 , e−θ1t3 + e−θ2t3) : θ1, θ2 ∈ [0, 100]} (1.1)

where t1 = 1, t2 = 2, t3 = 4. Although this example is given in a closed-form formula for the

purpose of illustration, a typical situation we address in this paper is when the evaluation of f

is only possible through an expensive black box simulation. Here we point out that while this

example is schematic, it captures important aspects of more complex nonlinear behaviors that arise

in real-life examples such as Example 4. Think of f as a model describing the dynamics of the

system so that f(θ1, θ2) is the model output given the input (θ1, θ2). M then can be viewed as

all of the possible behaviors of the system that correspond to the inputs in P. Traditional space-

filling designs carefully construct design points {x1, . . . , xk} in such a way that the input space P
is “well covered” by {x1, . . . , xk}. While such a strategy can be a powerful means to understanding

the input-output relationship of the mapping f , it should be noted that if f is parametrized in a

highly nonlinear way so that the vast majority of the input space P is mapped into a small part

of the manifold M, then {x1, . . . , xk} that are spread uniformly in P can lead to not only very

inefficient computational procedures but also dangerously misleading observations. The manifold

M in (1.1) illustrates this point. Figure 1 displays the samples generated on M in two different

ways. The left plot displays 5, 000 samples f(x1), . . . , f(x5,000) where xi-s are generated uniformly

on P, whereas the right plot displays 5, 000 samples f(x′1), . . . , f(x
′
5,000) where x′i-s are generated

so that f(x′i)-s are uniformly distributed on M. One can see that most of the xi-s are mapped

into a small fraction of M in the left plot, and hence, {f(x1), . . . , f(xk)} fail to reflect the actual

geometry of M. Such an outcome translates to a poor performance in terms of the experimental

goals (O1)-(O3). For example, if one tries to predict the output of an unexamined point x0 based

on the uniform samples in the input space, the prediction can only fall somewhere near the limited

output points discovered in the left plot of Figure 1, whereas, in fact, the output of x0 can fall

anywhere on the manifold shown in the right plot. With the right plot, however, one can yield

much more accurate predictions for unexamined points even with a simple interpolation. Likewise,

(O2) and (O3) can also be achieved much more efficiently by spreading design points evenly in the

output space rather than the input space. This clearly illustrates the potential danger in drawing

conclusions from the observations based on blindly choosing uniform configurations in the input

3

space without considering the behavior of the model f . An obvious alternative is to consider the

space-filling design in output space. A more rigorous and comprehensive discussion of the merits

0 0.5 1 1.5 2
0

1

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

5000 Samples uniformly distributed in the parameter (input space)

0 0.5 1 1.5 2
0

1

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

5000 samples uniformly distributed in the manifold (output space)

Figure 1: 5, 000 samples generated uniformly on the input space P (left plot) vs. uniformly on the
manifoldM (right plot). Observations based on the left plot may lead to incorrect inferences. For
many purposes, more reliable and informative configurations for such nonlinear models would be
uniform (or other desired) distribution onM rather than P.

and demerits of space-filling design in output space compared to that in input space in terms of

the efficiency and prediction capability will be left as a future research direction. In this paper,

we instead focus on the computational aspect of constructing design points that are spread out

evenly (or according to a given target distribution) in output space. More specifically, we propose

computational procedures for generating configurations (i.e., design points) {x1, . . . , xk} on P so

that the resulting configuration {f(x1), . . . , f(xk)} onM is uniformly distributed (or according to

other desired distributions) as in the right plot of Figure 1. Therefore, our target distribution is

the distribution on P that corresponds to the uniform distribution on M. The idea is to start

with a random configuration, and then shift the configuration towards the target distribution by

alternating between resampling in the model output space and perturbation in the input space. In

the resampling step, the algorithm resamples the design points in such a way that the points that

belong to a densely populated region of M are less likely to be resampled, while the points that

belong to the sparse region ofM are more likely to be resampled so that the resulting samples are

populated more uniformly. While this step pushes the empirical distribution of the design points

toward the target distribution, it cannot be repeated to push the design points further toward the

target distribution since no new points inM are discovered while some are discarded. To discover

4

new regions of M, the resampling step is followed by the perturbation step, where the resampled

points are perturbed in such a way that the distribution of the perturbed points stay close to the

original distribution. The two steps are repeated until the configuration is sufficiently uniform onM.

We study the consistency and the convergence of the proposed algorithm in Kantorovich-Rubinstein

distance. In particular, we prove that the empirical distribution of the samples generated in each

iteration converges to the target distribution. It should be noted that while this implies that the

empirical distribution of the entire set of samples generated throughout all the past iterations will

also converge to the target distribution, the samples generated in the early iterations are likely to

be significantly different from the ones in the later iterations (and from the target distribution). If

our objective is solely generating samples uniformly on M, those early samples can be discarded.

However, with the objectives (O1)-(O3) in the computer experiment contexts, it is often better to

keep the early samples as well.

Finally, note that our setting is different from the setting where algorithms generate uniform

samples on manifolds based on random walks, such as hit-and-run Boneh and Golan (1979); Smith

(1984), shake-and-bake Boender et al. (1991), stochastic billiard Dieker and Vempala (2015), and

geodesic-walks Lee and Vempala (2016). Such algorithms often require that the manifold is a convex

set or the boundary of a convex set, and the manifold is specified by a set of constraints (eg. a

polytope given by a system of linear inequalities), and hence, it is easy to tell whether a given point

in Rn (the ambient space in which the manifold is embedded) belongs to the manifold or not. In

contrast, in our setting, the manifold is not necessarily a convex set or the boundary of a convex

set, and more importantly, we cannot directly answer whether a given point in the output space

Rn belongs to the manifoldM or not.

The rest of the paper is organized as follows. Section 2 formulates the objectives of this paper

in rigorous mathematical formulation and presents our main algorithm. Section 3 analyzes the

consistency and the convergence of the proposed algorithm. The proofs of the main result in

Section 3 is provided in Appendix A. Section 4 examines the numerical behavior of our algorithm

with a few illustrating examples including a systems biology model for enzymatic reaction networks.

2 Problem Formulation and Algorithm Description

Section 2.1 defines the preliminary mathematical notions required and state the objectives of this

paper, and Section 2.2 proposes the algorithm that achieves the objectives.

2.1 Problem Formulation

Let f : P ⊂ Rm → Rn be a one-to-one mapping on a hypercube P ≜
∏m
i=1[x

i
min, x

i
max] ⊆ Rm

with sufficient regularity so that M ≜ f(P) is the associated m-dimensional manifold embedded

5

in Rn. Note that requiring f to be one-to-one is a rather strong assumption. In the general

cases where there is no guarantee that f is one-to-one, we can consider an augmented mapping

f̃ ϵ : P → Rm+n such that f̃ ϵ(x) ≜ (f(x), ϵx) and apply the proposed algorithm to f̃ ϵ instead of f

for small ϵ > 0 to obtain roughly “uniform” samples in the output space. The exact mathematical

characterization of the limit ϵ→ 0 and the choice of ϵ for practical computation will be left to future

study. For simplicity, we focus on the case f is one-to-one in this paper. We assume that f is not

analytically tractable but can be evaluated by a simulation code at arbitrary points in P; however,
such evaluation is computationally expensive. Our goal is to find design points {x1, . . . , xk} ⊆ P,
such that {f(x1), . . . , f(xk)} are distributed uniformly (or according to a desired distribution) on

the manifold M. A natural notion of uniform distribution on a manifold can be stated in terms

of the Hausdorff measure. Recall that the m-dimensional Hausdorff measure (embedded in Rn,
n ≥ m) is defined as

Hm(B) = lim
δ→0

inf
B⊆∪Si,

diam(Si)≤δ

∑
Γm

(
diam(Si)

2

)m
(2.1)

where the infimum is over all countable coverings {Si ⊆ Rn : i ∈ I} of B, diam(Si) ≜ sup{|x− y| :
x, y ∈ Si}, and Γm is the volume of the m-dimensional unit ball. Note that Hm is a natural

generalization of Lebesgue measure, and if m = n, Hm coincides with the m-dimensional Lebesgue

measure; see, for example, Federer (1996) for more details.

As Diaconis et al. (2013) points out, the area formula (see, for example, Section 3.2.5 of Federer

1996) in geometric measure theory dictates how one should sample from a given density with respect

to the Hausdorff measure.

Proposition 1. (Area Formula, Federer 1996) Let m ≤ n. If f : Rm → Rn is Lipschitz and

one-to-one, for any measurable A and measurable g : Rn → R,∫
A

g(f(x))Jmf(x)λ
m(dx) =

∫
f(A)

g(y) Hm(dy), (2.2)

where λm denotes the m-dimensional Lebesgue measure and Jmf is the m-dimensional Jacobian of

f . In our context where m ≤ n, the m-dimensional Jacobian is equal to

Jmf(x) =
√
det
(
Df(x)TDf(x)

)
,

6

where Df(x) is the differential of f at x:

Df =

∂
∂x1

f1
∂
∂x2

f1 . . . ∂
∂xm

f1
∂
∂x1

f2
∂
∂x2

f2 . . . ∂
∂xm

f2
...

...
. . .

...
∂
∂x1

fn
∂
∂x2

fn . . . ∂
∂xm

fn

 .

The area formula essentially transforms a distribution on the manifold (with respect to the

Hausdorff measure Hm) to the corresponding distribution on the input space P associated with

the mapping f . The area formula implies that our target distribution on P is Jmf (with respect

to the Lebesgue measure), if we intend to generate uniform samples on the output manifold. More

generally, we assume that η(·) is absolutely continuous with respect to the Hausdorff measure Hm

onM, and the density (i.e., Radon-Nikodym derivative) is µ, which is known up to a multiplicative

constant. In view of the area formula (2.2), to generate samples from η, one can generate samples

x1, x2, . . . in the input space from the density proportional to µ ◦ f · Jmf and then apply f to

x1, x2, . . . to obtain the samples f(x1), f(x2), . . . from the desired density on the manifold. To see at

an intuitive level why such a procedure generates samples from the desired distribution, pick g(x) =

µ(x)IB(x) for a given set B. Then from (2.2), P (X ∈ f−1(B)) =
∫
µ ◦ f(x)Jmf(x)If−1(B)(x)dx =∫

µ(y)IB(y)Hm(dy) = P (Y ∈ B), where Y is an M-valued random variable with the density µ,

and X is an P-valued random variable with density ξ. Since B was chosen arbitrarily, we see that

f(X) and Y have the same distribution. That is, if we sample X in P from the density ξ (w.r.t.

the Lebesgue measure), then f(X) is a random variable inM with density µ (w.r.t. the Hausdorff

measure Hm). We denote our target distribution (in the input space P) with ξ:

dξ

dλm
(x) =

µ ◦ f(x) · Jmf(x)∫
P µ ◦ f(x) · Jmf(x) λm(dx)

. (2.3)

We will call both η and ξ target distribution, and µ and µ◦f ·Jmf target density when the context

is clear.

Sampling from a given density with respect to the Lebesgue measure is a classical topic that

has been addressed by many traditional methods such as inversion, acceptance-rejection, and

Markov chain Monte Carlo (MCMC); in particular, Markov chain Monte Carlo algorithms such

as Metropolis-Hastings provide powerful means to sample from analytically intractable densities;

see for example Asmussen and Glynn (2007); Liu (2008); Robert (2004). However, it should be noted

that our goal is different from the context where MCMC methods are typically deployed. MCMC

algorithms produce samples that conform with the target distribution by rejecting many proposals

that do not conform with the target distribution. Deciding whether or not to reject the proposal

requires computation of likelihoods, which corresponds to performing computer experiments in our

7

context.

For example, we can easily obtain nearly uniform samples onM in (1.1) from a simple Metropolis-

Hastings (MH) algorithm as shown in the left plot of Figure 2. However, to obtain 3,733 near-

uniform points in the left plot, the MH algorithm made 10,000 proposals and rejected 6,267 of

them, for each of which Jmf had to be evaluated to decide whether or not to reject: see Ap-

pendix C for details of this experiment. The right plot shows all the points at which we had to

evaluate Jmf to obtain the uniform points on the left plot. Note that this non-uniformity does not

disappear as we increase the run length and has little to do with the initial transient problem. Of

course, the efficiency of an MCMC algorithm in our context depends critically on the choice of the

proposal kernel. Our algorithm can potentially provide a principled way of constructing an efficient

proposal for MCMC algorithms and such a combination might produce an algorithm with improved

efficiency for certain tasks. However, we do not pursue such a hybrid strategy in this paper and

leave it as a future research direction.

It should also be noted that there are recent developments on “rejection-free” algorithms in

the MCMC literature (Rosenthal et al., 2019; Bouchard-Côté et al., 2018). Despite the nomencla-

ture, however, such algorithms are not designed to remove the rejection scheme from the sampling

procedure; rather, the objectives are to improve the mixing properties of the MCMC algorithms

using non-reversible processes and parallel computing structures, and the likelihood should still be

evaluated at the points that are not included in the final output.

It is also worth mentioning that the proposed procedures bears resemblance to the sequential

Monte Carlo method for Bayesian state-space models, where at every stage of the sequential problem

the posterior distribution would be updated by resampling the particles, and then the particles

would be perturbed to combat degeneracy. For example, the resample-move algorithm proposed in

Gilks and Berzuini (2001) follows this framework. While their resample-move algorithm is typically

used in filtering contexts where the goal is to study multiple target distributions evolving over time,

the most general framework proposed in Section 3.2 of Gilks and Berzuini (2001) applies to more

general contexts. However, if the algorithm is applied to our problem where the target distribution

stays the same throughout the iterations, their resampling step reduces to an unweighted bootstrap

sampling since the weights become all 1. Combined with the move step, which perturbs the particles

according to a transition kernel whose invariant distribution coincides with the target distribution,

the whole resample-move algorithm becomes very similar to the standard MCMC algorithms, and

hence, faces the same challenge—construction of an efficient proposal—in our context.

Among the existing sampling techniques, what comes closest to our spirit is non-parametric

importance sampling: Zhang (1996); Givens and Raftery (1996); Kim et al. (2000); Zlochin and

Baram (2002). In fact, if the evaluation of the derivative of f is also available in addition to the

evaluation of f itself, our algorithm can be simplified to a version which can be seen as a variant of

non-parametric importance sampling algorithms. However, previous studies of such algorithms have

8

Figure 2: Left plot shows the 3733 samples generated by a simple Metropolis-Hastings (MH) algo-
rithm. MH does produce points uniformly distributed over M, but to generate these points, MH
algorithm made 10,000 proposals shown on the right plot. These proposals are far from uniform
distribution, and most of the rejected proposals are concentrated near (0, 0, 0) ∈ M. Since each
proposal requires the evaluation of the mapping f for one to decide whether or not to accept the
proposal, these types of approaches (i.e., sampling methods based on acceptance-rejection schemes
that require evaluation of f for computing the acceptance probability) do not serve our the purpose.

been focused on computing a single test function by approximating the zero-variance importance

sampling measure with kernel density proposal. In view of our purpose, a distance between the

target measure and the empirical measure of the samples produced by the algorithm would be a

more proper perfomance measure. We analyze the convergence of our algorithm with respect to the

Kantorovich-Rubinstein distance (which is also known as the Wasserstein distance of order 1). To

the best of the authors’ knowledge, the convergence bound we establish for our algorithm in this

paper is the first convergence analysis of non-parametric importance sampling type algorithms in

terms of Kantorovich-Rubinstein distance.

We conclude this section with a brief review of the Kantorovich-Rubinstein distance. The

Kantorovich-Rubinstein distance between two probability distributions is the L1 distance between

the optimal coupling of the two associated random variables whose marginal distributions coin-

cide with the two probability distributions. That is, for probability measures µ and ν on P, the
Kantorovich-Rubinstein distance W1 is defined as

W1(µ, ν) ≜ inf
π∈M(µ,ν)

∫
P×P

∥x− y∥1dπ(x, y)

where M(µ, ν) denotes the set of all joint probability measures on P × P with marginals µ and ν

9

respectively. Obviously, this is equivalent to

W1(µ, ν) = inf
X,Y

E ∥X − Y ∥1

where the infimum is taken over all coupling of µ and ν. The following dual formula will be useful

in the analysis of the modulus of continuity of the resampling step: for any given x0 ∈ P,

W1(µ, ν) = sup

{∫
P
f(x)µ(dx)−

∫
P
f(x)ν(dx)

∣∣∣∣ f : P → R, ∥f∥Lip ≤ 1, f(x0) = 0

}
(2.4)

where ∥f∥Lip denotes the minimal Lipschitz constant of f . The Kantorovich-Rubinstein distance

metrizes the weak convergence, that is, convergence in W1 implies weak convergence. See, for

example, Chapter 6 of Villani (2008) for more details.

2.2 Algorithm Description

In this section, we propose an algorithm that generates a sequence of design points whose empirical

distribution converges to the target distribution in Kantorovich-Rubinstein distance.

The main idea of our algorithm is to start with arbitrarily distributed samples and then repeat

iterations consisting of a resampling step and a perturbation step so that the empirical distribution

of the generated samples becomes closer and closer to the target distribution. The resampling step

is designed to shift the current empirical distribution toward the target distribution by eliminating

the samples in concentrated regions, and duplicating the samples in sparse regions; the perturbation

step is designed to force the algorithm to explore new areas of the manifold while still respecting

the information obtained through the previous iterations. More specifically, the algorithm works

as follows. At iteration 0, one starts with N (arbitrarily chosen) points x1, . . . , xN ∈ P and their

images y1, . . . , yN ∈ M where yi ≜ f(xi) for i = 1, . . . , N . Let B(yi; r) denote the n-dimensional

ball with radius r centered at yi, and r̂(yi) denote the kth nearest neighborhood (k-NN) distance

from yi. That is, r̂(yi) = r̂ ◦ f(xi) ≜ inf{r > 0 : #{j : yj ∈ B(yi; r)} ≥ k} where #A denotes

the cardinality of set A. For each j > 0, the jth iteration consists of a resampling step and a

perturbation step. In the resampling step, one computes the resampling weights Gi as follows:

Gi ≜

(
r̂m ◦ f(xi)

)
·
(
µ ◦ f(xi)

)∑N
l=1

(
r̂m ◦ f(xl)

)
·
(
µ ◦ f(xl)

) , ∀i = 1, . . . , N (2.5)

where r̂m(·) simply denotes the mth power of r̂(·)—i.e., r̂m(y) = (r̂(y))m for y ∈ Rn. That is, we

will resample according to a probability measure proportional to the values of r̂m ◦ f · µ ◦ f at

x1, . . . , xN .

Then, the algorithm generates independent and identically distributed (iid) samples x′1, . . . , x
′
N

10

in such a way that P(x′i = xj) = Gj for each i, j = 1, . . . , N . For the perturbation step, pick a

scaled kernel ζ̃h(·; y) centered at y with bandwidth h > 0. The constants q and b regularize the

perturbation density so that the density is bounded away from 0 and∞, while h is the perturbation

bandwidth. The choice of these parameters and the precise construction of ζ̃h will be discussed

further in Section 3 and Section 4. One starts the perturbation step with the samples x′1, . . . , x
′
N

generated in the previous resampling step and constructs a smoothed and regularized density

min
{
b, q/λm(P) + (1− q) 1

N

∑N
i=1 ζ̃h(x;x

′
i)
}

∫
A
min

{
b, q/λm(P) + (1− q) 1

N

∑N
i=1 ζ̃h(s;x

′
i)
}
ds

(2.6)

for b ≫ 1 and q ∈ (0, 1). This is a density obtained by first mixing the uniform distribution on

P with the mixing coefficient q and the empirical distribution of x′1, . . . , x
′
N smoothed by ζ̃h, and

then truncating the density of the mixture at b. The uniform distribution in the mixture provides a

global exploration of the input space P, while the smoothed kernel provides a local perturbation. To

generate a sample xj from this density (2.6), the algorithm first generates a proposal x∗ uniformly

(on P) with probability q, and according to 1
N

∑N
i=1 ζ̃h(·;x′i) with probability 1 − q. Set a =

q/λm(P) + (1 − q) 1
N

∑N
i=1 ζ̃h(x

∗;x′i). Accept the proposal x∗ (i.e., set xj ← x∗) with probability

min{a, b}/a. If not accepted, generate another proposal and repeat this acceptance/rejection step

until a proposal is accepted. When x1, . . . , xN are all generated from this procedure, one moves on to

the resampling step of the next iteration. We note that although we use acceptance/rejection scheme

here to generate samples from (2.6), the density does not explicitly involve quantities associated

with f , and hence, there is no extra computation of f or Jmf in this step. The whole procedure

described so far is summarized in Algorithm 1.

Throughout the rest of this section, we provide some intuition behind the design and analysis

of Algorithm 1, in particular, the resampling formula (2.5) and propose a simplified version—

Algorithm 2—in case the derivative of f can be evaluated in addition to the value of f itself.

Recall first that, in general, one can shift a given empirical distribution of iid samples toward a

target distribution by reweighting the empirical distribution w.r.t. the likelihood ratio between the

current distribution and the target distribution, i.e., imporatance sampling. In our context, 1/r̂m

is approximately proportional to the density pY of the current samples y1, . . . , yN , and hence, the

resampling formula (2.5) assigns probability mass approximately proportional to the likelihood ratio

µ/pY between the target density µ (on P) and the density of the current samples pY . In view of

this, the resulting empirical distribution of the samples after the resampling step should be closer

to the target distribution.

To be more specific, let δy denote a unit point measure concentrated on y and suppose that

x1, . . . , xN are the iid samples generated by the perturbation step in the previous iteration. We

argue that the weighted empirical measure η̂ ≜ 1
N

∑N
i=1Giδf(xi) resulting from the resampling

11

Algorithm 1 Space-Filling Algorithm (without Derivative)

Generate N samples x1, · · · , xN ∈ P from an initial distribution p0;
while η̂ changes notably do
{x′1, · · · , x′N} ← Resample({x1, · · · , xN});
{x1, · · · , xN} ← Perturb({x′1, · · · , x′N});
η̂ ← 1

N

∑N
i=1 δf(xi);

end while
return η̂

function Resample({x1, · · · , xN})
yi ← f(xi), i = 1, . . . , N ;
r̂i ← k-NN distance from yi, i = 1, . . . , N ;
Gi ← r̂mi · µ(yi)/(

∑n
l=1 r̂

m
l · µ(yl)), i = 1, . . . , N ;

for i = 1 : N do
Sample x′i so that P(x′i = xl) = Gl, ∀l = 1, . . . , N ;

end for
return {x′1, · · · , x′N};

end function

function Perturb({x′1, · · · , x′N})
for i = 1 : N do

while x∗ is not accepted do
Draw x∗ from the density q/λm(P) + (1− q) 1n

∑n
l=1 ζ̃h(x;x

′
l);

a← q/λm(P) + (1− q) 1n
∑n
l=1 ζ̃h(x

∗;x′l);

Accept x∗ and set xi = x∗ with probability min{a,b}
a ;

end while
end for
return {x1, · · · , xN};

end function

12

formula (2.5) is an approximation of the target measure η. To see why, we view η̂ and η in terms

of Boltzmann-Gibbs transformation. Recall that the Boltzmann-Gibbs transformation ΨG(η) of a

measure η onM w.r.t. a potential G :M→ R+ is defined as a measure such that

ΨG(η)(dy) =
G(y)η(dy)∫
G(y)η(dx)

.

Recall also that we denoted the volume of the m-dimensional unit ball with Γm. Let p̂Y (y) ≜

(k/N)/(Γmr̂
m(y)) and note that this can be understood as the estimated density of yi’s via k-NN.

Set a potential ĜY as

ĜY (y) ≜ µ(y)/p̂Y (y) = µ(y)Γmr̂
m(y)/(k/N)

and denote the empirical distribution of yi’s with η̂Y = 1
N

∑N
i=1 δyi . With these notations,

η̂ = ΨĜY
(η̂Y). (2.7)

Let µY and pY denote the distribution and density of yi’s and r
m
k,N (z) denote the mth power of the

diameter of the ball that contains the k/N fraction of yi’s distribution. That is, for each z ∈ M,

rk,N (z) satisfies ∫
B(z;rk,N (z))

pY (y)Hm(dy) = k/N.

Set the potential GY to be

GY (y) ≜ lim
N,k→∞, k/N→0

µ(y)Γmr
m
k,N (y)/(k/N) = µ(y)/pY (y),

for k and N that increase at the rates for which the k-NN density estimation is consistent. Note

that r̂ approximates rk,N . With these notations, we see that η can be rewritten as

η = ΨGY
(ηY). (2.8)

In view of (2.7) and (2.8), we can expect that the difference between η and η̂ will be small if η̂Y is a

good approximation of ηY , and ĜY is a good approximation of GY , which explains at an intuitive

level why the resampling formula (2.5) works. The crux of our algorithm analyses in Section 3

and Appendix A, B are to bound this difference and show that the iterative application of the

resampling step and the perturbation step is stable and convergent.

Finally, recall that our target measure ξ on the input space P ⊂ Rm is the probability measure

with the density proportional to µ ◦ f · Jmf ; see (2.3). It should also be noted that pX(x) =

Jmf(x) · pY ◦ f(x), and hence, (r̂m ◦ f · µ ◦ f) in (2.5) can be regarded as an approximation of

(µ ◦ f · Jmf · ι)—up to a multiplicative constant—where ι ≜ 1/pX is the reciprocal of the density

13

from which xi-s are sampled from. In view of this, if one can readily evaluate Jmf , a simplified

version of Algorithm 1 can be implemented by replacing (r̂m ◦f ·µ◦f) in (1) with (µ◦f ·Jmf · ι). In
this case, the perturbation step can also be simplified; it is not necessary to truncate the sampling

density in the perturbation step at level b. Such a simplified version of the algorithm is summarized

in Algorithm 2.

Algorithm 2 Space-Filling Algorithm (with Derivative)

Generate N samples x1, · · · , xN ∈ P from an initial distribution p0;
while η̂ changes notably do
{x′1, · · · , x′N} ← Resample({x1, · · · , xN});
{x1, · · · , xN} ← Perturb({x′1, · · · , x′N});
η̂ ← 1

N

∑N
i=1 δf(xi);

end while
return η̂

function Resample({x1, · · · , xN})
µi ← µ ◦ f(xi) i = 1, . . . , N ;
Ji ← Jmf(xi) i = 1, . . . , N ;

ιi ←
(
q/λm(P) + (1− q) 1

N

∑N
l=1 ζ̃h(xi;x

′
l)
)−1

i = 1, . . . , N ;
Gi ← µi · Ji · ιi/(

∑n
l=1 µi · Ji · ιl) i = 1, . . . , N ;

for i = 1 : N do
Sample x′i so that P(x′i = xl) = Gl, ∀l = 1, . . . , N ;

end for
return {x′1, · · · , x′N};

end function

function Perturb({x′1, · · · , x′N})
for i = 1 : N do

Draw x∗ from the density q/λm(P) + (1− q) 1n
∑n
l=1 ζ̃h(x;x

′
l);

end for
return {x1, · · · , xN};

end function

Note that although Algorithm 1 and 2 focus on the N samples generated in the final iteration,

there is no reason to discard the intermediate samples for most practical purposes. That is, after

j iterations, the algorithms will have generated j × N samples, and one can use all the j × N

samples—as opposed to just N samples from the final iteration—for objectives (O1)-(O3) in the

introduction, for example. Obviously, the empirical distributions of the samples from the earlier

iterations can potentially be significantly different from the later iterations, but as one can see, for

example, from Figure 9 as well as the consistency/convergence analysis in Section 3, the algorithm

stabilizes and keeps producing samples (approximately) from the target distribution in the later

14

iterations. Therefore, as the number of iterations j grows, the distribution of the overall j × N
samples generated throughout the entire process will get closer to the target distribution.

3 Consistency and Convergence

In this section, we provide sufficient conditions for the convergence of the proposed algorithms. We

make the following assumptions:

A1. f is C2
b (P);

A2. ∂iJmf vanishes on the boundary ∂P of P for each i = 1, . . . ,m.

The above conditions are imposed for the purpose of facilitating the convergence proof. We expect

that Algorithm 1 and Algorithm 2 are consistent under much more general conditions. A2 simplifies

the analysis since it allows ζ̃h to produce consistent density estimation in terms of the derivative

of the density in addition to the value of the density itself at the boundary; see (iii) of Lemma 2.

If A2 does not hold, one can still prove the consistency by carefully dealing with the boundary

of P separately as in Appendix B. In this section, we show that the empirical distribution of the

points {x1, . . . , xN} produced by Algorithm 2 “converges” to the target distribution ξ in W1 as the

number of samples N and the iterations j grow. The precise statement will be given in Theorem 1.

The consistency analysis of Algorithm 1 is more involved. We provide a discussion of Algorithm 1

in Appendix B.

Before starting the analysis, we construct a kernel that is consistent near the boundary. In simple

words, we are defining these kernels with reflection along the boundaries. That is, if P = [0, 1],

we fill in [−1, 0] with the mirror images of the points on [0, 1] (axis of reflection: x = 0) and also

fill in [1, 2] with the mirror images of the points on [0, 1] (axis of reflection: x = 1) so that the

data does not abruptly disappear outside of the boundary. This eliminates the boundary effect

in the sense that the resulting kernel density estimation is consistent on the boundary; see (i) of

Lemma 2. To be precise, consider a smooth and symmetric kernel ζ supported on B(0; 1), such as

biweight kernel, triweight kernel, and tricube kernel. We construct the kernel ζ̃h from ζ̃
(i)
h (x; y),

i = 0, 1, . . . ,m, which are defined recursively as follows. Let ζ̃
(0)
h (x; y) ≜ ζh(x − y) ≜ 1

hm ζ
(
x−y
h

)
and define ζ̃

(i)
h for i = 1, . . . ,m as

ζ̃
(i+1)
h (x; y) = ζ̃

(i)
h (x; y) + ζ̃

(i)
h

(
x; reflmin(y; i+ 1)

)
+ ζ̃

(i)
h

(
x; reflmax(y; i+ 1)

)
,

15

where x = (x1, . . . , xm)T , y = (y1, . . . , ym)T , and

reflmin(y; i) ≜

y1

...

yi−1

2ximin − yi

yi+1

...

ym

and reflmax(y; i) ≜

y1

...

yi−1

−yi + 2ximax

yi+1

...

ym

.

Finally, set

ζ̃h(x; y) ≜ ζ̃
(m)
h (x; y).

Note that for x, y such that |x− y| > h,

ζ̃h(x; y) = 0, (3.1)

and for any x ∈ P, ∫
P
ζ̃h(x; y)dy = 1. (3.2)

For the purpose of the analysis, it is convenient to decompose each iteration of Algorithm 2

into four smaller conceptual pieces—smoothing step, smoothed sampling step, reweighting step,

reweighted sampling step. At the beginning of the (j + 1)th iteration, the algorithm starts with

the empirical distribution ξ̂[j] ≜ 1
N

∑N
i=1 δX[j]

i
of samples X

[j]
1 , . . . , X

[j]
N from the previous iteration.

Note that for each design point X
[j]
i , we are using the superscript with square bracket for the

iteration and subscript for the index of the design point within the iteration. Also, we are using

the hat symbol in ξ̂[j] to denote that it is a empirical measure of the samples generated from

ξ[j]. We will keep using these conventions throughout the paper. In the first step (smoothing

step) of the iteration, the algorithm produces a probability density ξ[j+1/2] by smoothing and

regularizing the empirical measure ξ̂[j]. In the second step (smoothed sampling step), the algorithm

generates iid samples X
[j+1/2]
1 , . . . , X

[j+1/2]
N from ξ[j+1/2] to obtain the empirical measure ξ̂[j+1/2] ≜

1
N

∑N
i=1 δX[j+1/2]

i
. In the third step (reweighting step), the algorithm adjusts the weight of each

probability mass of the empirical distribution to get a new distribution ξ[j+1] ≜ 1
N

∑N
i=1 wiδX[j+1/2]

i
,

which has the same support as ξ̂[j+1/2] but shifted (via redistribution of the weights wi’s) toward

the target distribution. In the fourth step (reweighted sampling step), the algorithm generates

samples X
[j+1]
1 , . . . , X

[j+1]
N from ξ[j+1] and constructs a new empirical distribution ξ̂[j+1]. The first

two steps correspond to the perturbation step in Algorithm 2 and the last two steps correspond to

16

the resampling step in Algorithm 2. Schematically, the process can be summarized as follows:

0th iteration: ξ̂[0]
smoothing−→ ξ[−1/2] sampling−→ ξ̂[−1/2] reweighting−→ ξ[0]

sampling−→ ξ̂[0]

1st iteration: ξ̂[0]
smoothing−→ ξ[0+1/2] sampling−→ ξ̂[0+1/2] reweighting−→ ξ[1]

sampling−→ ξ̂[1]

2nd iteration: ξ̂[1]
smoothing−→ ξ[1+1/2] sampling−→ ξ̂[1+1/2] reweighting−→ ξ[2]

sampling−→ ξ̂[2]

...

where ξ̂[−1/2] is the empirical distribution of an arbitrary initial samples. A typical choice would

be iid uniform samples from P. The precise description of the four steps is as follows: to generate

samples from the target measure ξ on the input space P, (or equivalently, η on the manifoldM),

• At iteration 0, we skip the smoothing and smoothed sampling step, and start directly with

an arbitrary initial samples X
[−1/2]
1 , . . . , X

[−1/2]
N . (Then we proceed to the reweighting step

and the reweighted sampling step.)

• At iteration j + 1, we start with an empirical distribution ξ̂[j] of the samples X
[j]
1 , . . . , X

[j]
N

from the previous iteration

ξ̂[j] ≜
1

N

N∑
i=1

δ
X

[j]
i
.

Now, for suitably chosen parameters h and q (whose choice will be discussed later in this

section and Section 4),

Step 1) Smooth out the empirical distribution ξ̂[j] with ζh to get ξ̃[j+1/2]

dξ̃[j+1/2]

dλm
(x) ≜

1

N

N∑
i=1

ζ̃h(x;X
[j]
i).

Set ξ[j+1/2] as a mixture of the uniform distribution (on P) and ξ̃[j+1/2] with prob-

ability q and 1− q, respectively:

dξ[j+1/2]

dλm
(x) ≜ q/λm(P) + (1− q) 1

N

N∑
i=1

ζ̃h(x;X
[j]
i)

where λm(P) denotes the m dimensional volume of P.
Step 2) Generate iid samples X

[j+1/2]
1 , . . . , X

[j+1/2]
N from ξ[j+1/2], and set ξ̂[j+1/2] to be the

empirical distribution of the generated samples:

ξ̂[j+1/2] ≜
1

N

N∑
i=1

δ
X

[j+1/2]
i

.

17

Step 3) Evaluate f and Jmf at X
[j]
i -s and re-distribute the weights as follows:

ξ[j+1] ≜
N∑
i=1

(µ ◦ f · Jmf · ι)(X [j+1/2]
i)∑N

l=1(µ ◦ f · Jmf · ι)(X
[j+1/2]
l)

δ
X

[j+1/2]
i

, (3.3)

where ι ≜ dλm/dξ[j+1/2] is the reciprocal of the density of ξ[j+1/2] w.r.t. the Lebesgue

measure. Recall that µ is the Radon-Nikodym derivative of the target distribution

η.

Step 4) Generate iid samples X
[j+1]
1 , . . . , X

[j+1]
N from ξ[j+1] to get an empirical distribution

ξ̂[j+1] ≜
1

N

N∑
i=1

δ
X

[j+1]
i

• Repeat step 1)-4) to get ξ̂[j+2], ξ̂[j+3], . . .

Remark. Note that sampling from ξ[j+1/2] in Step 2 can be implemented by sampling from uniform

distribution in P with probability q and perturbing X
[j]
i according to the kernel ζ̃h with probability

(1− q)/N for each i = 1, . . . , N .

The main result of this section is that the above algorithm is consistent. Let

α(N) ≜

N−1/2 if m = 1

N−1/2 log(N + 1) if m = 2

N−1/m otherwise

and, for any function g : A→ Rd on a domain A, let ∥g∥∞ ≜ supx∈A |g(x)| where |·| is the Euclidean
norm, and let ∥g∥Lip ≜ supx,y∈A, x ̸=y

|g(x)−g(y)|
|x−y| . Let D ≜ diam(P), V ≜ λm(P), and c denote the

constant from Proposition 2 that depends only on ∥dξ/dλm∥∞, ∥dξ/dλm∥Lip, ∥∇(dξ/dλm)∥Lip, q,
and m.

Theorem 1. Suppose that h is chosen in such a way that

ϕ(h,N) ≜ cα(N)
(
D2V 2(∥ζh∥Lip + ∥∇ζh∥Lip) +DV ∥ζh∥Lip

)
< 1. (3.4)

Algorithm 2 is consistent in the sense that the Kantorovich-Rubinstein distance between the output

ξ̂[j] and the target measure ξ converges to 0 in L1 as N →∞ and j →∞. More specifically,

EW1(ξ̂
[j], ξ) ≤

cα(N)
(
(D2V 2 +DV)h+ (2D +D2V)

)
1− ϕ(h,N)

+ ϕ(h,N)jEW1(ξ̂
[0], ξ). (3.5)

18

We defer the proof of Theorem 1 to Appendix A and conclude this section with a few remarks

regarding the implications of the theorem.

Note first that the second term on the RHS of (3.5) decays at a geometric rate as j increases,

whereas the first term does not depend on j. Also, the ratio between the first term and the geometric

factor of the second term is(
(D2V 2 +DV)h+ (2D +D2V)

)
/
(
D2V 2(∥ζh∥Lip + ∥∇ζh∥Lip) +DV ∥ζh∥Lip

)
1− cα(N)

(
D2V 2(∥ζh∥Lip + ∥∇ζh∥Lip) +DV ∥ζh∥Lip

) .

Since ∥ζh∥Lip and ∥∇ζh∥Lip are typically c1 ·h−m−1 and c2 ·h−m−2, respectively, for some constants

c1 and c2 that are greater than 1, the ratio is bounded by

hm+2

(
(1 +D−1V −1)h+ (2D−1V −2 + V −1)

)
/
(
1 + (1 +D−1V −1)h

)
1− cα(N)

(
D2V 2(∥ζh∥Lip + ∥∇ζh∥Lip) +DV ∥ζh∥Lip

) .

In caseD and V are large (e.g., in our running example (Example 1.1),D = 100
√
2 and V = 10, 000),

and N and h are chosen so that the geometric factor ϕ(h,N) in (3.4) is sufficiently away from 1,

the ratio is of order hm+2. On the other hand, note that EW1(ξ̂
[0], ξ) is typically of order D.

Therefore, the second term in (3.5) will dominate the error for small j. But as j increases, the first

term will dominate the error. That is, as the number j of iterations increases, ξ̂[j] will approach

ξ geometrically fast at the beginning, but then the convergence will eventually slow down and ξ̂[j]

will linger around ξ. In view of this, one should choose the number of iterations j in such a way

that the two terms in (3.5) are of similar size. That is, for a given N , j should be chosen roughly

at around

logEW1(ξ̂
[0], ξ)− log

(
cα(N)

(
(D2V 2 +DV)h+ (2D +D2V)

))
− log

(
cα(N)

(
D2V 2(∥ζh∥Lip + ∥∇ζh∥Lip) +DV ∥ζh∥Lip

)) . (3.6)

If j is much smaller than (3.6), the second term will dominate the final error even though it can

be reduced geometrically and hence losing opportunities to reduce the total error efficiently; on

the other hand, if j is much larger than (3.6), the first term will dominate the error and hence

one will waste extra efforts without much gain in terms of the error. Note also that if the starting

configuration ξ̂[0] is reasonably close to ξ to begin with, Algorithm 2 will require very small number

of iterations before it stabilizes. This is consistent with our numerical experiences reported in

Section 4.

There is a tradeoff between choosing h small and large. Note that the condition (3.4) requires

that h should not decrease to 0 too fast compared to the rate at which the size N of samples grows.

On the other hand, in case D and V are large, the first term in (3.5), whch does not decrease at a

geometric rate w.r.t. the number of iterations, will be dominated by cα(N)D2V 2h for the practical

range of values of N , and hence, small h is desired. That is, larger h allows to make sure that the

19

algorithm is stable w.r.t. the iterations and for smaller number of samples N ; smaller h allows one

to reduce the final error of the algorithm after a sufficiently large number of iterations.

While our convergence bound is explicit, such explicitness comes at the expense of tight asymp-

totics. Recall that ∥ζh∥Lip and ∥∇ζh∥Lip are typically of order h−m−1 and h−m−2, respectively, and

hence, h should not decrease to 0 at a faster rate than N− 1
m(m+2) to satisfy condition (3.4). This is

a very slow rate even for moderately large m’s, and we expect that the algorithm would be stable

for h’s that decreases faster than such a rate guaranteed by Theorem 1. The practical choice of h

and q will be further discussed in Section 4.

Finally, we point out that the decay rate of α(N) slows down as the dimensionalitym grows. This

is an inherent difficulty that no space-filling scheme can avoid. The specific form of the dependency

on the dimensionality reflects the fact that even when one can generate the iid samples from the

exact target distribution, the Kantorovich-Rubinstein distance between the empirical distribution

and the target distribution will decrease at the same rate.

4 Examples

In this section, we briefly discuss the choice of algorithmic parameters h, q, and b, and examine

the numerical behavior of the algorithm with a few examples. Due to the conservative nature of

our convergence analysis in Theorem 1 and Lemma 3, we do not provide definitive rules for the

choice of the above parameters. Instead, we provide heuristic discussions and rough guidelines from

our numerical experience here. More thorough investigation will be pursued in subsequent studies.

As pointed out in Section 3, the choice of h is critical for the stability and the performance of the

algorithm. Although our sufficient condition in Theorem 1 is conservative, our numerical experience

confirms that a liberal choice of h can indeed lead to unstable behavior of the algorithm. That is,

if h is chosen too small compared to N , the algorithm may diverge from the target distribution.

An indication of such divergence is clustering of the points, which can easily be detected with

various methods. In view of this, we suggest starting with a conservative choice of h and gradually

reducing the size of h as the algorithm stabilizes. When the clustering behavior is detected, the

experimenter can either increase N or increase h so that the algorithm does not exhibit clustering

behavior. Turning to q, note that q being away from 0 prevents ξ[j+1/2] from being much smaller

than ξ so that the ratio doesn’t blow up. On the other hand, if q is close to 1, our algorithm is

not assigning enough resource (samples) in learning the geometry of the manifold. Such a trade-off

can be noticed in the upper bounds in (ii) and (iv) of Lemma 2 where both q and 1− q appear in

the denominator. In view of this, we suggest choosing q inside of the interior of (0, 1) sufficiently

away from the boundary, say, between 1/10 and 1/2. The choice of b does not seem to make much

difference in terms of the performance of the algorithm as far as b is chosen sufficiently large.

20

Figure 3: (Uniform Samples From Torus) Comparison of the 10,000 samples from Algorithm 2,
exact uniform distribution on the manifold, and uniform distribution in the input space.

Example 1. (Uniform Samples from Torus) Diaconis et al. (2013) illustrate how to sample from a

torus using the area formula (2.2). Consider a torus

M = {((R+ r cos θ) cosψ, (R+ r cos θ) sinψ, r sin θ) : 0 ≤ θ, ψ < 2π}

where 0 < r < R. The major radius R is the distance from the center of the tube to the center

of the torus, and the minor radius r is the radius of the tube. One way to parametrizeM and its

2-dimensional Jacobian J2f are

f(θ, ψ) = ((R+ r cos θ) cosψ, (R+ r cos θ) sinψ, r sin θ), J2f(θ, ψ) = r(R+ r cos θ).

In view of (2.2), one can generate exactly uniform samples on M w.r.t. Hausdorff measure by

generating samples on [0, 2π] × [0, 2π] from the density g(θ, ψ) ∝ R + r cos θ. For example, one

21

0 1 2 3 4 5 6
0

100

200

300

400

500

600

700

resampled samples

Algorithm 2

Exact Marginal Density

Figure 4: (Uniform Samples From Torus) Histogram from 10,000 samples of θ’s generated by
Algorithm 2. Red line shows the exact target marginal density computed from the area formula.

can generate ψ from the uniform distribution on [0, 2π], and (independently) generate θ from the

density 1
2πR (R + r cos θ), via acceptance-rejection or inversion. We compare the three different

ways of covering M for the purpose of illustration of the consistency of our algorithm. Figure 3

compares the samples on M produced for R = 1 and r = 0.9. The upper plot shows the samples

projected on x-y plane, and the lower plot shows the pre-image of the samples in the input space.

The plots on the left show the samples generated from Algorithm 2 after the resampling step in

the second iteration with q = 0.1 and h = 0.5. The plots in the middle were produced with the

10,000 samples generated by the area formula (as described above), and the right plots show 10,000

samples generated by uniformly sampling in the input space, i.e., θ ∼ U [0, 2π] and ψ ∼ U [0, 2π].

Observe that the left and middle plots are similar to each other while in the upper right plot

the center of the torus is much more densely populated compared to the outer part of the torus.

This illustrates that the samples generated uniformly from the input space A is far from uniform

on the manifold M, and Algorithm 2 produces samples from the target distribution. Figure 4

compares the histogram of θ sampled by Algorithm 2, and the exact marginal of the target density

g(θ, ψ) = 1
4π2R (R+ r cos θ).

Example 2. (Non-uniform Density on Torus) In this example, we consider the same manifoldM
as in Example 1, but we illustrate how Algorithm 2 performs for a non-uniform density on M.

Suppose that we are particularly interested in studyingM in the proximity of a given point. For

example, suppose that we are interested in (0, 1, 0), and hence, we want to use more computational

resource for the closer parts of the manifold to the point, and less resource for the farther parts of the

manifold. For this purpose, we choose a density proportional to the reciprocal of the squared dis-

tance from (0, 1, 0). More specifically, we want to sample from the distribution P (dx) = r(x)H2(dx)

where r(x, y, z) ∝ 1/(x2 + (y − 1)2 + z2). Again, for this simple example, one can generate exact

22

samples from P directly from the area formula via acceptance-rejection with the proposal density

proportional to

r(f(θ, ψ))g(θ, ψ) ∝ R+ r cos θ

((R+ r cos θ) cosψ)2 + ((R+ r cos θ) sinψ − 1)2 + (r sin θ)2
.

The samples produced by Algorithm 2 (after the third resampling step with q = 0.1 and h = 0.5),

the exact samples generated by the area formula, and the samples generated uniformly in the input

space are compared in Figure 5 and 6. Once can again it should be noted that Algorithm 2 generates

the correct distribution.

Figure 5: (Non-Uniform Density on Torus) Comparison of the 10,000 samples from Algorithm 2,
area formula, and uniform distribution in the input space.

Next, we examine a more interesting case, where the model changes its behavior significantly

on a small part of the input space while it remains relatively constant over the majority of the

input space. That is, most of the input space is mapped to a small fraction of the manifold and

the rest—the majority—of the manifold comes from a small fraction of the input space. The next

23

0 1 2 3 4 5 6
0

200

400

600

Samples of θ from Algorithm 2

0 1 2 3 4 5 6
0

200

400

600

Samples of θ from exact distribution

0 1 2 3 4 5 6
0

500

1000

Samples of ψ from Algorithm 2

0 1 2 3 4 5 6
0

500

1000

Samples of ψ from exact distribution

Figure 6: (Non-Uniform Density on Torus) Histograms from 10,000 samples generated by Algo-
rithm 2, and the exact area formula.

example illustrates how our algorithm discovers such a small region of the input space.

Example 3. (Exponential Model) Here we consider a manifold

M = {(e−θt1 + e−ψt1 , e−θt2 + e−ψt2 , e−θt3 + e−ψt3) : θ, ψ ∈ [0, 100]}

where 0 < t1 < t2 < t3. The first derivative

Df(θ, ψ) =

 −t1 exp(−θt1) −t1 exp(−ψt1)
−t2 exp(−θt2) −t2 exp(−ψt2)
−t3 exp(−θt3) −t3 exp(−ψt3)

 , (4.1)

and the 2-dimensional Jacobian

J2f(θ, ψ) =
√
α12 + α13 + α23 (4.2)

where

αij = t2i t
2
j exp{−2(θtj + ψti)}{exp(θ − ψ)(tj − ti)− 1}2. (4.3)

Figure 7 shows the result for t1 = 1, t2 = 2, t3 = 4. The left plot was produced by Algorithm 2

with q = 0.1 and h = 1, (the upper plot shows the samples projected on a plane perpendicular

to the vector (0.5,−1, 0.5), and the lower plot shows the pre-image of the samples in the input

24

space) with 2,000 particles after 10 iterations (hence, total 20,000 evaluations of Jmf throughout

the whole process); the plots in the middle show the 2,000 samples generated by the area formula;

the right plots show 60,000 samples generated by uniformly sampling in the input space, i.e.,

θ, ψ ∼ Unif
(
[0, 100] × [0, 100]

)
. Note that the evaluation of f requires 3 scalar-valued function

evaluations, and the evaluation of J2f requires 6 scalar-valued function evaluations, and hence, the

amount of computation required Algorithm 2 and uniform sampling in the input space to generate

the Figure 7 are comparable. The samples from Algorithm 2 covers the target manifold well. In

contrast, the samples generated uniformly in the input space are concentrated in a small part

of the manifold and fail to discover vast majority of it. The contrast becomes even more stark

when we consider the fact that for most practical purposes we will keep all the 20,000 particles

generated throughout all 10 iterations, which will provide even better coverage of the manifold

with Algorithm 2.

We started the Algorithm 2 with initial samples distributed uniformly in the input space, and

the final samples were obtained after the resampling step in the 10th iteration. The progression of

the algorithm is illustrated in Figure 9.

Example 4. (ODE Models in Systems Biology) The dynamics of the enzymatic regulatory systems

are often modeled with a set of ordinary differential equations. One of the most popular form of such

differential equations is Michaelis-Menten kinetics (Michaelis et al., 2011). Consider the following

Michaelis-Menten kinetics between three different kinds of enzymes A, B, C, and the input I:

dA

dt
= kIAI

(1−A)
(1−A) +KIA

− FAk′FAA

A

A+K ′
FAA

dB

dt
= CkCB

(1−B)

(1−B) +KCB
− FBk′FBB

B

B +K ′
FBB

dC

dt
= AkAC

(1− C)
(1− C) +KAC

−Bk′BC
C

C +K ′
BC

.

(4.4)

Assume that the exact values of kIA and kCB are unknown. One way to proceed to study the model

is to sample kIA and kCB randomly from a plausible range, say P ≜ [d1, u1] × [d2, u2], and see if

the model can exhibit the desired behavior of the enzymatic system. A typical approach in systems

biology is to sample a number of input parameters uniformly from R and observe what kind of

model behaviors are exhibited at the selected design points (Ma et al., 2009). However, the change

of dynamics w.r.t. the change of the values of kIA and kCB might be highly non-linear so that the

observation based on insufficient number of uniform samples can be misleading. Suppose that we

are interested in the adaptive behavior of the model. Adaptation refers to the ability of the system

to respond (i.e., change the output level) to an input stimulus (i.e., change in input level), and then

return to its original output level even when the change in the input level persists. The adaptive

behavior can be summarized as the sensitivity and the precision of the system. In the context of

25

Figure 7: (Exponential Model) Comparison of the 2,000 samples from Algorithm 2 after 10 iterations
(hence total 20,000 evaluations of f and J2f), 2,000 samples from area formula, and 60,000 samples
from the uniform distribution in input space.

our example (4.4), the sensitivity is defined as the ratio
∣∣∣ (Cpeak−C0)/C0

(I1−I0)/I0

∣∣∣ between the size of the

response of the output C and the size of the stimulus (i.e., the change in the input I), where I0 and

C0 are the initial input and output levels respectively, I1 is the new input level, and Cpeak is the

maximum of the output level after the intput level changes from I0 to I1; the precision is defined as

the ratio
∣∣∣ (I1−I0)/I0
(C1−C0)/C0

∣∣∣ between the (long term) change in the input and output levels, where C1 is

the final output level of the system by the time the system stabilizes after the initial change due to

the stimulus. These output measures quantify how well the system detects the change in the input

level, and how robust is the system to such change, respectively. For more thorough description of

adaptation, sensitivity, and precision, see Ma et al. (2009). For our purpose, just note that ODE in

(4.4) defines a mapping from the input space P to the output space R2, each coordinate of which

represents the sensitivity and the precision, respectively. Figure 10 compares the observations based

26

0 1 2 3 4 5 6
0

50

100

150

200

θ I{θ>ψ} from Algorithm 2

0 0.5 1 1.5
0

100

200

300

ψ I{θ>ψ} from Algorithm 2

0 1 2 3 4 5 6
0

50

100

150

200

θ I{θ>ψ} from exact distribution

0 0.5 1 1.5
0

100

200

300

ψ I{θ>ψ} from exact distribution

Figure 8: (Exponential Model) Histograms from 2,000 samples generated by Algorithm 2 and the
exact area formula.

on uniform sampling on the input space and observations based on uniform samples on the output

space. More specifically, the right plot shows the observation based on sampling (log10 kIA + 1)/2

and (log10 kCB + 1)/2 uniformly from R = [0.35, 0.88] × [0, 1], and the other two plots show the

observations based on sampling uniformly from the output space via Algorithm 1 with q = 0.1,

k = 5, h = 0.03, b = ∞, and N = 1000. We used Algorithm 1 instead of Algorithm 2 in this

example, since the exact derivative of the mapping is not readily available. The coefficients of the

ODE (other than kIA and kCB) were chosen as follows:

k′FAA

k′FBB

kAC

k′BC

KIA

K ′
FAA

KCB

K ′
FBB

KAC

K ′
BC

=

7.0437

0.1364

3.0061

0.8395

0.0183

0.0016

0.0122

0.0032

0.0044

0.0742

.

One can see that by uniformly sampling on the input space one may end up wasting lots of design

points to explore the lower left part of the model output space while almost missing the protruding

27

0 1 2 0

1

2

0

0.5

1

1.5

2

Iteration 1

0 1 2 0

1

2

0

0.5

1

1.5

2

Iteration 2

0 1 2 0

1

2

0

0.5

1

1.5

2

Iteration 3

0 1 2 0

1

2

0

0.5

1

1.5

2

Iteration 4

0 1 2 0

1

2

0

0.5

1

1.5

2

Iteration 5

0 1 2 0

1

2

0

0.5

1

1.5

2

Iteration 6

0 1 2 0

1

2

0

0.5

1

1.5

2

Iteration 7

0 1 2 0

1

2

0

0.5

1

1.5

2

Iteration 8

Figure 9: (Exponential Model) The progression of Algorithm 2.

region on the lower right part of the model output space. On the other hand, our algorithm

distributes the design points intelligently so that the nearly missed lower right part of the model

output space is clearly identified with less total number (4000 times) of ODE simulations compared

to the näıve design points uniform in the input space (5000 times).

Acknowledgement

The first author gratefully acknowledges the support from National Science Foundation (CMMI-

2146530). The second author is grateful for the support by AFOSR under Grant FA9550-22-1-0244

and National Science Foundation under Grant DMS2053489. The third author is grateful for the

support by National Science Foundation under Grant CCF1552784.

A numerical investigation (without convergence analysis) of the preliminary version of Algo-

rithm 1 in this paper has been presented in a conference proceeding Rhee et al. (2014). The most

significant difference between the algorithm proposed in Rhee et al. (2014) and the ones in the

current paper is in the perturbation step. While the perturbation step was performed by simulat-

ing diffusions in the algorithm proposed in Rhee et al. (2014), Algorithm 1 in the current paper

smoothes the current empirical distribution with a Kernel density estimator and mixes the smoothed

28

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
1000 samples after 3rd resampling

0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pre−image of 1000 samples after 3rd perturbation

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
1000 samples after 3rd perturbation

0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pre−image of 1000 samples after 3rd perturbation

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
5000 samples from uniform distribution in parameter space

0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pre−image of 5000 samples uniform in parameter space

Figure 10: The right plot shows the observation based on the samples uniformly distributed on
P = [0.35, 0.88]× [0, 1], and the other two plots show the observations based on Algorithm 1.

29

distribution with a uniform distribution. Such a change in the perturbation step reduces the compu-

tational burden and makes it possible to implement Algorithm 2 since the density of the perturbed

samples become analytically tractable. Moreover, we prove the consistency and convergence of the

proposed algorithm in this paper.

A Appendix: Proof of Theorem 1

This section provides the proof of Theorem 1. For the notational convenience, we adopt the (com-

mon) convention that for a function h : A→ R and a measure µ on A, we denote the integral of h

w.r.t. µ with µ(h) or µh:

µ(h) ≜ µh ≜
∫
A

h(y)µ(dy).

For example, ΨG(ξ)f =
∫
f(x)ΨG(ξ)(dx) =

∫
f(x)G(x)ξ(dx)/

∫
G(x)ξ(dx) = ξ(fG)/ξ(G) with

this notation. The proof of Theorem 1 hinges critically on the following proposition.

Proposition 2. There exists a constant c depending only on ∥dξ/dλm∥∞, ∥dξ/dλm∥Lip, ∥∇(dξ/dλm)∥Lip,
q, and m such that

EW1(ξ
[j+1], ξ) ≤ cα(N)

(
D2V 2(∥ζh∥Lip + ∥∇ζh∥Lip) +DV ∥ζh∥Lip

)
EW1(ξ

[j], ξ)

+ cα(N)
(
(D2V 2 +DV)h+ (D +D2V)

)
where D = diam(P) and V = λm(P).

Before proving Proposition 2, we first establish the following key lemmas. Note that ξ[j+1] =

ΨG(ξ̂
[j+1/2]) and ξ = ΨG(ξ

[j+1/2]), where G = (dξ/dλm)/(dξ[j+1/2]/dλm). In view of this, it is

important to understand how smooth ΨG(ν) is w.r.t. ν in terms ofW1 distance. Lemma 1 provides

a useful bound in this regard, and it turns out that the bound involves quantities ∥dξ/dξ[j+1/2]∥∞
and ∥dξ/dξ[j+1/2]∥Lip. Lemma 2 provides estimates for these quantities.

Lemma 1.

W1(ξ
[j+1], ξ) ≤

(
∥dξ/dξ[j+1/2]∥∞ + 2diam(P) · ∥dξ/dξ[j+1/2]∥Lip

)
W1(ξ

[j+1/2], ξ̂[j+1/2]). (A.1)

Proof. Set ν̂ ≜ ξ̂[j+1/2], ν ≜ ξ[j+1/2], and G ≜ (dξ/dλm)/(dν/dλm). For the notational simplicity,

we slighly abuse the notation and denote the densities of ν and ξ w.r.t. the Lebesque measure with

ν and ξ as well; for example, we will write G(x) = ξ(x)/ν(x). Note that with these notations,

30

ΨG(ν̂) = ξ[j+1], ΨG(ν) = ξ, and ν(G) = 1. Also, for any function f ,

ΨG(ν̂)f −ΨG(ν)f =
ν̂(Gf)

ν̂(G)
− ν(Gf)

ν(G)

=
(ν(G)− ν̂(G))ν̂(Gf) + ν̂(G)(ν̂(Gf)− ν(Gf))

ν̂(G)ν(G)

= (ν − ν̂)(G)ΨG(ν̂)f + (ν̂ − ν)(Gf)

Therefore,

W1(ΨG(ν̂),ΨG(ν)) = sup{ΨG(ν̂)f −ΨG(ν)f : ∥f∥Lip ≤ 1, f(x0) = 0}

= sup{(ν̂ − ν)(Gf) + (ν − ν̂)(G)ΨG(ν̂)f : ∥f∥Lip ≤ 1, f(x0) = 0}

≤ sup{ν̂(Gf)− ν(Gf) : ∥f∥Lip ≤ 1, f(x0) = 0}

+
∣∣ν̂(G)− ν(G)∣∣ sup{ΨG(ν̂)f : ∥f∥Lip ≤ 1, f(x0) = 0}. (A.2)

Obviously, |ΨG(ν̂)f | ≤ ∥f∥∞, and hence,

sup{ΨG(ν̂)f : ∥f∥Lip ≤ 1, f(x0) = 0} ≤ diam(P). (A.3)

Also we have that

sup{ν̂(Gf)− ν(Gf) : ∥f∥Lip ≤ 1, f(x0) = 0}

= sup
f :∥f∥Lip≤1,f(x0)=0

{
∥Gf∥Lip ·

{
ν̂

(
Gf

∥Gf∥Lip

)
− ν

(
Gf

∥Gf∥Lip

)}}

≤ sup
f :∥f∥Lip≤1,f(x0)=0

(
∥G∥∞ · ∥f∥Lip + ∥f∥∞ · ∥G∥Lip

){
ν̂

(
Gf

∥Gf∥Lip

)
− ν

(
Gf

∥Gf∥Lip

)}
≤ sup
f :∥f∥Lip≤1,f(x0)=0

(
∥G∥∞ + diam(P) · ∥G∥Lip

){
ν̂

(
Gf

∥Gf∥Lip

)
− ν

(
Gf

∥Gf∥Lip

)}
≤
(
∥G∥∞ + diam(P) · ∥G∥Lip

)
sup

f :∥f∥Lip≤1,f(x0)=0

{
ν̂(f)− ν(f)

}
=
(
∥G∥∞ + diam(P) · ∥G∥Lip

)
W1(ν̂, ν). (A.4)

From a similar but simpler reasoning,

|ν̂(G)− ν(G)| ≤ ∥G∥Lip · W1(ν̂, ν) (A.5)

31

Now from (A.2), (A.3), (A.4), and (A.5), we arrive at

W1(ΨG(ν̂),ΨG(ν)) ≤
(
∥G∥∞ + 2diam(P) · ∥G∥Lip

)
W1(ν̂, ν),

which is the desired inequality (A.1).

Lemma 2. Let ρ ≜ dξ/dλm denote the density of ξ w.r.t. Lebesgue measure.

(i) For each x ∈ P, ∣∣∣∣∣dξ̃[j+1/2]

dλm
(x)− dξ

dλm
(x)

∣∣∣∣∣ ≤ ∥ζh∥LipW1(ξ̂
[j], ξ) + h ∥ρ∥Lip.

(ii)

∥dξ/dξ[j+1/2]∥∞ ≤
1

(1− q)γ
+

λm(P)
q(1− γ)

(
∥ζh∥LipW1(ξ̂

[j], ξ) + h ∥ρ∥Lip
)

for each γ ∈ (0, 1).

(iii) For each x ∈ P,∣∣∣∣∣∇
(
dξ̃[j+1/2]

dλm

)
(x)−∇

(
dξ

dλm

)
(x)

∣∣∣∣∣ ≤ m∥∇ζh∥LipW1(ξ̂
[j], ξ) +mh ∥∇ρ∥Lip .

(iv)

∥∥dξ/dξ[j+1/2]
∥∥
Lip
≤ (1− q)

(q/λm(P))2
(
∥∇ρ∥∞ ·

{
∥ζh∥LipW1(ξ̂

[j], ξ) + h∥ρ∥Lip
}

+ ∥ρ∥∞ ·
{
∥∇ζh∥LipW1(ξ̂

[j], ξ) + h∥∇ρ∥Lip
})

+
λm(P)
q
∥∇ρ∥∞.

Proof. For (i), due to the construction of ζ̃h, we can use a similar argument as in Proposition 3.1

of Bolley et al. (2007). Note first that the density of ξ̃[j+1/2] can be written as

dξ̃[j+1/2]/dλm(x) =
1

N

N∑
i=1

ζ̃h(x;X
[j]
i) =

∫
P
ζ̃h(x; y)ξ̂

[j](dy),

and hence the difference between dξ̃[j+1/2]/dλm(x) and the density
∫
P ζ̃h(x; y)ξ(dy) obtained by

32

smoothing ξ can be bounded as follows:∣∣∣∣dξ̃[j+1/2]/dλm(x)−
∫
P
ζ̃h(x; y)ξ(dy)

∣∣∣∣ = ∣∣∣∣∫
P
ζ̃h(x; y)(ξ̂

[j](dy)− ξ(dy))
∣∣∣∣

≤ ∥ζ̃h(x; ·)∥LipW1(ξ̂
[j], ξ). (A.6)

On the other hand, due to (3.2), the distance between the smoothed density
∫
P ζ̃h(x; y)ξ(dy) and

the density dξ/dλm of ξ itself can be bounded in terms of the modulus of continuity of dξ/dλm as

follows:∣∣∣∣∫
P
ζ̃h(x; y)ξ(dy)− dξ/dλm(x)

∣∣∣∣ = ∣∣∣∣∫
P
ζ̃h(x; y)dξ/dλ

m(y)dy −
∫
P
ζ̃h(x; y)dξ/dλ

m(x)dy

∣∣∣∣
≤
∫
P
ζ̃h(x; y)

∣∣dξ/dλm(y)− dξ/dλm(x)
∣∣dy

≤ sup
y∈P

|x−y|≤h

|dξ/dλm(x)− dξ/dλm(y)|
∫
P
ζ̃h(x; y)dy

≤ h ∥dξ/dλm∥Lip. (A.7)

Now by triangle inequality and (A.6) and (A.7), we arrive at the conclusion of (i).

Turning to (ii),

∥dξ/dξ[j+1/2]∥∞ =

∥∥∥∥ dξ/dλm

dξ[j+1/2]/dλm

∥∥∥∥
∞

= sup
x∈P

ρ(x)

q/λm(P) + (1− q)dξ̃[j+1/2]

dλm (x)

= sup
x∈P

ρ(x)

q/λm(P) + (1− q)dξ̃[j+1/2]

dλm (x)

[
1{ dξ̃[j+1/2]

dλm (x)>γρ(x)
} + 1{ dξ̃[j+1/2]

dλm (x)≤γρ(x)
}]

≤ sup
x∈P

[
ρ(x)

q/λm(P) + (1− q)γρ(x)
1{ dξ̃[j+1/2]

dλm (x)>γρ(x)
} +

ρ(x)

q/λm(P)
1{ dξ̃[j+1/2]

dλm (x)≤γρ(x)
}]

≤ 1

(1− q)γ
+ sup
x∈P

ρ(x)

q/λm(P)
1{ρ(x)−∥ζh∥LipW1(ξ̂[j],ξ)−h ∥ρ∥Lip≤γρ(x)}

=
1

(1− q)γ
+ sup
x∈P

ρ(x)

q/λm(P)
1
{ρ(x)≤

∥ζh∥LipW1(ξ̂[j],ξ)+h ∥ρ∥Lip
1−γ }

≤ 1

(1− q)γ
+
∥ζh∥LipW1(ξ̂

[j], ξ) + h ∥ρ∥Lip
q(1− γ)/λm(P)

.

For (iii), to bound the distance between ∂i(dξ̃
[j+1/2]/dλm)(x) and ∂iρ(x), we will consider inter-

mediate points
∫
P

∂
∂xi

ζ̃h(x; y) ξ(dy) and
∫
P̃ ζh(x− y) ∂iρ̃(y)dy where P̃ and ρ̃ are slight extensions

33

of P̃ and ρ (precise definitions are provided below). Note first that

∂i

(
dξ̃[j+1/2]

dλm

)
(x) =

∂

∂xi

(
1

N

N∑
k=1

ζ̃h(x;X
[j]
k)

)
=

1

N

N∑
k=1

∂

∂xi
ζ̃h(x;X

[j]
k) =

∫
P

∂

∂xi
ζ̃h(x; y) ξ

[j](dy),

and hence, as in (A.6),∣∣∣∣∂i(dξ̃[j+1/2]/dλm)(x)−
∫
P

∂

∂xi
ζ̃h(x; y) ξ(dy)

∣∣∣∣ = ∣∣∣∣∫
P

∂

∂xi
ζ̃h(x; y) ξ̂

[j](dy)−
∫
P

∂

∂xi
ζ̃h(x; y) ξ(dy)

∣∣∣∣
≤
∥∥∥∥ ∂

∂xi
ζ̃h(x; ·)

∥∥∥∥
Lip

W1(ξ̂
[j], ξ)

≤ ∥∂iζh∥Lip W1(ξ̂
[j], ξ). (A.8)

Let P̃ ≜
∏m
i=1

[
ximin − h, ximax + h

]
be the subset of Rm obtained by fattening P by h along each

coordinate and ρ̃ : P̃ → R+ be the extension of ρ from P to P̃ by reflection; more specifically,

ρ̃(x) ≜ ρ(x̃) = ρ(x̃1, . . . , x̃m) where x̃j =

2xjmin − xj if xj < xjmin;

xj if xjmin ≤ xj < xjmax;

2xjmax − xj if xjmax ≤ xj .

It follows from this construction that if we denote ∂
∂xi

(
ζh(x)

)
with ∂iζh(x),∫

P

∂

∂xi
ζ̃h(x; y) ξ(dy) =

∫
P̃
∂iζh(x− y) ρ̃(y)dy.

Note also that (obviously) ∂iζh(x− y) = − ∂
∂yi

(
ζh(x− y)

)
, and

∫ xi
max+h

xi
min−h

(
∂

∂yi

(
ζh(x− y)

)
ρ̃(y) + ζh(x− y)

∂

∂yi

(
ρ̃(y)

))
dyi =

[
ζh(x− y)ρ̃(y)

]yi=xi
max+h

yi=xi
min−h

= 0

because ζh(x− y) = 0 for any x ∈ P and y ∈ ∂P̃ from (3.1). From these we get,∣∣∣∣∫
P

∂

∂xi
ζ̃h(x; y) ξ(dy)−

∫
P̃
ζh(x− y) ∂iρ̃(y)dy

∣∣∣∣
=

∣∣∣∣∫
P̃
∂iζh(x− y) ρ̃(y)dy −

∫
P̃
ζh(x− y) ∂iρ̃(y)dy

∣∣∣∣
=

∣∣∣∣∫
P̃

∂

∂yi

(
ζh(x− y)

)
ρ̃(y)dy +

∫
P̃
ζh(x− y)

∂

∂yi

(
ρ̃(y)

)
dy

∣∣∣∣
= 0. (A.9)

34

Finally, ∣∣∣∣∫
P̃
ζh(x− y) ∂iρ̃(y)dy − ∂iρ̃(x)

∣∣∣∣ = ∣∣∣∣∫
P̃
ζh(x− y) ∂iρ̃(y)dy −

∫
P̃
ζh(x− y) ∂iρ̃(x)dy

∣∣∣∣
≤ h∥∂iρ̃∥Lip = h∥∂iρ∥Lip. (A.10)

Combining (A.8), (A.9), and (A.10), we arrive at (iii).

Turning to (iv), note that in general for any smooth f, g and positive constants q, v,

∥∥∥ f

(1− q)g + q/v

∥∥∥
Lip

=
∥∥∥∇(f

(1− q)g + q/v

)∥∥∥
∞

=
∥∥∥ (∇f)((1− q)g + q/v)− (1− q)f(∇g)

((1− q)g + q/v)2

∥∥∥
∞

≤
∥∥∥(1− q) (∇f)g − f(∇g)

(q/v)2
+

(∇f)(q/v)
((1− q)g + q/v)2

∥∥∥
∞

≤
∥∥∥(1− q) (∇f)(g − f) + f(∇f −∇g)

(q/v)2

∥∥∥
∞

+
∥∥∥(v/q)∇f∥∥∥

∞
.

Substituting f , g, v with dξ/dλm, dξ[j+1/2]/dλm, λm(P),

∥∥dξ/dξ[j+1/2]
∥∥
Lip

≤ (1− q)
(q/λm(P))2

(
∥ρ∥Lip ·

∥∥∥ dξ

dλm
− dξ[j+1/2]

dλm

∥∥∥
∞

+ ∥ρ∥∞ ·
∥∥∥∇(dξ

dλm

)
−∇

(dξ[j+1/2]

dλm

)∥∥∥
∞

)
+ (λm(P)/q)

∥∥∥∇(dξ

dλm

)∥∥∥
∞

≤ (1− q)
(q/λm(P))2

(
∥ρ∥Lip · {∥ζh∥LipW1(ξ̂

[j], ξ) + h∥ρ∥Lip}+ ∥ρ∥∞ · {∥∇ζh∥LipW1(ξ̂
[j], ξ) + h∥∇ρ∥Lip}

)
+ (λm(P)/q)∥∇ρ∥∞.

This concludes the proof.

With Lemma 1 and Lemma 2 in hand, the proof of the Proposition 2 becomes straightforward.

Proof of Proposition 2. Note that (ii) and (iv) of Lemma 2 imply that there exists a constant c1

not depending on λm(P) and h such that

∥dξ/dξ[j+1/2]∥∞ ≤ c1λm(P) · ∥ζh∥Lip · W1(ξ̂
[j], ξ) + c1(λ

m(P))2 + c1hλ
m(P) + c1

and

∥dξ/dξ[j+1/2]∥Lip ≤ c1(λm(P))2(∥ζh∥Lip + ∥∇ζh∥Lip)W1(ξ̂
[j], ξ) + c1(λ

m(P))2 + c1λ
m(P).

35

Therefore, Lemma 1 implies that

W1(ξ
[j+1], ξ) ≤ c1

(
DV 2(∥ζh∥Lip + ∥∇ζh∥Lip) + V ∥ζh∥Lip

)
W1(ξ

[j], ξ)W1(ξ
[j+1/2], ξ̂[j+1/2])

+ c1
(
(DV 2 + V)h+ (1 +DV)

)
W1(ξ

[j+1/2], ξ̂[j+1/2])

where c1 is a constant that depends only on q and ξ, D denotes diam(P), and V denotes λm(P).
From Theorem 1 of Fournier and Guillin (2015), we see that E

[
W1(ξ

[j+1/2], ξ̂[j+1/2])
∣∣∣ξ[j]] can be

bounded by c2 diam(P)α(N) where c2 is a constant depending only on m. Therefore,

EW1(ξ
[j+1], ξ) ≤ E

[
E
[
c1
(
DV 2(∥ζh∥Lip + ∥∇ζh∥Lip) + V ∥ζh∥Lip

)
W1(ξ̂

[j], ξ)W1(ξ
[j+1/2], ξ̂[j+1/2])

∣∣∣ξ[j]]]
+E

[
E
[
c1
(
(DV 2 + V)h+ (1 +DV)

)
W1(ξ

[j+1/2], ξ̂[j+1/2])
∣∣∣ξ[j]]]

≤ c1E
[
E
[
W1(ξ

[j+1/2], ξ̂[j+1/2])
∣∣∣ξ[j]](DV 2(∥ζh∥Lip + ∥∇ζh∥Lip) + V ∥ζh∥Lip

)
W1(ξ̂

[j], ξ)
]

+ c1E
[
E
[
W1(ξ

[j+1/2], ξ̂[j+1/2])
∣∣∣ξ[j]]((DV 2 + V)h+ (1 +DV)

)]
≤ c1c2α(N)

(
D2V 2(∥ζh∥Lip + ∥∇ζh∥Lip) +DV ∥ζh∥Lip

)
EW1(ξ̂

[j], ξ)

+ c1c2α(N)
(
(D2V 2 +DV)h+ (D +D2V)

)
Therefore, the conclusion of the proposition follows.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Again, from Proposition 2 and Theorem 1 of Fournier and Guillin (2015),

EW1(ξ̂
[j+1], ξ[j+1]) ≤ cDα(N), and hence,

EW1(ξ̂
[j+1], ξ) ≤ E

[
W1(ξ̂

[j+1], ξ[j+1]) +W1(ξ
[j+1], ξ)

]
≤ cα(N)

(
(D2V 2 +DV)h+ (2D +D2V)

)
+ cα(N)

(
D2V 2(∥ζh∥Lip + ∥∇ζh∥Lip) +DV ∥ζh∥Lip

)
EW1(ξ̂

[j], ξ)

for some c. Therefore, wj ≜ EW1(ξ̂
[j], ξ) satisfies the following recursive inequality:

wj+1 ≤ a+ bwj

where a = cα(N)
(
(D2V 2 + DV)h + (2D + D2V)

)
and b = cα(N)

(
D2V 2(∥ζh∥Lip + ∥∇ζh∥Lip) +

36

DV ∥ζh∥Lip
)
. Solving this recursion, we get wj ≤ a

1−b + bjw0. That is,

EW1(ξ̂
[j], ξ) ≤

cα(N)
(
(D2V 2 +DV)h+ (2D +D2V)

)
1− cα(N)

(
D2V 2(∥ζh∥Lip + ∥∇ζh∥Lip) +DV ∥ζh∥Lip

)
+
(
cα(N)

(
D2V 2(∥ζh∥Lip + ∥∇ζh∥Lip) +DV ∥ζh∥Lip

))j
EW1(ξ̂

[0], ξ).

B Appendix: Consistency of Algorithm 1

In this section we provide a justification for the consistency of Algorithm 1. More specifically, let

ξ̌[j+1] ≜
N∑
i=1

(µ ◦ f · r̂m ◦ f)(X [j+1/2]
i)∑N

l=1(µ ◦ f · r̂m ◦ f)(X
[j+1/2]
l)

δ
X

[j+1/2]
i

.

and consider a procedure that follows the same steps 1)-4) in Section A except that

• In step 1), set, instead of (3.3),

ξ[j+1/2] ≜
min

{
b, q/λm(A) + (1− q) 1

N

∑N
i=1 ζh(x− x′i)

}
∫
A
min

{
b, q/λm(A) + (1− q) 1

N

∑N
i=1 ζh(s− x′i)

}
ds

• In step 4), generate samples from ξ̌[j+1] instead of ξ[j+1].

Then, ξ̂[j+1] describes the samples after resampling step (in j + 1th iteration) produced by Algo-

rithm 1. If we set H = (µ ◦ f) ·
(

Γmr̂
m◦f

k/N

)
, G = dξ/dξ[j+1/2], ν = ξ̂[j+1/2], then ΨH(ν) = ξ̌[j+1],

ΨG(ν) = ξ[j+1], and hence,

W1(ξ̂
[j+1], ξ) ≤ W1(ξ̂

[j+1], ξ̌[j+1]) +W1(ξ̌
[j+1], ξ[j+1]) +W1(ξ

[j+1], ξ)

=W1(ξ̂
[j+1], ξ̌[j+1]) +W1(ΨH(ν),ΨG(ν)) +W1(ξ

[j+1], ξ).

Note that W1(ξ̂
[j+1], ξ̌[j+1]) ≤ cDα(N) from Fournier and Guillin (2015), and one can show that

EW1(ξ
[j+1], ξ) can be bounded by cα(N)EW1(ξ

[j], ξ)+dα(N) for some c and d following a similar

argument as in Proposition 2. Since H can be viewed as an approximation of G, for Algorithm 1’s

consistency, what is left is to show thatW1(ξ̌
[j+1], ξ[j+1]) =W1(ΨH(ν),ΨG(ν)) can also be bounded

in a similar form by establishing some sort of modulus of continuity of Ψ·(ν) in terms ofW1 distance

37

w.r.t. the potential. Note first that from a straightforward algebra,

(
ΨG(ν)−ΨH(ν)

)
f =

1

ν(G)

{
ν
(
(G−H)f

)
+ ν(H −G)ΨH(ν)f

}
and hence,

W1(ΨG(ν),ΨH(ν)) = sup
f :Kf≤1,f(x0)=0

{(
ΨG(ν)−ΨH(ν)

)
f
}

=
1

ν(G)
sup

f :Kf≤1,,f(x0)=0

{
ν
(
(G−H)f

)
+ ν(H −G)ΨH(ν)f

}
(B.1)

≤ 1

ν(G)
sup

f :Kf≤1,f(x0)=0

{
ν
(
|H −G| ∥f∥∞

)
+ |ν(H −G)| ∥f∥∞

}
≤ 1

ν(G)

{
ν
(
|H −G|

)
diam(P) + |ν(H −G)|diam(P)

}
≤ 2 diam(P)

ν(G)
ν(|H −G|). (B.2)

Therefore,

W1(ξ̌
[j+1], ξ[j+1]) ≤ 2 diam(P)

ξ̂[j+1/2](dξ/dξ[j+1/2])
ξ̂[j+1/2]

(∣∣∣∣µ ◦ f · Γm
k/N

r̂m ◦ f − dξ/dξ[j+1/2]

∣∣∣∣)
≤ 2 bdiam(P) ξ̂[j+1/2]

(∣∣∣∣µ ◦ f · Γm
k/N

r̂m ◦ f − dξ/dξ[j+1/2]

∣∣∣∣) .
where the second inequality is from the construction of ξ[j+1/2]. Lemma 3 provides the desired

bound for the RHS. For Lemma 3, we make a few additional assumptions.

A3. The target density µ is bounded away from above and below;

A4. Spectrum of Df is bounded away from 0 and ±∞;

A5. There exists a constant cm > 0 and δ0 > 0 such that if y0 ∈M∫
B(y0;δ1)\B(y0;δ2)

Hm(dy) ≥ cm (δm1 − δm2) (B.3)

for δ0 ≥ δ1 ≥ δ2 ≥ 0.

Lemma 3. For any given ϵ > 0, one can choose k as a function of N so that there exists c such

that

E ξ̂
[j+1/2]
N

(∣∣∣∣µ ◦ f · Γm
k/N

r̂m ◦ f − dξ/dξ[j+1/2]

∣∣∣∣) ≤ c(1 + ∥∇ζh∥LipW1(ξ
[j], ξ)

)
N− 1−ϵ

2(m+1) . (B.4)

38

Proof. First note that from (2.3),∣∣∣∣µ ◦ f · Γm
k/N

r̂m ◦ f − dξ/dξ[j+1/2]

∣∣∣∣ = |µ ◦ f | · ∣∣∣∣ Γmk/N r̂m ◦ f − Jmf

dξ[j+1/2]/dλm

∣∣∣∣
= |µ ◦ f | ·

∣∣∣∣ Γmk/N r̂m ◦ f − 1

pY ◦ f

∣∣∣∣
where pY is the density of f(X

[j+1/2]
i)’s w.r.t. the Hausdorff measure. Now we consider the following

decomposition:

|µ ◦ f | ·
∣∣∣∣ Γmk/N r̂m ◦ f − 1

pY ◦ f

∣∣∣∣ ≤ |µ ◦ f | · ∣∣∣∣ Γmk/N r̂m ◦ f − Γm
k/N

rmk ◦ f
∣∣∣∣+ |µ ◦ f | · ∣∣∣∣ Γmk/N rmk ◦ f −

1

pY ◦ f

∣∣∣∣
= (I) + (II) (B.5)

where for each y0, rk(y0) is the real number such that∫
B(y0;rk(y0))

pY (y)Hm(dy) = k/N.

For (I),

E
ξ̂
[j+1/2]
N (|µ ◦ f | · |r̂m ◦ f − rmk ◦ f |)

k/N
= E

∣∣∣µ(f(X [j+1/2]
i))

∣∣∣ · ∣∣∣r̂m(f(X
[j+1/2]
1))− rmk (f(X

[j+1/2]
1))

∣∣∣
k/N

= E

E

∣∣∣µ(f(X [j+1/2]

1))
∣∣∣ · ∣∣∣r̂m(f(X

[j+1/2]
1))− rmk (f(X

[j+1/2]
1))

∣∣∣
k/N

∣∣∣∣∣∣ f(X [j+1/2]
1)

 .
We first study the inner conditional expectation given f(X

[j+1/2]
1) = y0, which will be denoted by

E y0 from now on, i.e.,

E y0

|µ(y0)| · |r̂m(y0)− rmk (y0)|
k/N

≜ E

∣∣∣µ(f(X [j+1/2]

1))
∣∣∣ · ∣∣∣r̂m(f(X

[j+1/2]
1))− rmk (f(X

[j+1/2]
1))

∣∣∣
k/N

∣∣∣∣∣∣ f(X [j+1/2]
1) = y0

 .

39

With this notation,

E y0

|µ(y0)| · |r̂m(y0)− rmk (y0)|
k/N

=

∫ ∞

0

Py0

(
|µ(y0)| · |r̂m(y0)− rmk (y0)|

k/N
≥ s
)
ds

≤ γ +

∫ ∞

γ

Py0

(
|µ(y0)| · |r̂m(y0)− rmk (y0)|

k/N
≥ s
)
ds

≤ γ +

∫ ∞

γ

Py0

(
r̂m(y0)− rmk (y0) ≥

ks

Nµ(y0)

)
ds+

∫ ∞

γ

Py0

(
rmk (y0)− r̂m(y0) ≥

ks

Nµ(y0)

)
ds

(B.6)

where Py0 is the corresponding conditional probability given f(X
[j+1/2]
1) = y0. Note that sinceM

is bounded, the upper limit of the first integral is in fact finite:∫ ∞

γ

Py0

(
r̂m(y0)− rmk (y0) ≥

ks

Nµ(y0)

)
ds =

∫ (N/k)diam(M)

γ

Py0

(
r̂m(y0)− rmk (y0) ≥

ks

Nµ(y0)

)
ds.

Also,

Py0

(
r̂m(y0)− rmk (y0) ≥

ks

Nµ(y0)

)
= Py0

(
less than k points fall inside B

(
y0; (r

m
k (y0) + µ(y0)

−1ks/N)1/m
))

= P(Bin(N, q) ≤ k) (B.7)

where q = q(s, y0) ≜
∫
B(y0;(rmk (y0)+µ(y0)−1ks/N)1/m)

dξ
[j+1/2]
N
dλm ◦f−1(y)

Jmf◦f−1(y) H
m(dy). Note that

q − k/N =

∫
B(y0;(rmk (y0)+µ(y0)−1kx/N)1/m)

dξ
[j+1/2]
N

dλm ◦ f−1(y)

Jmf ◦ f−1(y)
Hm(dy)− k/N

=

∫
B(y0;(rmk (y0)+µ(y0)−1ks/N)1/m)

pY (y)Hm(dy)−
∫
B(y0;rk(y0))

pY (y)Hm(dy)

=

∫
B(y0;(rmk (y0)+µ(y0)−1ks/N)1/m)\B(y0;rk(y0))

pY (y)Hm(dy)

≥ csk

N
· pY (y0 + h′)

µ(y0)

where y0 + h′ ∈ B(y0; (r
m
k (y0) + µ(y0)

−1ks/N)1/m) by (B.3) and the mean-value theorem as far as

40

(ks
Nµ(y0)

+ rmk)1/m ≤ δ0. Therefore, from Hoeffding’s inequality and (B.7),

Py0

(
r̂m(y0)− rmk (y0) ≥

ks

Nµ(y0)

)
≤ exp

(
−2N

(
cks pY (y0 + h′)

Nµ(y0)

)2
)

for s ≤ (N/k)µ(y0)(δ
m
0 − rmk (y0)). In view of this,

∫ (N/k)µ(y0)diam(M)m

γ

Py0

(
r̂m(y0)− rmk (y0) ≥

ks

Nµ(y0)

)
ds

≤
∫ (N/k)µ(y0)diam(M)m

γ

Py0

(
r̂m(y0)− rmk (y0) ≥

kγ

Nµ(y0)

)
ds

≤ (N/k)µ(y0)diam(M)m exp

(
−2c2k2γ2 pY (y0 + h′)2

Nµ(y0)2

)
if γ ≤ (N/k)(δm0 − rmk (y0)). Similarly, the second integral in (B.6) can be bounded by first noting

that r̂ is non-negative (and hence the upper limit of the integral is finite), and then applying

Hoeffding’s inequality:∫ ∞

γ

Py0

(
rmk (y0)− r̂m(y0) ≥

ks

Nµ(y0)

)
ds ≤

∫ (N/k)µ(y0)rk(y0)
m

γ

Py0

(
rmk (y0)− r̂m(y0) ≥

kγ

Nµ(y0)

)
ds

≤ (N/k)µ(y0)rk
m(y0) exp

(
−2c2k2γ2 pY (y0 + h′)2

Nµ(y0)2

)
for γ ≤ (N/k)(δm0 − rkm(y0)). From these along with (B.6), we conclude that

E y0

|µ(y0)| · |r̂m(y0)− rmk (y0)|
k/N

≤ γ + (N/k)µ(y0)
(
diam(M)m + rmk (y0)

)
exp

(
−2c2k2γ2 pY (y0 + h′)2

Nµ(y0)2

)
≤ γ + 2(N/k)µ(y0)diam(M)m exp

(
−2c2k2γ2 pY (y0 + h′)2

Nµ(y0)2

)
.

for γ ≤ (N/k)(δm0 − rk
m(y0)). Choosing γ = N1/2+β

k
µ(y0)
pY (y0)

and k = Nα for α ∈ (1/2, 1) and

β ∈ (0, 1/2), we get

|h′| ≤
(
rmk (y0) +

kγ/N

µ(y0)

)1/m

=

(
rmk (y0) +

Nβ−1/2

pY (y0)

)1/m

41

and

E y0

|µ(y0)| · |r̂m(y0)− rmk (y0)|
k/N

≤ N1/2+β−α µ(y0)

pY (y0)
+ 2N1−αµ(y0)diam(M)m exp

(
−2c2N2β

(
pY (y0 + h′)

pY (y0)

)2
)

≤ N1/2+β−α µ(y0)

pY (y0)
+ 2N1−αµ(y0)diam(M)m exp

(
−2c2N2β

(
pY /pY

)2)
. (B.8)

Therefore,

E
ξ̂
[j+1/2]
N (|µ ◦ f | · |Γmr̂m ◦ f − Γmr

m
k ◦ f |)

k/N
≤ c{pY −1N1/2+β−α +N1−α exp(−cN2β(pY /pY)

2}

(B.9)

for some c > 0 that depends only on f , µ, and diam(M).

Now, turning to (II) of (B.5), we first prove that for y0 and δ such that f̄−1(B(y0; δ)) ⊆ A

(where f̄ is defined in (B.11)), ∣∣∣∣∣ 1

Γmδm

∫
B(y0;δ)

Hm(dy)− 1

∣∣∣∣∣ ≤ c′fδ (B.10)

for c′f that depends only on f . Let f̄ be the linear approximation of f at x0 = f−1(y0), i.e.,

f̄(x0 + h) = f(x0) +Df(x0)h, (B.11)

and H̄m be the Hausdorff measure on f̄(P). Then,∫
B(y0;δ)

Hm(dy)− Γmδ
m =

∫
B(y0;δ)

Hm(dy)−
∫
B(y0;δ)

H̄m(dy)

=

∫
f−1(B(y0;δ))

Jmf(x)λ
m(dx)−

∫
f̄−1(B(y0;δ))

Jmf̄(x)λ
m(dx)

=

∫
f−1(B(y0;δ))∩f̄−1(B(y0;δ))

(
Jmf(x)− Jmf̄(x)

)
λm(dx)

+

∫
f−1(B(y0;δ))\f̄−1(B(y0;δ))

Jmf(x)λ
m(dx)

−
∫
f̄−1(B(y0;δ))\f−1(B(y0;δ))

Jmf̄(x)λ
m(dx)

= (I)
′
+ (II)

′ − (III)
′

42

Since Jmf̄(x) = Jmf(x0), the first term (I)′ in the previous display can be bounded as follows:

|(I)′| =
∫
f−1(B(y0;δ))∩f̄−1(B(y0;δ))

∣∣Jmf(x)− Jmf(x0)∣∣λm(dx)

≤
∫
f̄−1(B(y0;δ))

Jmf̄(x)λ
m(dx) sup

x∈f̄−1(B(y0;δ))

∣∣∣∣1− Jmf(x)

Jmf(x0)

∣∣∣∣
≤ Γmδ

m · sup
x∈f̄−1(B(y0;δ))

∣∣∣∣1− Jmf(x)

Jmf(x0)

∣∣∣∣
To get a bound for (II)′, note that

|(II)′| ≤
∫
f−1(B(y0;δ))\f̄−1(B(y0;δ))

Jmf(x0)λ
m(dx) · sup

x∈f̄−1(B(y0;δ))

∣∣∣∣ Jmf(x)Jmf(x0)

∣∣∣∣
=

∫
f
(
f−1(B(y0;δ))\f̄−1(B(y0;δ))

) H̄m(dy) · sup
x∈f̄−1(B(y0;δ))

∣∣∣∣ Jmf(x)Jmf(x0)

∣∣∣∣
To bound the integral, we prove that f

(
f−1(B(y0; δ))\f̄−1(B(y0; δ))

)
is close to the boundary

of B(y0; δ)—i.e., f
(
f−1(B(y0; δ))\f̄−1(B(y0; δ))

)
⊂ B(y0; δ)\B(y0; δ − ϵ(δ)) where ϵ(δ) = o(δ) as

δ → 0. Suppose that y ∈ f
(
f−1(B(y0; δ))\f̄−1(B(y0; δ))

)
. Then, there exists an h ∈ Rm such that

x0 + h = f−1(y), f(x0 + h) ∈ B(y0; δ), and f̄(x0 + h) /∈ B(y0; δ).

Since f is C2, the kth component of f can be written as

fk(x0 + h) = fk(x0) +Dfk(x0)h+
1

2
hTRk(x0 + h)h

where Rk(x0+h) =
∫ 1

0
(1−t)D2fk(x0+th)dt. Therefore, ∥Rk(x0+h)∥ ≤ supt∈[0,1] ∥D2fk(x0+th)∥,

∥f(x0 + h)− f̄(x0 + h)∥2 ≤
1

2

n∑
k=1

|hTRk(x0 + h)h| ≤ 1

2
sup
x∈P
∥D2fk(x)∥∥h∥22. (B.12)

Assumption A4 guarantees that ∥f−1∥Lip > 0 and diam(f−1(B(y0; δ)) < 2 ∥f−1∥Lipδ, and since

x0 + h ∈ f−1(B(y0; δ))—i.e., ∥h∥2 ≤ 2 ∥f−1∥Lipδ—(B.12) becomes

∥f(x0 + h)− f̄(x0 + h)∥2 ≤ 2 ∥f−1∥2Lip sup
x∈P
∥D2fk(x)∥δ2 ≜ cf δ

2.

Since f̃(x0 + h) /∈ B(y0, δ), the above inequality implies that f(x0 + h) ∈ B(y0; δ)\B(y0; δ − cfδ2),
and hence, f

(
f−1(B(y0; δ))\f̄−1(B(y0; δ))

)
is a subset of B(y0; δ)\B(y0; δ − cfδ2). Now, we can

43

bound the integral in (II)′∫
f
(
f−1(B(y0;δ))\f̄−1(B(y0;δ))

) H̄m(dy) ≤ Γm(δm − (δ − cfδ2)m) ≤ mΓmcfδ
m+1,

which in turn implies

(II)
′
< mΓmcfδ

m+1 · sup
x∈f̄−1(B(y0;δ))

∣∣∣∣ Jmf(x)Jmf(x0)

∣∣∣∣ .
The following bound for (III)′ can be obtained by an essentially identical (but only simpler) argu-

ment:

(III)
′
=

∫
f̄−1(B(y0;δ))\f−1(B(y0;δ))

Jmf̄(x)λ
m(dx) ≤ mΓmcfδ

m+1

Now, combining the bounds for (I)′, (II)′, and (III)′, we arrive at∣∣∣∣∣ 1

Γmδm

∫
B(y0;δ)

Hm(dy)− 1

∣∣∣∣∣ ≤ sup
x∈f̄−1(B(y0;δ))

∣∣∣∣1− Jmf(x)

Jmf(x0)

∣∣∣∣+mcfδ
(

sup
x∈f̄−1(B(y0;δ))

∣∣∣∣ Jmf(x)Jmf(x0)

∣∣∣∣+ 1

)
(B.13)

and

sup
x∈f̄−1(B(y0;δ))

∣∣∣∣1− Jmf(x)

Jmf(x0)

∣∣∣∣ ≤ δ∥Jmf∥Lip ∥f−1∥Lip/Jmf

where Jmf = infx∈P Jmf(x). Letting c
′
f = ∥Jmf∥Lip∥f−1∥Lip/Jmf+mcf

(
supx∈f̄−1(B(y0;δ))

∣∣∣ Jmf(x)Jmf(x0)

∣∣∣+ 1
)
,

we arrive at (B.10). Note that from the mean value theorem,∫
B(y0;δ)

pY (y)Hm(dy) =

∫
f−1(B(y0;δ))

Jmf(x)pY (f(x))λ
m(dx)

=

∫
f−1(B(f(x0);δ))

Jmf(x)λ
m(dx) pY ◦ f(x0 + h∗)

=

∫
B(y0;δ)

Hm(dy) pY ◦ f(x0 + h∗) (B.14)

for some h∗ such that f(x0 + h∗) ∈ B(y0; δ) where x0 = f−1(y0). Substituting rk for δ in (B.14)

and using the definition of rk(y0), we get

Γmr
m
k ◦ f(x0)
k/N

=
Γmr

m
k ◦ f(x0)∫

B(f(x0);rk◦f(x0))
Hm(dy)

pY ◦ f(x0)
pY ◦ f(x0 + h∗)

1

pY ◦ f(x0)
. (B.15)

44

We therefore arrive at the bound∣∣∣∣ 1

pY ◦ f(x0)
− Γmr

m
k ◦ f(x0)
k/N

∣∣∣∣ (B.16)

=
1

pY (y0)

(
pY ◦ f(x0 + h∗)− pY ◦ f(x0)

pY ◦ f(x0 + h∗)
+

pY ◦ f(x0)
pY ◦ f(x0 + h∗)

Γmr
m
k (y0)∫

B(y0;rk(y0))
Hm(dy)

(∫
B(y0;rk(y0))

Hm(dy)

Γmrmk (y0)
− 1

))
(B.17)

for y0 s.t. f̄−1(B(y0; δ)) ⊆ P and h∗ such that f(x0 + h∗) ∈ B(y0; δ). Note that if x0 ∈
P−rk◦f(x0)∥f−1∥Lip , then f̄−1(B(f(x0); rk ◦ f(x0)) ⊆ P. If, in addition, x0 ∈ P−2rk◦f(x0)∥f−1∥Lip ,

then x0 + h∗ ∈ f−1(B(f(x0); rk ◦ f(x0)) implies |h∗| ≤ rk ◦ f(x0)∥f−1∥Lip, and hence, x0 + h∗ ∈
P−rk◦f(x0)∥f−1∥Lip . For notational simplicity, let r̄k ≜ ∥rk∥∞, pY ≜ ∥1/pY ∥∞, and pY ≜ ∥pY ∥∞.

Then, if x0 ∈ P−2r̄k∥f−1∥Lip , then assuming that r̄k is sufficiently small,∣∣∣∣ 1

pY ◦ f(x0)
− Γmr

m
k ◦ f(x0)
k/N

∣∣∣∣ ≤ 1

pY (y0)

(
∥pY ◦ f∥Liph∗

pY ◦ f(x0 + h∗)
+

pY (y0)

pY (y0 + h∗)

c′frk(y0)

1− c′frk(y0)

)

≤ rk(y0)

pY (y0)

(
∥f−1∥Lip ∥pY ◦ f∥Lip

pY
+
pY
pY

c′f
1− c′frk(y0)

)

≤ cr̄k
pY (y0)

(
∥pY ◦ f∥Lip + 1

)
.

for some c > 0 that depends only on f , b, and q. From Lemma 2 and the construction of dξ[j+1/2],

∥pY ◦ f∥Lip ≤ ∥dξ[j+1/2]/dλm∥Lip · ∥1/Jmf∥∞ + ∥1/Jmf∥Lip ∥dξ[j+1/2]/dλm∥∞
≤ c
(
1 + h+ ∥∇ζh∥LipW1(ξ

[j], ξ)
)
.

45

Therefore,

E ξ̂[j+1/2]

(
|µ ◦ f | ·

∣∣∣∣Γmrmk ◦ fk/N
− 1

pY ◦ f

∣∣∣∣)
= Eµ(f(X

[j+1/2]
1))

∣∣∣∣∣ 1

pY (f(X
[j+1/2]
1))

− Γmr
m
k (f(X

[j+1/2]
1))

k/N

∣∣∣∣∣
·
(
1{X[j+1/2]

1 ∈P\P−2r̄k∥f−1∥Lip} + 1{X[j+1/2]
1 ∈P−2r̄k∥f−1∥Lip}

)
≤ ∥µ∥∞

(Γmr̄mk
k/N

+ pY
−1
)
P
(
X

[i]
N ∈ P \ P

−2r̄k∥f−1∥Lip
)

+Eµ(f(X
[j+1/2]
1))

∣∣∣∣∣ 1

pY (f(X
[j+1/2]
1))

− Γmr
m
k (f(X

[j+1/2]
1))

k/N

∣∣∣∣∣1{X[j+1/2]
1 ∈P−2r̄k∥f−1∥Lip}

≤ ∥µ∥∞
(Γmr̄mk
k/N

+ pY
−1
)
P(X

[i]
N ∈ P \ P

−2r̄k∥f−1∥Lip) + cE
r̄k

pY (f(X
[j+1/2]
1))

(
∥pY ◦ f∥Lip + 1

)
≤ c
(
1 + h+ ∥∇ζh∥LipW1(ξ

[j], ξ)
)
r̄k.

for some (new) constant c > 0. Therefore, together with (B.9) and noting that r̄mk = O((k/N)) =

O(Nα−1) (since pY is bounded from below by construction),

E ξ̂[j+1/2]

(∣∣∣∣µ ◦ f · Γm
k/N

r̂m ◦ f − dξ/dξ[j+1/2]

∣∣∣∣)
≤ c
{(

1 + ∥∇ζh∥LipW1(ξ
[j], ξ)

)
N

α−1
m +N1/2+β−α +N1−α exp(−cN2β(pY /pY)

2
}

Noting that pY /pY is bounded from below by construction, we see that for any ϵ > 0, by considering

β small enough and α ≈ m+2
2(m+1) , one can always find a (new) constant c > 0 such that

E ξ̂
[j+1/2]
N

(∣∣∣∣µ ◦ f · Γm
k/N

r̂m ◦ f − dξ/dξ[j+1/2]
N

∣∣∣∣) ≤ c(1 + ∥∇ζh∥LipW1(ξ
[j], ξ)

)
N− 1−ϵ

2(m+1) .

C Appendix: Details of the MH Algorithm in Figure 2

To produce Figure 2, we ran random walk MH algorithm in P = [0, 100]× [0, 100] with the standard

normal increments and starting point (θ1, θ2) = (50, 50) at the center of P. For a proposal (θ∗1 , θ
∗
2)

from the current state (θ1, θ2), the acceptance probability was J2f(θ
∗
1 , θ

∗
2)/J2f(θ1, θ2), where J2f is

as defined in (4.2). To mitigate the irregularity along the boundaries of P, if the proposal (θ∗1 , θ
∗
2)

falls outside of P, we reflected the proposal along the boundaries.

46

References

Asmussen, S. and Glynn, P. W. (2007). Stochastic simulation: algorithms and analysis, volume 57.

Springer Science & Business Media.

Boender, C., Caron, R. J., McDonald, J., Kan, A. R., Romeijn, H. E., Smith, R. L., Telgen, J., and

Vorst, A. (1991). Shake-and-bake algorithms for generating uniform points on the boundary of

bounded polyhedra. Operations research, 39(6):945–954.

Bolley, F., Guillin, A., and Villani, C. (2007). Quantitative concentration inequalities for empirical

measures on non-compact spaces. Probability Theory and Related Fields, 137(3-4):541–593.

Boneh, A. and Golan, A. (1979). Constraints’ redundancy and feasible region boundedness by

random feasible point generator (rfpg). In Third European congress on operations research (EURO

III), Amsterdam.

Bouchard-Côté, A., Vollmer, S. J., and Doucet, A. (2018). The bouncy particle sampler: A non-

reversible rejection-free markov chain monte carlo method. Journal of the American Statistical

Association, 113(522):855–867.

Diaconis, P., Holmes, S., and Shahshahani, M. (2013). Sampling from a manifold. In Jones, G.

and Shen, X., editors, Advances in Modern Statistical Theory and Applications: A Festschrift in

Honor of Morris L. Eaton, pages 102–125. Institute of Mathematical Statistics.

Dieker, A. and Vempala, S. S. (2015). Stochastic billiards for sampling from the boundary of a

convex set. Mathematics of Operations Research, 40(4):888–901.

Federer, H. (1996). Geometric Measure Theory. Springer, Berlin.

Fournier, N. and Guillin, A. (2015). On the rate of convergence in wasserstein distance of the

empirical measure. Probability Theory and Related Fields, 162(3-4):707–738.

Gilks, W. R. and Berzuini, C. (2001). Following a moving target—monte carlo inference for dynamic

bayesian models. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

63(1):127–146.

Givens, G. H. and Raftery, A. E. (1996). Local adaptive importance sampling for multivariate

densities with strong nonlinear relationships. Journal of the American Statistical Association,

91(433):132–141.

Kim, Y., Roh, D., and Lee, M. (2000). Nonparametric adaptive importance samplign for rare event

simulation. In Proceedings of the 2000 Winter Simulation Conference, pages 767–772.

47

Lee, Y. T. and Vempala, S. S. (2016). Geodesic walks in polytopes. arXiv preprint arXiv:1606.04696.

Liu, J. S. (2008). Monte Carlo strategies in scientific computing. Springer Science & Business

Media.

Ma, W., Trusina, A., El-Samad, H., Lim, W. A., and Tang, C. (2009). Defining network topologies

that can achieve biochemical adaptation. Cell, 138(4):760–773.

Michaelis, L., Menten, M., Johnson, K., and Goody, R. (2011). The original michaelis constant:

translation of the 1913 michaelis-menten paper. Biochemistry, 50(39):8264–8269.

Rhee, C.-H., Zhou, E., and Qiu, P. (2014). An iterative algorithm for sampling from manifolds. In

Proceedings of the 2014 Winter Simulation Conference, pages 574–585. IEEE Press.

Robert, C. P. (2004). Monte carlo methods. Wiley Online Library.

Rosenthal, J. S., Dote, A., Dabiri, K., Tamura, H., and Sheikholeslami, A. (2019). Jump markov

chains and rejection-free metropolis algorithms. arXiv preprint arXiv:1910.13316.

Santner, T. J., Williams, B. J., and Notz, W. I. (2013). The design and analysis of computer

experiments. Springer Science & Business Media.

Smith, R. L. (1984). Efficient monte carlo procedures for generating points uniformly distributed

over bounded regions. Operations Research, 32(6):1296–1308.

Villani, C. (2008). Optimal transport: old and new, volume 338. Springer Science & Business Media.

Zhang, P. (1996). Nonparametric importance sampling. Journal of the American Statistical Asso-

ciation, 91(435):1245–1253.

Zlochin, M. and Baram, Y. (2002). Efficient nonparametric importance sampling for bayesian

learning. In Neural Networks, 2002. IJCNN’02. Proceedings of the 2002 International Joint

Conference on, volume 3, pages 2498–2502. IEEE.

48

	Introduction
	Problem Formulation and Algorithm Description
	Problem Formulation
	Algorithm Description

	Consistency and Convergence
	Examples
	Appendix: Proof of Theorem 1
	Appendix: Consistency of Algorithm 1
	Appendix: Details of the MH Algorithm in Figure 2

