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Abstract
We consider a stochastic fluid network where the external input processes are com-
pound Poisson with heavy-tailed Weibullian jumps. Our results comprise of large
deviations estimates for the buffer content process in the vector-valued Skorokhod
space which is endowed with the product J1 topology. To illustrate our framework,
we provide explicit results for a tandem queue. At the heart of our proof is a recent
sample-path large deviations result, and a novel continuity result for the Skorokhod
reflection map in the product J1 topology.
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1 Introduction

The past 25 years have witnessed a significant research activity on queueing systems
with heavy tails, but the important case of queueing networks has received less atten-
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tion. Early papers focused on generalized Jackson networks [2], monotone separable
networks [1], and max-plus networks [3]. Recent work on tail asymptotics of transient
cycle times andwaiting times for closed tandem queueing networks can be seen inKim
andAyhan [16]. In two joint papers with Foss,MasakiyoMiyazawa investigated queue
lengths in a queueing network with feedback in Foss and Miyazawa [12] and tandem
queueing networks in Foss and Miyazawa [13]. Compared to standard queueing net-
works tracking movements of discrete customers, fluid networks are somewhat more
tractable. In an early paper, it was recognized that tail asymptotics for downstream
nodes could be obtained by analyzing the busy period of upstream nodes, under certain
assumptions [7]. The case of a tandem fluid queue where the input to the first node
is a Lévy process with regularly varying jump sizes has been investigated in Lieshout
and Mandjes [17] exploiting a Laplace transform expression which is available in that
case.

More recently, multidimensional asymptotics for the time-dependent buffer content
vector in a fluid queue fed by compound Poisson processes were investigated in Chen
et al. [8]. The framework in Chen et al. [8] allows for the analysis of situations in which
a large buffer content may be caused by multiple big jumps in the input process. Such
results were established before for multiple server queues and fluid queues fed by
on–off sources (see, for example, [10, 11, 21]). The results on fluid networks in Chen
et al. [8] were derived assuming regular variation of the jumps in the arrival processes.
Work on fluid networks with light-tailed input is surveyed inMiyazawa [18]. The goal
of the present paper is to investigate the case where jumps are semi-exponential (e.g.
of Weibull type exp{−xα} with α ∈ (0, 1)). This case is somewhat more difficult to
analyze, especially in the case where rare events of interest are caused by multiple big
jumps in the input process, as exhibited in the case of the multiple server queue [4].

We focus on a stochastic fluid network comprised of d nodes, with external inputs
modeled as compound Poisson processes with semi-exponential increments. We are
interested in the event that an arbitrary linear combination of the buffer contents in
the network exceeds a large value. We write this functional as a mapping of the input
processes using the well-known multidimensional Skorokhod reflection map on the
positive orthant (see, e.g. [20]) and apply a sample-path large deviations principle for
the superposition of Poisson processes, which has recently been derived in Bazhba
et al. [5]. This sample-path large deviation principle has been established for Poisson
processes with semi-exponential jumps and holds in the product J1 topology. To apply
the contraction principle (the analogue of the continuous mapping argument in a large
deviations context), we need to show that the Skorokhod map has suitable continuity
properties. The J1 product topology is not as strong as the standard J1 topology on
R
d , and it turns out that continuity can only be established for input processes with

nonnegative jumps. However, this result, presented in Theorem 2.1, is sufficient for
our proof strategy to work.

The contraction principle leads to an expression of the rate function which we
analyze in detail. Under some generality, we show that the upper and lower bound of
the large deviations boundsmatches.We conjecture that each input process contributes
to a large fluid level by a finite number of big jumps, and the computation of the rate
function can be reduced to a concave optimization problem with a finite number of
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decision variables. We illustrate this by reducing the optimization problem to a finite-
dimensional problem and then explicitly solving it for the case d = 2 in Section 5.

The outline of this paper is as follows: Sect. 2 contains a description of our model,
the topological space in which the input processes are defined, and an introduction to
the reflection map. In Sects. 3, 4, and 5, we present our main results: upper and lower
large deviation bounds for the buffer content process, logarithmic asymptotics for
overflow probabilities of the buffer content process over fixed times, and an explicit
analysis of the two-node tandem network. Section 6 contains technical proofs. We
end this paper with an appendix where we develop several auxiliary large deviations
results.

2 Model description and preliminary results

2.1 Themodel

In this section, we describe our model and we present some preliminary results that
are used in our analysis. We consider a single-class open stochastic fluid network
with d nodes. We denote the total amount of external work that arrives at station i
with Ji (t) �

∑Ni (t)
j=1 J ( j)

i which is a compound Poisson process with mean γi where

{J ( j)
i } j=1,2,... is an iid jump size sequence for each i = 1, . . . , d. If no exogenous input

is assigned to node i , then we set Ji (·) ≡ 0, and γi � 0. We define J as the subset
of nodes that have an exogenous input. We assume that {J1(t) : t ≥ 0}, {J2(t) : t ≥
0}, . . . , {Jd(t) : t ≥ 0}’s are independent. For notational convenience, we assume
that the Poisson processes {Ni (t)}t≥0 have unit rate for i ∈ J . The key assumption
on the distribution of the jump sizes J (1)

i for i ∈ J is that they are semi-exponential:

Assumption 1 For each i ∈ J ⊆ {1, . . . , d}, P(
J (1)
i ≥ x

) = e−ci L(x)xα
where

α ∈ (0, 1), ci ∈ (0,∞), and L is a slowly varying function such that L(x)/x1−α is
non-increasing for sufficiently large x .

Recall that L is slowly varying if L(ax)/L(x) → 1 as x → ∞ for each a > 0. At
each node i ∈ {1, . . . , d}, the fluid is processed and released at a deterministic rate
ri . Fractions of the processed fluid from each node are then routed to other nodes
or leave the network. We characterize the stochastic fluid network by a four-tuple
(J, r, Q, X(0)), where J(·) = (

J1(·), . . . , Jd(·)
)
is the vector of the assigned input

processes at each one of the d nodes, respectively. The vector r � (r1, . . . , rd)ᵀ
is the vector of deterministic output rates at the d nodes, Q � [qi j ]i, j∈{1,...,d} is a
d × d substochastic routing matrix, and X(0) � (X1(0), . . . , Xd(0)) is a nonnegative
random vector of initial contents at the d nodes. If the buffer at node i and at time t
is non-empty, then there is fluid output from node i at a constant rate ri . On the other
hand, if the buffer of node i is empty at time t , the output rate equals the minimum of
the combined (i.e., both external and internal) input rates and the output rate ri .

We now provide more details on the stochastic dynamics of our network. A propor-
tion qi j of all output from node i is immediately routed to node j , while the remaining
proportion qi � 1 − ∑k

j=1 qi j leaves the network. We assume that qii � 0, and the
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routing matrix Q is substochastic, so that qi j ≥ 0, and qi ≥ 0 for all i, j . We also
assume that Qn → 0 as n → ∞ which implies that all input eventually leaves the
network. Let Qᵀ be the transpose matrix of Q. Though we focus on time-dependent
behavior, we consider the scenario that the fluid network is stable, ensuring that a high
level of fluid is a rare event. Let Q = (I − Qᵀ). We guarantee the stability of the
network by posing the following assumption, based on Kella [15]:

Assumption 2 Let γ = (γ1, . . . , γd)
ᵀ, and assume that r > Q−1γ .

Due to our model specifics, the buffer content at station i is processed at a constant
rate ri from the i-th server, and a proportion qi j is routed from the i-th station to the
j-th server. To define the buffer content process, we first define the potential content
vector X(t)

X(t) � X(0) + J(t) − Qr · t, t ≥ 0.

Let Zi (t) denote the buffer content of the i-th station at time t . We can define the
buffer content process by the so-called reflection map. We first provide an intuitive
description of this map. It is defined in terms of a pair of processes (Z,Y) that solve
the differential equation

dZ(t) = dX(t) + QdY(t), t ≥ 0. (2.1)

Here, Y(·) is non-decreasing and Y i (t) only increases at times where Zi (t) = 0 for
all i and all t . Consequently, as we assume Z(0) = 0, the buffer content is

Z(t) = X(t) + QY(t), t ≥ 0. (2.2)

We call the map X �→ (Y , Z) the reflection map. We now provide a more rigorous
definition of this map.

2.2 The reflectionmapwith discontinuities

We start with the definition of the reflection map. Fix an arbitrary T > 0. LetD[0, T ]
denote the Skorokhod space: the space of càdlàg paths over the time horizon [0, T ].
Note that for our large deviations analyses, we will consider linearly scaled processes
in D[0, T ], and hence, this translates considering the time horizon [0, nT ] for the
original unscaled processes. Denote with D↑[0, T ] the subspace of the Skorokhod
space consisting of non-decreasing functions that are nonnegative at the origin. Note
that we use the component-wise partial order on D[0, T ] and R

d . That is, we write
x � (x1, . . . , xd) ≤ y � (y1, . . . , yd) in R

d if xi ≤ yi in R for all i ∈ {1, . . . , d},
and we write ξ � (ξ1, . . . , ξd) ≤ ζ � (ζ1, . . . , ζd) in

∏d
i=1D[0, T ] if ξ(t) ≤ ζ (t) in

R
d for all t ∈ [0, T ].

123



Queueing Systems (2022) 102:25–52 29

Definition 2.1 (Definition 14.2.1 of Whitt [20]) For any ξ ∈ ∏d
i=1D[0, T ] and any

reflection matrix Q = (I − Qᵀ), let the feasible regulator set be

�(ξ) �
{

ζ ∈
d∏

i=1

D↑[0, T ] : ξ + Qζ ≥ 0

}

,

and let the reflection map be

R � (ψ, φ) :
d∏

i=1

D[0, T ] →
d∏

i=1

D[0, T ] ×
d∏

i=1

D[0, T ],

with regulator component

ψ(ξ) � inf {�(ξ)} = inf

{

w ∈
d∏

i=1

D[0, T ] : w ∈ �(ξ)

}

,

and content component

φ(ξ) � ξ + Qψ(ξ).

The infimum in the definition of ψ may not exist in general. However, in Theorem
14.2.1 of Whitt [20], it is proven that the reflection map is properly defined with the
component-wise order. That is,

ψi (ξ)(t) = inf{ωi (t) ∈ R : ω ∈ �(ξ)} for all i ∈ {1, . . . , d} and t ∈ [0, T ].

In addition, the regulator set �(ξ) is non-empty and its infimum is attained in �(ξ)

itself. Now, we state some important results regarding the properties of (φ,ψ). The
following result gives an explicit representation of the solution of the Skorokhod
problem.

Result 2.1 (Theorem 14.2.1, Theorem 14.2.5 and Theorem 14.2.7 of Whitt [20]) If
Y (·) = ψ(X)(·) and Z(·) = φ(X)(·), then (Y(·), Z(·)) solves the Skorokhod problem
associated with the equation (2.1). The mappings ψ and φ are Lipschitz continuous
maps w.r.t. the uniform metric.

The next result is a useful property of the Skorokhod map. It allows us to describe
the discontinuities of the reflection map under some mild assumptions.

Result 2.2 (Lemma 14.3.3, Corollary 14.3.4 and Corollary 14.3.5 of Whitt [20])
Consider ξ ∈ ∏d

i=1D[0, T ]. Let Disc(ψ(ξ)) and Disc(φ(ξ)) denote the sets of
discontinuity points of ψ(ξ) and φ(ξ), respectively. Then, it holds that Disc(ψ(ξ)) ∪
Disc(φ(ξ)) = Disc(ξ). In addition, if ξ has only positive jumps, then ψ(ξ) is con-
tinuous and

φ(ξ)(t) − φ(ξ)(t−) = ξ(t) − ξ(t−).

123



30 Queueing Systems (2022) 102:25–52

Result 2.3 (Theorem 14.2.6 of Whitt [20]) If ξ ≤ ζ in
∏d

i=1D[0, T ], T > 0, then
ψ(ξ) ≥ ψ(ζ ).

2.3 Topologies and large deviations

In this section, we introduce our preliminary results on sample-path large deviations
for the input and the content process. We begin with setting the notation. For any
β = (β1, . . . , βd) ∈ R

d , let ‖β‖1 denote the usual �1-norm: ‖β‖1 = ∑d
i=1 |βi |. For

ξ = (ξ1, . . . , ξd) ∈ ∏d
i=1D[0, T ], let ‖ξ‖ � supt∈[0,T ] ‖ξ(t)‖1. For large deviations

results, we mainly work with the J1 topology on D[0, T ], and its product topology
on

∏d
i=1D[0, T ]. Recall that in D[0, T ], J1 topology TJ1 is the one induced by the

J1 metric dJ1 :

dJ1(ξ, ζ ) = inf
λ∈
[0,T ]

(

sup
t∈[0,T ]

∣
∣ξ ◦ λ(t) − ζ(t)

∣
∣

)

∨
(

sup
t∈[0,T ]

∣
∣λ(t) − e(t)

∣
∣

)

= inf
λ∈
[0,T ] ‖ξ ◦ λ − ζ‖ ∨ ‖λ − e‖,

for ξ, ζ ∈ D[0, T ], where e : [0, T ] → [0, T ] is the identity map t �→ t , and 
[0, T ]
is the set of all increasing homeomorphisms from [0, T ] to [0, T ]. In order to study
networks, we need to set a topology in the vector-valued function space. That is,
we work in the functional space (

∏d
i=1D[0, T ],∏d

i=1 TJ1) which is a product space
equipped with the product J1 topology

∏d
i=1 TJ1 , which is induced by the product

metric dp:

dp(ξ , ζ ) =
d∑

i=1

dJ1(ξi , ζi )

for ξ , ζ ∈ ∏d
i=1D[0, T ] such that ξ = (ξ1, . . . , ξd) and ζ = (ζ1, . . . , ζd). Unless

specified otherwise, all the topological properties discussed in this paper are w.r.t. the
topology generated by dp.

2.3.1 Some useful continuous functions

The following two lemmas are elementary. Their proofs are provided in Appendix A.

Lemma 2.2 For β ∈ R
d , let ϒβ : ∏d

i=1D[0, T ] → ∏d
i=1D[0, T ] be such that

ϒβ(ξ)(t) = ξ(t) + β · t . Then,
(i) ϒβ is Lipschitz continuous w.r.t. dp,
(ii) ϒβ is a homeomorphism.

Lemma 2.3 For any b ∈ R
d , the mapping ξ �→ bᵀξ(T ) from

∏d
i=1D[0, T ] to R is

Lipschitz continuous w.r.t. dp.
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Akey step in our approach is to establish theLipschitz continuity of the regulator and
the buffer content maps w.r.t. dp. This is executed in Proposition 2.1 and Theorem 2.1.
Their proofs are provided in Sect. 6. Recall that D↑[0, T ] is the subspace of the
Skorokhod space containing non-decreasing paths which are nonnegative at the origin.
We say that ξ ∈ D[0, T ] is a pure jump function if ξ = ∑∞

j=1 x
( j)1[u( j),T ] for some

x ( j)’s and u( j)’s such that x ( j) ∈ R and u( j) ∈ [0, T ] for each j , and the u( j)’s are
all distinct. LetD↑

�∞[0, T ] be the subspace ofD[0, T ] consisting of non-decreasing
pure jump functions that assume nonnegative values at the origin. Subsequently, let
D

↑
�k[0, T ] � {ξ ∈ D[0, T ] : ξ = ∑k

j=1 x
( j)1[u( j),T ], x ( j) ≥ 0, u( j) ∈ [0, T ], j =

1, . . . , k} be the subset of D↑
�∞[0, T ] containing pure jump functions of at most k

jumps. In addition, forβ ∈ R, letDβ

�k[0, T ] � {ζ ∈ D[0, T ] : ζ(t) = ξ(t)+β ·t, ξ ∈
D

↑
�k[0, T ]} andDβ

�∞[0, T ] � {ζ ∈ D[0, T ] : ζ(t) = ξ(t)+β · t, ξ ∈ D
↑
�∞[0, T ]}.

Let D�k[0, T ] denote the subspace of D[0, T ] consisting of paths with at most k
jumps, i.e. D�k[0, T ] = {ξ ∈ D[0, T ] : |Disc(ξ)| ≤ k}. Finally, let Dβ [0, T ] �
{ζ ∈ D[0, T ] : ζ(t) = ξ(t) + β · t, ξ ∈ D↑[0, T ]}.
Proposition 2.1 Let β = (β1, . . . , βd) ∈ R

d . The regulator map ψ is Lipschitz con-
tinuous w.r.t. dp on

∏d
i=1D

βi [0, T ] with Lipschitz constant at most d(2d2(2d +
1)K‖β‖1 + Kd ∨ 1).

Since φ(ξ) = ξ + Qψ(ξ), the following is a corollary of Proposition 2.1.

Theorem 2.1 Let β = (β1, . . . , βd) ∈ R
d . The reflection map R = (φ,ψ) is Lipschitz

continuous w.r.t. dp on
∏d

i=1D
βi [0, T ].

Note that the restriction of the domain to the paths without downward jumps is
essential for this type of results to hold. Since the order in which the jumps take place
matters for the action of the reflection map, we cannot ensure the continuity of the
reflectionmapwithout such extra regularity conditions. Themain difficulty arises with
paths which have jumps with different signs in multiple coordinates appearing almost
simultaneously (K. Ramanan, personal communication).

2.3.2 The extended sample-path LDP for the potential buffer content process

We first review the notion of extended LDP. Let (S, d) be a metric space, and T denote
the topology induced by the metric d. Let {Xn} be a sequence of S-valued random
variables. Let I be a nonnegative lower semi-continuous function on S, and {an} be a
sequence of positive real numbers that tends to infinity as n → ∞.

Definition 2.4 The probability measures of (Xn) satisfy an extended LDP in (S, d)

with speed an and rate function I if

− inf
x∈A◦ I (x) ≤ lim inf

n→∞
logP(Xn ∈ A)

an
≤ lim sup

n→∞
logP(Xn ∈ A)

an
≤ − lim

ε→0
inf
x∈Aε

I (x)

for any measurable set A.
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Here, we denote Aε � {ξ ∈ S : d(ξ, A) ≤ ε} where d(ξ, A) = infζ∈A d(ξ, ζ ). The
notion of an extended LDP has been introduced in Borovkov and Mogulskii [6] and is
useful in the setting of semi-exponential random variables, in which a full LDP is prov-
ably impossible, as shown in Bazhba et al. [5]. One important implication of extended
LDP is an analog of the contraction principle. In the context of the extended LDP, the
contraction principle requires Lipschitz continuity as opposed to mere continuity; see
Lemma B.3.

The main results of this paper in Sects. 3, 4, and 5 are based on such contraction
principles coupled with an extended LDP associated with the probability measures of
the input process J(·). Specifically, the time evolution of Z(·) may be written as

Z(t) = J(t) − γ t + (γ − Qr)t + QY(t), t ≥ 0.

Equivalently, if we consider the scaled and centered input process J̄n(·) � 1
n J(n·) −

γ · e(·), scaled potential buffer content process Xn(·) � 1
n X(n·), scaled regulator

Yn � 1
nY(n·), and scaled buffer content Zn � 1

n Z(n·), then

Zn(t) = J̄n(t) + κ t + QYn(t), t ≥ 0,

where κ � γ − Qr . Note that Zn = φ(Xn) = φ ◦ ϒκ ( J̄n). Therefore, an extended
LDP for Zn can be deduced from that of Xn , which, in turn, can be deduced from
that of J̄n , if φ and ϒκ are Lipschitz continuous in J1 topology. Hence, the Lipschitz
continuity of the shifting operatorϒκ and the content component map φ proved earlier
in this section will play pivotal roles in our approach.

Now, we conclude this section with establishing the desired extended LDP for the
multidimensional input process J̄n and the potential buffer content process Xn of the
stochastic fluid network. For any ξ ∈ D[0, T ], let

I (ξ) =
∑

{t :ξ(t) �=ξ(t−)}
(ξ(t) − ξ(t−))α .

The next result is an immediate consequence of Theorem 2.3 and Remark 2.2 in
Bazhba et al. [5], combined with Lemma B.1.

Result 2.4 The probabilitymeasures of J̄n satisfy the extendedLDP in
( ∏d

i=1D
−γi [0,

T ],∏d
i=1 TJ1

)
with speed L(n)nα and rate function I (d) : ∏d

i=1D
−γi [0, T ] →

[0,∞], where

I (d)(ξ) =
{∑

j∈J c j I (ξ j ) if ξ j ∈ D
↑
�∞[0, T ] for j ∈ J and ξ j ≡ 0 for j /∈ J ,

∞ otherwise.
(2.3)

Next, recall that Xn = ϒκ ( J̄n). Due to Lemma 2.2, ϒκ is Lipschitz continuous and
is a homeomorphism with respect to the product J1 metric. The following extended
large deviation principle for Xn(·) is a direct consequence of Result 2.4 and ii) of
Lemma B.3.
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Result 2.5 Theprobabilitymeasures of Xn satisfy an extendedLDP in
( ∏d

i=1D
−(Qr)i

[0, T ],∏d
i=1 TJ1

)
with speed L(n)nα and with rate function

Ĩ (d)(ξ) =

⎧
⎪⎨

⎪⎩

∑
j∈J c j I (ξ j ) if ξ j ∈ D

(γ−Qr) j
�∞ [0, T ] for j ∈ J

and ξ j = −(Qr) j · e for j /∈ J ,

∞ otherwise.

(2.4)

We are now ready to state our first main result in the next section.

3 Large deviations for the buffer content process

In this section, we state large deviation bounds for the scaled buffer content process Zn .
We apply an analogue of the contraction principle for extended LDPs (Lemma B.3)
to obtain asymptotic estimates for the probability measures of (Zn):

Theorem 3.1 The probability measures of Zn satisfy:

i) For any set F that is closed in
( ∏d

i=1D[0, T ],∏d
i=1 TJ1

)
,

lim sup
n→∞

1

L(n)nα
logP (Zn ∈ F) ≤ − lim

ε→0
inf

ξ∈Fε
IZ(ξ).

ii) For set G that is open in
(∏d

i=1D[0, T ],∏d
i=1 TJ1

)
,

lim inf
n→∞

1

L(n)nα
logP (Zn ∈ G) ≥ − inf

ξ∈G
IZ(ξ),

where

IZ(ζ ) = inf
{
Ĩ (d)(ξ) : ζ = φ(ξ), ξ ∈

d∏

i=1

D−(Qr)i [0, T ]
}

= inf
{
Ĩ (d)(ξ) : ξ ∈ φ−1(ζ )

}
.

Note that IZ may not be lower semi-continuous, because Ĩ (d) is not a good rate
function; see Bazhba et al. [5] for details.

Proof Theorem 2.1 ensures that φ is Lipschitz continuous w.r.t. dp. Therefore, the
upper and lower bounds in i) and ii) follow immediately from the extended LDP for
Xn (Result 2.5) and the (Lipschitz) contraction principle (Lemma B.3). ��
The function IZ is the solution of a constrained minimization problem over step func-
tions, with a concave objective function, and a constraint that depends on the solution
of the Skorokhod problem displayed in Theorem 3.1. Though this Skorokhod problem
only needs to be evaluated for step functions, this minimization problem is in general
not tractable. To get more concrete results, we look at more specific functionals of the
buffer content process in subsequent sections.
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4 Asymptotics for overflow probabilities

This section examines the probability that the buffer content associatedwith a subset of
nodes in the system exceeds a high level. In particular, we fix b = (b1, . . . , bd) ∈ R

d+
and study the probability of linear combination of the buffer content at the end of
the time horizon exceeding a threshold given by P(bᵀZn(T ) ≥ y). Note that for the
unscaled process Z , this is the probability of congestion at time nT . Let

I ′(x) � inf
{
Ĩ (d)(ξ) : bᵀφ(ξ)(T ) = x, ξ ∈

d∏

i=1

D−(Qr)i [0, T ]
}

Define the set V�(y) � {ξ ∈ ∏d
i=1D

(γ−Qr)i
�∞ [0, T ] : bᵀφ(ξ)(T ) ≥ y}, and let V ∗

�(y)

be the optimal value of Ĩ (d) over the set V�(y), i.e. V ∗
�(y) � infξ∈V�(y) Ĩ (d)(ξ).

Similarly, let V>(y) � {ξ ∈ ∏d
i=1D

(γ−Qr)i
�∞ [0, T ] : bᵀφ(ξ)(T ) > y} and set

V ∗
>(y) � infξ∈V>(y) Ĩ (d)(ξ).Note that V ∗

�(y) and V ∗
>(y) depend on T , butwe suppress

the dependence for notational simplicity.
Recall that J is the set of nodes with exogenous input. Next, let I+ � { j ∈

{1, . . . , d} : b j > 0}. The following two lemmas, proven in Sect. 6, ensure the
continuity of V∗

�(·).
Lemma 4.1 Assume that J ∩ I+ �= ∅. The map x �→ V ∗

�(x) is α-Hölder continuous:

|V ∗
�(y) − V ∗

�(x)| ≤
(
max
i∈I+

ci
bα
i

)
· |y − x |α.

Lemma 4.2 Assume that J ∩ I+ �= ∅. It holds that V ∗
�(y) = V ∗

>(y).

We are ready to prove the main result of this section:

Theorem 4.1 For a fixed b = (b1, . . . , bd) ∈ R
d+, assume that J ∩ I+ �= ∅. The over-

flow probabilities P
(
bᵀZn(T ) ≥ y

)
satisfy the following logarithmic asymptotics:

lim
n→∞

1

L(n)nα
logP(bᵀZn(T ) ≥ y) = −V ∗

�(y). (4.1)

Proof Note first that from Lemma 2.3, (1) bᵀZn(T ) is a Lipschitz (w.r.t. dp) image
of Zn . Note also that I ′(y) = inf{IZ(ξ) : bᵀξ(T ) = y}. Therefore, applying
Lemma B.3 i) and Theorem 3.1, we get the asymptotic upper and lower bounds for

1
L(n)nα logP(bᵀZn(T ) ≥ y) as follows:

lim sup
n→∞

1

L(n)nα
logP(bᵀZn(T ) ≥ y) ≤ − lim

ε→0
inf

x∈[y−ε,∞)
I ′(x)

and

lim inf
n→∞

1

L(n)nα
logP(bᵀZn(T ) ≥ y) ≥ − inf

x∈(y,∞)
I ′(x).
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However, from Lemmas (4.1,4.2),

− lim
ε→0

inf
x∈[y−ε,∞)

I ′(x) = − lim
ε→0

V ∗
� (y − ε) = −V ∗

� (y) ;
− inf

x∈(y,∞)
I ′(x) = −V ∗

>(y) = −V ∗
�(y).

That is, the upper and lower bounds for lim sup and lim inf match, and hence, the limit
(4.1) exists and equals −V ∗

�(y). ��

Note that V ∗
�(y) is the solution of an infinite-dimensional optimization problem.

We conjecture that in many problem instances, there exists a k ≥ 1 (that depends on
the specific network) such that

∏d
i=1D

(γ−Qr)i
�k [0, T ] contains an optimal path that

minimizes the rate function Ĩ (·) over V�(y). In such cases, V ∗
�(y) can be computed

by solving the following optimization problem. For given b ∈ R
d+ and y > 0, let P∗

y,k
denote the optimal value of the following optimization problem:

inf
d∑

i=1

ci

k∑

j=1

(
x ( j)
i

)α

s.t. bᵀφ(ξ)(T ) ≥ y;
ξi = ∑k

j=1 x
( j)
i 1[u( j)

i ,T ] + (γ − Qr)1 · e;
x ( j)
i ≥0 for i ∈J , j ∈{1, . . . , k}, and x ( j)

i =0 for i /∈ J , j ∈ {1, . . . , k};
u( j)
i ∈ [0, T ] for i ∈ {1, . . . , d}, j ∈ {1, . . . , k}.

(Py,k)

Then, P∗
y,k = V ∗

�(y). Note that this means that the large deviations rate is the solution

of a 2kd-dimensional optimization problem: The decision variables are the size x ( j)
i ,

and the time u( j)
i of the k jumps ( j ∈ {1, . . . , k}) in the d coordinates (i ∈ {1, . . . , d}).

This provides a significant reduction in complexity compared to the general setting
of Sect. 3. Nevertheless, even the finite-dimensional problem (Py,k) is still rather
intricate: It is an Lα-norm minimization problem with α ∈ (0, 1). In general, such
problems are strongly NP-hard; see Ge et al. [14], for example. In addition, checking
whether a solution to (Py,k) is feasible requires one to compute the Skorokhod map
φ for step functions, which is non-trivial. To get more explicit results and gain some
physical insights, we consider a two-node tandem network in the next section, where
we can reduce the computation of V ∗

�(y) down to solving (Py,k) with k = 1.

5 A two-node example

We consider a two-node tandem network where content from node 1 flows into node
2, and content from node 2 leaves the system, i.e. q12 = 1, and qi j = 0 otherwise. We
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assume that each node has an exogenous input process (i.e. J = {1, 2}). We consider
the problem of identifying the log-asymptotics of the probability of congestion in the
second node, i.e., P

(
bᵀZn(T ) ≥ y

)
as n → ∞ where b = (0, 1). That is, our goal is

to compute V ∗
�(y) in this specific example.

The next lemma enables us to reduce the feasible region of the optimization
problem associated with V ∗

�(y) from D
(γ−Qr)1
�∞ [0, T ] × D

(γ−Qr)2
�∞ [0, T ] down to

D
(γ−Qr)1
�1 [0, T ] × D

(γ−Qr)2
�1 [0, T ]. In other words, we can restrict the class of func-

tions to those that have at most one discontinuity in each coordinate.

Lemma 5.1 Consider the two-node tandem network where d = 2 and Q =
(

1 0
−1 1

)

.

Let ξ ∈ ∏d
i=1D

(γ−Qr)i
�∞ [0, T ]. Then, there exists a path ξ̃ ∈ ∏d

i=1D
(γ−Qr)i
�1 [0, T ]

such that

i) Ĩ (d)(ξ̃) ≤ Ĩ (d)(ξ),
ii) φ(ξ̃)(T ) ≥ φ(ξ)(T ).

Lemma 5.1 implies that computing V ∗
�(y) is equivalent to solving (Py,k) with k = 1

in case of the two-node tandem networks. Such computation is the subject of the rest
of this section. To keep the presentation concise, we give an outline of the key steps
and focus on physical insight.

We first develop an explicit expression for the buffer content at time T for input
processes of the form ξi = (γ − Qr)i · e + xi1[ui ,T ], t ∈ [0, T ], xi ≥ 0, ui ∈
[0, T ], i = 1, 2. To develop physical intuition is it instructive to write the buffer
content process at node 2 as the solution of a one-dimensional reflection mapping,
fed by the superposition of ξ2 and the output process of node 1, which in turn is
governed by a one-dimensional reflection mapping as well. To this end, observe that
ψ1(ξ)(t) = − infs≤t {0 ∧ ξ1(s)}, and φ1(ξ)(t) = ξ1(t) − infs≤t {0 ∧ ξ1(s)}. Note also
that (ξ + Qψ(ξ))2 = ξ2 − ψ1(ξ) + ψ2(ξ), and the minimal ψ2(ξ) that regulates
this process above zero is ψ2(ξ)(t) = − infs≤t {0 ∧ (ξ2(s) + infu≤s{0 ∧ ξ1(u)})}.
Consequently, we can write

φ2(ξ)(T ) = ξ2(T ) + inf
s≤T

{0 ∧ ξ1(s)} − inf
u≤T

{
0 ∧ {

ξ2(u) + inf
s≤u

{0 ∧ ξ1(s)}
}}

. (5.1)

Our goal is to minimize the cost c1xα
1 + c2xα

2 subject to the constraint φ2(ξ)(T ) ≥ y,
over x1 ≥ 0, x2 ≥ 0, u1 ∈ [0, T ], u2 ∈ [0, T ]. We simplify this problem by
identifying convenient choices of u1 and u2 which do not lose optimality.

To this end, observe that a jump of size x2 at time u2 can instead take place at time
u2 = T without decreasing φ2(ξ)(T ). To determine a convenient choice of u1, note
that a jump of size x1 in node 1 at time u1 causes an outflow of rate r1 from node 1 to
node 2 in the interval [u1, u1 + x1/(r1 −γ1)], and rate γ1 after time u1 + x1/(r1 −γ1).
Therefore, we can take u1 such that u1 + x1/(r1 − γ1) = T , without decreasing
φ2(ξ)(T ). This choice is feasible as long as u1 remains nonnegative, i.e. we require
that x1/(r1−γ1) ≤ T . Observe that choosing x1/(r1−γ1) > T would not be optimal,
as it would increase the cost term involving xα

1 without increasing φ2(ξ)(T ).
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We proceed by solving (5.1) by taking ξ1 = (γ − Qr)1 · e + x11[T−x1/(r1−γ1),T ]
and ξ2 = (γ − Qr)2 · e + x21[T ,T ]. Straightforward manipulations show that

φ2(ξ)(T ) = x2 + (r1 + γ2 − r2)
+ x1
r1 − γ1

. (5.2)

We see that a jump at node 1 has no effect on the buffer content in node 2 if r2 ≥ r1+γ2,
which is intuitively obvious since node 2 is still rate stable when the output of node 1
equals r1. Therefore, x1 = 0 and x2 = y are feasible and minimize the rate function.
Our first conclusion is that

lim
n→∞

1

L(n)nα
logP

(
bᵀZn(T ) ≥ y

) = −c2y
α, r2 ≥ r1 + γ2. (5.3)

We now turn to the more interesting case r2 < r1 + γ2. We do not lose optimality if
the constraint on φ2(ξ)(T ) is tight, so we can impose the constraints

x2 + r1 + γ2 − r2
r1 − γ1

x1 = y, x1 ∈ [0, (r1 − γ1)T ], x2 ≥ 0. (5.4)

From convex optimization theory, see Corollary 32.3.2 in Rockafellar [19], the mini-
mum of the concave objective function c1xα

1 + c2xα
2 subject to the constraints (5.4) is

achieved over the extreme points of (5.4). In our particular situation, this implies that
an optimal solution should correspond to one of the following 3 cases: (i) x1 = 0, (ii)
x2 = 0, and (iii) x1 = (r1−γ1)T . In case (i i i), wewould have x2 = y−(r1+γ2−r2)T ,
which is only feasible if y ≥ (r1 + γ2 − r2)T . Note also that if y = (r1 + γ2 − r2)T ,
then (ii) is the case.

Therefore, if y ≤ (r1 + γ2 − r2)T , we can conclude that either case (i) holds with
x1 = 0, x2 = y, and cost c2yα , or case (ii) holds with x2 = 0, x1 = y r1−γ1

r1+γ2−r2
, and

cost c1
(
y r1−γ1
r1+γ2−r2

)α

. We conclude that for y ≤ (r1 + γ2 − r2)T ,

lim
n→∞

1

L(n)nα
logP

(
bᵀZn(T ) ≥ y

) = −min

{

c1

(
r1 − γ1

r1 + γ2 − r2

)α

, c2

}

yα. (5.5)

We now turn to the case y > (r1 + γ2 − r2)T . In this case, the time horizon T is
small w.r.t. y: The output of node 1 alone is never enough to cause the buffer content
of node 2 to reach level y at time T . Thus, case (ii) can be excluded, and we only
have to compare case (i) and case (iii). Case (i) has solution x2 = y with cost c2yα .
Case (iii) has solution x1 = (r1 − γ1)T , x2 = y − (r1 + γ2 − r2)T , with cost
c1((r1−γ1)T )α +c2(y− (r1+γ2−r2)T )α . We conclude that if y > (r1+γ2−r2)T ,

limn→∞ 1
L(n)nα logP

(
bᵀZn(T ) ≥ y

)

= −min{c2yα, c1((r1 − γ1)T )α + c2(y − (r1 + γ2 − r2)T )α}. (5.6)

To give a numerical example, take y = 2, T = 1, r1 = r2 = 3, γ1 = γ2 = 1. In this
case, the inequality y > (r1 + γ2 − r2)T holds. To evaluate (5.6), note that the cost of
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case (i) equals c22α and the cost of case (iii) equals c12α +c2. Sowe conclude that case
(iii) is the most likely way for the event {bᵀZn(1) ≥ 2} to occur if c1 ≤ c2(1− 2−α),
corresponding to a most likely behavior of two big jumps: x1 = 2, occurring at node
1 at time 0, and x2 = 1, occurring at node 2 at time 1.

Onemaywonder if Lemma 5.1 can be extended to general stochastic fluid networks
so that the computation of V ∗

�(y) can always be reduced to solving (Py,k) with k = 1.
(This means that their large deviations behaviors are consequences of at most one
jump in the external input process to each node.) Unfortunately, this is not the case.
We conclude this section with an example for which restricting the number of jumps
in each coordinate to at most one is strictly suboptimal.

Consider α = 1/2, T = 2, y = 2 + δθ ,

γ =
⎛

⎝
ε

0
0

⎞

⎠ , r =
⎛

⎝
4 + ε

2 + ε

1 + ε

⎞

⎠ ,

Q =
⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ , b =
⎛

⎝
δ

0
1

⎞

⎠ , γ − Qr =
⎛

⎝
−4
2
1

⎞

⎠ ,

where ε = 0.1, δ < 1/4, θ < 1, and c1 = c2 = 1. Let ξ be the superposition of the
fluid limit (γ − Qr) · e of the potential buffer content vector and two jumps of size
4 and θ in the first coordinate at the beginning and at the end of the time horizon,
respectively. That is,

ξ(t) =
⎛

⎝
−4t + 41[0,T ](t) + θ1[T ,T ](t)

2t
t

⎞

⎠ .

Then, Ĩ (d)(ξ) = 2 + √
θ and

φ(ξ)(T ) =
⎛

⎝
θ

0
2

⎞

⎠ .

However, any ξ̃ (in the effective domain of Ĩ (d)) with only one jump in the first
coordinate takes the following form:

ξ̃(t) =
⎛

⎝
−4t + x1[s,T ](t)

2t
t

⎞

⎠

for some s ∈ [0, T ] and x ∈ (0,∞). Note that if s > 0, the third coordinate cannot
reach 2. Therefore, we see that s has to be zero. Now, we see that for φ(ξ̃)(T ) to
be greater than φ(ξ)(T ) coordinate-wise as claimed in ii) of Lemma 5.1, x has to
be at least 4T + θ . However, since δ < 1, this means that Ĩ (d)(ξ̃) ≥ √

4T + θ >
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√
4 + √

θ = Ĩ (d)(ξ). That is, no ξ̃ with only one jump in the first coordinate satis-
fies the conclusion of Lemma 5.1. In fact, this system of tandem queues still turns
out to be a counterexample even if we change the statement of Lemma 5.1 so that
i i) is bᵀφ(ξ̃ )(T ) ≥ bᵀφ(ξ)(T ). To see this, note first that if x < 4(T − s), then
bᵀφ(ξ̃)(T ) < y, and hence, we only consider the case x ≥ 4(T − s), where

bᵀφ(ξ̃)(T ) = δ(x − 4(T − s)) + T − s = δx + (1 − 4δ)(T − s).

Note also that since we assume δ < 1/4, this is maximized at s = 0. Therefore,
for bᵀφ(ξ̃)(T ) to be greater than or equal to y, we need x to be greater than or
equal to 4T + θ . This implies that Ĩ (d)(ξ̃) ≥ √

4T + θ >
√
4 + √

θ = Ĩ (d)(ξ).
Therefore, solving (Py,k) with k = 1 will not give the correct log asymptotics for
P(bᵀφ(Xn)(T ) ≥ y) in general.

6 Complementary proofs

6.1 Proofs of Lemmas 4.1 and 4.2

Next, we focus on the continuity of V∗
�(·). LetD+[0, T ] be the subspace ofD[0, T ]

that contains paths with only positive discontinuities: D+[0, T ] = {ξ ∈ D[0, T ] :
ξ(t)−ξ(t−) ≥ 0, ∀t ∈ [0, T ]}. Recall thatD�k[0, T ] = {ξ ∈ D[0, T ] : |Disc(ξ)| ≤
k}.

Lemma 6.1 Suppose that a = (a1, . . . , ad) ∈ R
d+, ξ ∈ ∏d

i=1D
(γ−Qr)i
�∞ [0, T ], and

ζ = ξ + a1{T }. Then

(i) ψ(ζ ) = ψ(ξ),
(ii) φ(ζ )(T ) = φ(ξ)(T ) + a, and
(iii) Ĩ (d)(ζ ) ≤ Ĩ (d)(ξ) + ∑d

i=1 cia
α
i .

Proof For i), from the proof of Theorem 14.2.2 in Whitt [20], we see that for any
ω ∈ ∏k

i=1D[0, T ] the regulator component ψ(ω) is the limit (w.r.t. ‖ · ‖) of ρn
ω(0)

where0 is the zero function andρn
ω is then fold composition ofρω : ∏d

i=1D
↑[0, T ] →

∏d
i=1D

↑[0, T ] such that ρω(η)(t) = 0∨sups∈[0,t]{Qη(s)−ω(s)}. Note that ρω(η)(t)
depends only on η(s) and ω(s) for s ∈ [0, t]. Therefore, ψ(ω)(t) depends on ω(s)
for s ∈ [0, t] only. Therefore, ψ(ζ )(t) = ψ(ξ)(t) for t ∈ [0, T − ε] for any ε > 0.
The continuity implies that ψ(ζ )(T ) = ψ(ξ)(T ) as well, which concludes the proof
of part i).

For ii), observe that φ(ζ )(T ) = ζ (T ) + Qψ(ζ )(T ) = ξ(T ) + a + Qψ(ξ)(T ) =
φ(ξ)(T ) + a.

For iii), we assume that ξ ( j)(t) = −(Qr) j (t) for j /∈ J since if not Ĩ (d)(ζ ) =
Ĩ (d)(ξ) = ∞, and the inequality holds trivially. Let ζ = (ζ1, . . . , ζd), and ξ =
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(ξ1, . . . , ξd). Since the function x �→ xα, α ∈ (0, 1), is subadditive,

I (ζi ) =
∑

t∈[0,T ):ξi (t) �=ξi (t−)

(ξi (t) − ξi (t−))α + (ξi (T ) − ξi (T−) + ai )
α

≤
∑

t∈[0,T ):ξi (t) �=ξi (t−)

(ξi (t) − ξi (t−))α + (ξi (T ) − ξi (T−))α + aα
i

= I (ξi ) + aα
i .

Therefore, Ĩ (d)(ζ ) = ∑
j∈J c j I (ζ j ) ≤ ∑

j∈J c j I (ξ j ) + ∑
j∈J c jaα

j ≤ Ĩ (d)(ξ) +
∑d

j=1 c ja
α
j . ��

Proof of Lemma 4.1 W.l.o.g., let y ≥ x ≥ 0. Then, V�(y) ⊆ V�(x), and hence,
V ∗

�(y) ≥ V ∗
�(x) ≥ 0. For any ε > 0, there exists a ζ ∈ V�(x) so that Ĩ (d)(ζ ) <

V ∗
�(x) + ε. Next, fix j ∈ I+ and let ξ = ζ + v1{T } where v = (0, . . . , y−x

b j
, . . . , 0).

Due to ii) of Lemma 6.1,

bᵀφ(ξ)(T ) = bᵀ(φ(ζ )(T ) + v) = bᵀφ(ζ )(T ) + b j
(y − x)

b j
≥ x + y − x = y.

Hence, ξ ∈ V�(y). Due to iii) of Lemma 6.1,

Ĩ (d)(ξ) ≤ Ĩ (d)(ζ ) + c j
bα
j

· (y − x)α ≤ Ĩ (d)(ζ ) +
(
max
i∈I+

ci
bα
i

)
· (y − x)α.

We see that

V ∗
�(y) ≤ Ĩ (d)(ξ)

≤ Ĩ (d)(ζ ) + max
1≤i≤d:bi>0

ci
bα
i
(y − x)α < V ∗

�(x) + max{1≤i≤d:bi>0}
ci
bα
i
(y − x)α + ε.

This leads to V ∗
�(y)−V ∗

�(x) ≤ max{1≤i≤d:bi>0} ci
bα
i
(y−x)α +ε.We obtain the desired

result by letting ε tend to 0. Thus, |V ∗
�(y) − V ∗

�(x)| ≤ max{1≤i≤d:bi>0} ci
bα
i

· |y − x |α.

��
We conclude this section with the proof of Lemma 4.2.

Proof of Lemma 4.2 For any ε > 0, we have that V ∗
�(y + ε) ≥ V ∗

>(y). Hence, in view
of Lemma 4.1,

|V ∗
>(y) − V ∗

�(y)| = V ∗
>(y) − V ∗

�(y) ≤ V ∗
�(y + ε) − V ∗

�(y) ≤ (
max
i∈I+

ci
bα
i

) · |ε|α.

Now, we let ε go to 0 to obtain the desired result. ��
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6.2 Proof of Lemma 5.1

For any η ∈ D[0, T ], let η↓ ∈ D[0, T ] denote the running infimum η↓(t) �
infs∈[0,t] 0∧ η(s) for all t ∈ [0, T ]. The following simple lemma is useful for proving
Lemma 5.1.

Lemma 6.2 Suppose that η, ω ∈ D[0, T ] are such that η ≥ ω and η(T ) = ω(T ).
Then, (η − η↓)(T ) ≤ (ω − ω↓)(T ).

Proof Since η↓ ≥ ω↓, we have η − η↓ ≤ η − ω↓. Therefore, (η − η↓)(T ) ≤ (η −
ω↓)(T ) = (ω − ω↓)(T ) ��

Now, we prove Lemma 5.1.

Proof of Lemma 5.1 Since we assume that ξ = (ξ1, ξ2) ∈ D
(γ−Qr)1
�∞ [0, T ] ×

D
(γ−Qr)2
�∞ [0, T ], we can write ξ1 = (γ1 − r1)e + ∑∞

j=1 x
( j)1[u( j),T ] and ξ2 =

(γ2 + r1 − r2)e + ∑∞
j=1 y

( j)1[v( j),T ] for x ( j), y( j) ≥ 0 and u( j), v( j) ∈ [0, T ] ,
j = 1, 2, . . .. Consider ξ ′ = (ξ1, ξ

′
2) where ξ ′

2 = (γ2 + r1 − r2)e + ȳ1[T ,T ] and
ȳ = ∑∞

j=1 y
( j) . Then, by the subadditivity of x �→ xα , Ĩ (d)(ξ ′) ≤ Ĩ (d)(ξ).

Note that since

ξ + Qψ(ξ) =
(

ξ1 + ψ1(ξ)

ξ2 − ψ1(ξ) + ψ2(ξ)

)

and ξ ′ + Qψ(ξ ′) =
(

ξ1 + ψ1(ξ
′)

ξ ′
2 − ψ1(ξ

′) + ψ2(ξ
′)

)

,

we see that ψ1(ξ) = ψ1(ξ
′) = −ξ

↓
1 , and hence, φ1(ξ) = φ1(ξ

′) = ξ1 − ξ
↓
1 . Also,

φ2(ξ) = ξ2 − ψ1(ξ) − (ξ2 − ψ1(ξ))↓ and φ2(ξ
′) = ξ ′

2 − ψ1(ξ) − (ξ ′
2 − ψ1(ξ))↓.

Note that since ξ2 − ψ1(ξ) ≥ ξ ′
2 − ψ1(ξ) and (ξ2 − ψ1(ξ))(T ) = (ξ ′

2 − ψ1(ξ))(T ),
Lemma 6.2 implies that

φ2(ξ)(T )=ξ2−ψ1(ξ)−(ξ2−ψ1(ξ))↓ ≤ ξ2−ψ1(ξ)−(ξ ′
2−ψ1(ξ))↓ = φ2(ξ

′)(T ).

Therefore, we found ξ ′ ∈ D
(γ−Qr)1
�∞ [0, T ] × D

(γ−Qr)2
�1 [0, T ] such that Ĩ (d)(ξ ′) ≤

Ĩ (d)(ξ) and φ(ξ ′)(T ) ≥ φ(ξ)(T ). Now, let ξ ′′ � (ξ ′
1, ξ

′
2) where ξ ′

1 = (γ1 − r1)e +
x̄1[T− x̄−φ1(ξ ′)(T )

r1−γ1
,T ] and x̄ = ∑∞

j=1 x
( j) . Note thatψ1(ξ

′′) ≥ ψ1(ξ
′) andψ1(ξ

′′)(T ) =
ψ1(ξ

′)(T ) . To see this, let T ′ � T − x̄−φ1(ξ
′)(T )

r1−γ1
. Note that

T ′ = T − x̄ − ξ1(T ) + ξ
↓
1 (T )

r1 − γ1
= T − x̄ − (γ1 − r1)T − x̄ + ξ

↓
1 (T )

r1 − γ1
= − ξ

↓
1 (T )

r1 − γ1
.

From the construction of ξ ′
1, it “attains” its infimum at T ′−, and hence, (ξ ′

1)
↓(t) =

ξ ′
1(T

′−) = T ′(γ1 − r1) = ξ
↓
1 (T ) for t ∈ [T ′, T ]. Note also that from the forms
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of ξ1 and ξ ′
1, we clearly have ξ ′

1(t) ≤ ξ(t) for t ∈ [0, T ′]. Therefore, (ξ ′
1)

↓ ≤ ξ
↓
1

and (ξ ′
1)

↓(T ) = ξ
↓
1 (T ). Since ψ1(ξ

′′) = −(ξ ′
1)

↓ and ψ1(ξ
′) = −ξ

↓
1 , we obtain the

relationships betweenψ1(ξ
′′) andψ1(ξ

′) claimed above.Now , again fromLemma6.2,
we get φ2(ξ

′′)(T ) ≥ φ2(ξ
′)(T ). Note that we constructed ξ ′′ in such a way that

φ1(ξ
′′)(T ) = φ1(ξ

′)(T ) = φ1(ξ)(T ). Note also that Ĩ (d)(ξ ′′) ≤ Ĩ (d)(ξ ′). We arrive at
the conclusion of the lemma by setting ξ̃ = ξ ′′. ��

6.3 Proof of Proposition 2.1 and Theorem 2.1

Recall that
∏d

i=1D[0, T ] is the Skorokhod space equipped with the product J1 topol-
ogy and D↑[0, T ] � {ξ ∈ D[0, T ] : ξ is non-decreasing on [0, T ] and ξ(0) ≥ 0}.
D↑[0, T ] is a closed subspace ofD[0, T ]w.r.t. the J1 topology.Hence,∏d

i=1D
↑[0, T ]

is a closed subspace of
∏d

i=1D[0, T ]w.r.t. the product J1 topology. SinceDβ [0, T ] is
the image ofD↑[0, T ] under the homeomorphism ϒβ , we have that

∏d
i=1D

βi [0, T ]
is a closed subset of

∏d
i=1D[0, T ].

6.3.1 Some supporting lemmas

Lemma 6.3 Suppose that λ,μ ∈ 
[0, T ]. Then, ‖λ ◦ μ − e‖ ≤ ‖λ − e‖ + ‖μ − e‖.
Proof ‖λ ◦μ− e‖ = ‖λ−μ−1‖ ≤ ‖λ− e‖+‖μ−1 − e‖ = ‖λ− e‖+‖e−μ‖ ≤ 2δ.

��
We now consider properties of continuous and increasing time deformations wi , i =
1, . . . , d.

Lemma 6.4 Ifwi∈
[0, T ] for each i = 1, . . . , d, then ŵ(s)=min{w1(s), . . . , wd(s)}
and w̌(s) = max{w1(s), . . . , wd(s)} also belong to 
[0, T ].
Proof The min and max of continuous and increasing functions are increasing and
continuous. The other properties are easily verified. ��

Recall that ψ is Lipschitz continuous w.r.t. ‖ · ‖ (Theorem 14.2.5 of Whitt [20]).
Let K denote the Lipschitz constant of ψ w.r.t. ‖ · ‖, which only depends on Q; in
particular, K does not depend on T .

Lemma 6.5 Let β = (β1, . . . , βd) ∈ R
d and ζ ∈ ∏d

i=1D
βi [0, T ]. For any w ∈


[0, T ], it holds that

‖ψ(ζ ) ◦ w − ψ(ζ )‖ < K‖β‖1 · ‖w − e‖.

Proof Consider an arbitrary s ∈ [0, T ]. If w(s) ≥ s, since ψ(ζ ) is an increasing
function, ψ(ζ )(w(s)) ≥ ψ(ζ )(s). Moreover, since ζ ∈ ∏d

i=1D
βi [0, T ], ζ has the

following representation: ζ (t) = ξ(t) + β · t, where ξ ∈ ∏d
i=1D

↑[0, T ]. Conse-
quently, for t > u, ζ (t)− ζ (u) = ξ(t)− ξ(u)+β · (t − u) ≥ β · (t − u). This implies
that

ζ (w(s)) = ζ ((w(s) − s) + s) ≥ ζ (s) + β · (w(s) − s). (6.1)
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Next, consider the path ζ̃ 1 where

ζ̃ 1(t) =
{

ζ (t), t ∈ [0, s],
ζ (s) + β · (t − s), t ∈ [s, w(s)].

Since ζ̃ 1 ≤ ζ over [0, w(s)], Result 2.3 gives that ψ(ζ̃ 1)(w(s)) ≥ ψ(ζ )(w(s)).
Furthermore, let

ζ̃ 2(t) =
{

ζ (t), t ∈ [0, s],
ζ (s), t ∈ [s, w(s)].

Then, we have that ψ(ζ̃ 2)(w(s)) = ψ(ζ )(s). Therefore,

0 ≤ ψ(ζ )(w(s)) − ψ(ζ )(s)

≤ ψ(ζ̃ 1)(w(s)) − ψ(ζ̃ 2)(w(s)) ≤ K sup
t∈[0,w(s)]

‖ζ̃ 1(t) − ζ̃ 2(t)‖1
≤ K‖β‖1 · |w(s) − s| ≤ K‖β‖1 · ‖w − e‖. (6.2)

Next, we consider the casew(s) ≤ s. Sinceψ(ζ ) is an increasing function,ψ(ζ )(s) ≥
ψ(ζ )(w(s)). Furthermore, since ζ ∈ ∏d

i=1D
βi [0, T ], we have that

ζ (s) = ζ ((s − w(s)) + w(s)) ≥ ζ (w(s)) + β(s − w(s)). (6.3)

Next, consider the path ζ̃ 1, where

ζ̃ 1(t) =
{

ζ (t), t ∈ [0, w(s)],
ζ (s) + β(t − w(s)), t ∈ [w(s), s].

Since ζ̃ 1 ≤ ζ over [0, s], Result 2.3 gives that ψ(ζ̃ 1)(s) ≥ ψ(ζ )(s). On the other
hand, let

ζ̃ 2(t) =
{

ζ (t), t ∈ [0, w(s)],
ζ (s), t ∈ [w(s), s].

We then have that ψ(ζ̃ 2)(s) = ψ(ζ )(w(s)). Therefore,

0 ≤ ψ(ζ )(s) − ψ(ζ )(w(s)) ≤ ψ(ζ̃ 1)(s) − ψ(ζ̃ 2)(s) ≤ K sup
t∈[0,s]

‖ζ̃ 1(t) − ζ̃ 2(t)‖1
≤ K‖β‖1 · |w(s) − s| ≤ K‖β‖1 · ‖w − e‖. (6.4)

From (6.2) and (6.4), we get (regardless of the value of w(·) at s)

‖ψ(ζ )(w(s)) − ψ(ζ )(s)‖1 ≤ dK‖β‖1 · ‖w − e‖ = K‖β‖1 · ‖w − e‖.

Taking the supremum over s ∈ [0, T ], we arrive at the conclusion of the lemma. ��
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Note that if β = 0 and ζ ∈ ∏d
i=1D

βi [0, T ], then ζ belongs to
∏d

i=1D
↑[0, T ] and

is nonnegative at the origin. This implies ψ(ζ ) = 0, and the upper bound in Lemma
6.5 holds trivially. Next, we state two more lemmas which are needed in our proof for
the Lipschitz continuity of the regulator map in

∏d
i=1D

βi [0, T ]. Let ι ∈ D[0, T ] be
ι(t) ≡ 1, and ι = (ι, . . . , ι) ∈ ∏d

i=1D[0, T ].

Lemma 6.6 Consider w = (w1, . . . , wd), each component of which is a time
deformation in 
[0, T ]. Recall ŵ and w̌ in Lemma 6.4. That is, w̌(t) =
max{w1(t), . . . , wd(t)}, and ŵ(t) = min{w1(t), . . . , wd(t)}. Define the vector-
valued functions ŵ, w̌, and e from [0, T ] to [0, T ]d as ŵ � (ŵ, . . . , ŵ), w̌ �
(w̌, . . . , w̌), and e � (e, . . . , e). For any ξ ∈ ∏d

i=1D
βi [0, T ],

i) ψ(ξ1 ◦ w1, . . . , ξd ◦ wd) ≤ ψ(ξ) ◦ ŵ + (d + 1)K‖β‖∞ · ‖w − e‖ · ι, and
ii) ψ(ξ1 ◦ w1, . . . , ξd ◦ wd) + (d + 1)K‖β‖∞ · ‖w − e‖ · ι ≥ ψ(ξ) ◦ w̌.

Proof We start with i). Since ξ ∈ ∏d
i=1D

βi [0, T ] and ŵ(s) ≤ wi (s), we have that for
each i = 1, . . . , d,

ξi (wi (s)) ≥ ξi (ŵ(s)) − ‖β‖∞(wi (s) − ŵ(s)), s ∈ [0, T ].

Note also that since
∣
∣ŵ(t) − e(t)

∣
∣ = ∣

∣w j (t) − e(t)
∣
∣ for some j ,

‖e − ŵ‖ = sup
0∈[0,T ]

d∑

i=1

∣
∣ŵ(t) − e(t)

∣
∣

≤ sup
0∈[0,T ]

d∑

i=1

d∑

j=1

∣
∣w j (t) − e(t)

∣
∣ = d sup

0∈[0,T ]

d∑

j=1

∣
∣w j (t) − e(t)

∣
∣ = d‖w − e‖.

Similarly, ‖w̌ − e‖ ≤ d‖w − e‖. Therefore, due to Result 2.3 and the Lipschitz
continuity of ψ w.r.t. ‖ · ‖,

ψ
(
ξ1 ◦ w1, . . . , ξd ◦ wd

)

≤ ψ
(
ξ1 ◦ ŵ − ‖β‖∞(w1 − ŵ), . . . , ξd ◦ ŵ − ‖β‖∞(wd − ŵ)

)

= ψ
(
ξ ◦ ŵ − ‖β‖∞(w − ŵ)

)

≤ ψ(ξ ◦ ŵ) + K‖β‖∞ · ‖w − ŵ‖ · ι

≤ ψ(ξ) ◦ ŵ + K‖β‖∞ · (‖w − e‖ + ‖e − ŵ‖) · ι

≤ ψ(ξ) ◦ ŵ + (d + 1)K‖β‖∞ · ‖w − e‖ · ι.

For ii), observe that ξi (w̌(s)) ≥ ξi (wi (s))−‖β‖∞(w̌(s)−wi (s)) for each i = 1, . . . , d
and s ∈ [0, T ], since ξ ∈ ∏d

i=1D
βi [0, T ], and w̌(s) ≥ wi (s) for each i = 1, . . . , d.
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Therefore, due to Result 2.3 and the Lipschitz continuity of ψ w.r.t. ‖ · ‖,

ψ(ξ) ◦ w̌ = ψ
(
ξ1 ◦ w̌, . . . , ξd ◦ w̌

)

≤ ψ
(
ξ1 ◦ w1 − ‖β‖∞(w̌ − w1), . . . , ξd ◦ wd − ‖β‖∞(w̌ − wd)

)

= ψ
(
(ξ1 ◦ w1, . . . , ξd ◦ wd) − ‖β‖∞(w̌ − w)

)

≤ ψ(ξ1 ◦ w1, . . . , ξd ◦ wd) + K‖β‖∞ · ‖w̌ − w‖ · ι

≤ ψ(ξ1 ◦ w1, . . . , ξd ◦ wd) + K‖β‖∞ · (‖w̌ − e‖ + ‖e − w‖) · ι

= ψ(ξ1 ◦ w1, . . . , ξd ◦ wd) + (d + 1)K‖β‖∞ · ‖w − e‖ · ι.

��
Lemma 6.7 For any ξ ∈ ∏d

i=1D
βi [0, T ] and w = (w1, . . . , wd) ∈ ∏d

i=1 
[0, T ],

‖ψ(ξ1 ◦ w1, . . . , ξd ◦ wd) − ψ(ξ)‖ ≤ d(2d + 1)K‖β‖1 · ‖w − e‖.

Proof Due to Lemmas 6.5, 6.6, and ‖ŵ − e‖ ≤ ‖w − e‖,

ψ(ξ1 ◦ w1, . . . , ξd ◦ wd) − ψ(ξ)

≤ ψ(ξ) ◦ ŵ − ψ(ξ) + (d + 1)K‖β‖∞ · ‖w − e‖ · ι

≤ dK‖β‖1 · ‖ŵ − e‖ · ι + (d + 1)K‖β‖∞ · ‖w − e‖ · ι

≤ (2d + 1)K‖β‖1 · ‖w − e‖ · ι.

Similarly,

ψ(ξ) − ψ(ξ1 ◦ w1, . . . , ξd ◦ wd)

≤ ψ(ξ) − ψ(ξ)(w̌) + (d + 1)K‖β‖∞ · ‖w − e‖ · ι

≤ dK‖β‖1 · ‖w̌ − e‖ · ι + (d + 1)K‖β‖∞ · ‖w − e‖ · ι

≤ (2d + 1)K‖β‖1 · ‖w − e‖ · ι.

From these, the conclusion of the lemma follows. ��

6.3.2 Lipschitz continuity of the reflection map

Now, we are ready to conclude Sect. 6.3 with the proofs of Proposition 2.1 and Theo-
rem 2.1, which are the Lipschitz continuity of the regulator map and the buffer content
component map, respectively, in the product J1 topology. We start with the Lipschitz
continuity of the regulator map ψ .

Proof of Proposition 2.1 Given ξ , ζ ∈ ∏d
i=1D

βi [0, T ], consider an arbitrary δ such
that dp(ξ , ζ ) < δ. Then, there existsλi ∈ 
[0, T ] such that ‖ξi ◦λi−ζi‖∨‖λi−e‖ < δ
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for each i = 1, . . . , d. Notice that

dp(ψ(ξ), ψ(ζ )) ≤
d∑

i=1

inf
wi∈
[0,T ]

∥
∥ψi (ξ) ◦ wi − ψi (ζ )

∥
∥ ∨ ∥

∥wi − e
∥
∥

≤
d∑

i=1

∥
∥ψi (ξ) ◦ λi − ψi (ζ )

∥
∥ ∨ ∥

∥λi − e
∥
∥

≤
d∑

i=1

∥
∥ψi (ξ) ◦ λi − ψi (ξ1 ◦ λ1, . . . , ξd ◦ λd)

∥
∥ ∨ ∥

∥λi − e
∥
∥

+
d∑

i=1

∥
∥ψi (ξ1 ◦ λ1, . . . , ξd ◦ λd) − ψi (ζ1, . . . , ζd)

∥
∥ ∨ ∥

∥λi − e
∥
∥

Note that from Lemma 6.7,

∥
∥ψi (ξ) ◦ λi − ψi (ξ1 ◦ λ1, . . . , ξd ◦ λd)

∥
∥

= ∥
∥ψi (ξ) − ψi (ξ1 ◦ λ1, . . . , ξd ◦ λd) ◦ (λi )

−1
∥
∥

= ∥
∥ψi (ξ) − ψi (ξ1 ◦ λ1 ◦ (λi )

−1, . . . , ξd ◦ λd ◦ (λi )
−1)

∥
∥

≤ d(2d + 1)K‖β‖1 · ∥
∥e − (

λ1 ◦ (λi )
−1, . . . , λd ◦ (λi )

−1)∥∥

≤ d(2d + 1)K‖β‖1 ·
d∑

j=1

∥
∥e − λ j ◦ (λi )

−1
∥
∥

≤ d(2d + 1)K‖β‖1 ·
d∑

j=1

(∥
∥e − λ j

∥
∥ + ∥

∥e − (λi )
−1

∥
∥
)

= d(2d + 1)K‖β‖1 ·
d∑

j=1

(∥
∥e − λ j

∥
∥ + ∥

∥e − λi
∥
∥
)

≤ 2d2(2d + 1)K‖β‖1 · δ,

where the third inequality is due to Lemma 6.3. On the other hand,

∥
∥ψi (ξ1 ◦ λ1, . . . , ξd ◦ λd) − ψi (ζ1, . . . , ζd)

∥
∥

≤ ∥
∥ψ(ξ1 ◦ λ1, . . . , ξd ◦ λd) − ψ(ζ1, . . . , ζd)

∥
∥

≤ K
∥
∥(ξ1 ◦ λ1, . . . , ξd ◦ λd) − (ζ1, . . . , ζd)

∥
∥

= K
d∑

i=1

∥
∥ξi ◦ λi − ζi

∥
∥ ≤ Kdδ.
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Therefore,
dp(ψ(ξ), ψ(ζ )) ≤ d(2d2(2d + 1)K‖β‖1 + Kd ∨ 1) · δ. (6.5)

Letting δ ↓ dp(ξ , ζ ), we obtain Lipschitz continuity of ψ w.r.t. dp. ��
Proof of Theorem 2.1 The Lipschitz continuity of the regulator map has been proven in
Proposition 2.1. We only need to verify the Lipschitz continuity of the buffer content
component map φ. Let δ be such that dp(ξ , ζ ) < δ. Then, there exists λi ∈ 
[0, T ]
such that ‖ξi ◦ λi − ζi‖ ∨ ‖λi − e‖ ≤ δ for each i = 1, . . . , d. Note that φi (ξ) =
ξi + ψi (ξ) − ∑

j∈{1,...,d}\{i} q jiψ j (ξ). Hence,

dJ1(φi (ξ), φi (ζ ))

= dJ1
(
ξi+ψi (ξ)−∑

j∈{1,...,d}\{i} q jiψ j (ξ), ζi + ψi (ζ ) − ∑
j∈{1,...,d}\{i} q jiψ j (ξ)

)

≤ ∥
∥ξi ◦ λi + ψi (ξ) ◦ λi − ∑

j∈{1,...,d}\{i} q jiψ j (ξ) ◦ λi

− ζi − ψi (ζ ) +
∑

j∈{1,...,d}\{i}
q jiψ j (ξ)

∥
∥ ∨ ∥

∥λi − e
∥
∥

≤ ∥
∥ξi ◦ λi − ζi

∥
∥ ∨ δ + ∥

∥ψi (ξ) ◦ λi − ψi (ζ )
∥
∥ ∨ δ

+
∑

j∈{1,...,d}\{i}
‖ψ j (ξ) ◦ λi − ψ j (ξ)

∥
∥ ∨ δ

Note that
∥
∥ξi ◦ λi − ζi

∥
∥ ≤ δ and ‖ψ j (ξ) ◦ λi − ψ j (ξ)

∥
∥ can be bounded by 2d2(2d +

1)K‖β‖1 · δ the say way as in the proof of Proposition 2.1. Since dp(φ(ξ), φ(ζ )) ≤
∑d

i=1 dJ1(φi (ξ), φi (ζ )), we have that φ is Lipschitz continuous in
∏d

i=1D
βi [0, T ] by

letting δ ↓ dp(ξ , ζ ). ��
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Appendix A Continuity of some useful functions

In this appendix, we include the proofs of continuity of some functions in the prod-
uct J1 topology. Recall the function ϒβ : ∏d

i=1D[0, T ] → ∏d
i=1D[0, T ] where

ϒβ(ξ)(t) = ξ(t) + β · t for t ∈ [0, T ].
Proof of Lemma 2.2 For i), suppose that ξ and ζ are given. For each i ∈ {1, . . . , d}, let
λi be a homeomorphism such that ‖ξi − ζi ◦ λi‖ ∨ ‖λi − e‖ < 2 · dJ1(ξi , ζi ). Then,

dJ1
(
ϒ

β
i (ξ), ϒ

β
i (ζ )

)
≤ ‖ϒβ

i (ξ) − ϒ
β
i (ζ ) ◦ λi‖ ∨ ‖λi − e‖ (A.1)

= ‖ξi − ζi ◦ λi − βi (λi − e)‖ ∨ ‖λi − e‖
≤ ‖ξi − ζi ◦ λi‖ ∨ ‖λi − e‖ + ‖βi (λi − e)‖ ∨ ‖λi − e‖
≤ 2(1 + 1 ∨ |βi |) · dJ1(ξi , ζi ). (A.2)
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Consequently,

dp(ϒ
β(ζ ), ϒβ(ξ)) =

d∑

i=1

dJ1(ϒ
β
i (ζ ), ϒ

β
i (ξ)) ≤

d∑

i=1

2(1 + 1 ∨ |βi |) · dJ1(ξi , ζi )

≤ 2(1 + 1 ∨ ‖β‖1) · dp(ξ , ζ ).

For ii), note that (ϒβ)−1(ζ ) = ζ −β · e = ϒ−β(ζ ), and hence, ϒβ is injective and
surjective. From this, the continuity of (ϒβ)−1 is also an immediate result of i). ��

Finally, we prove that the projection map is Lipschitz continuous in the product J1
topology.

Proof of Lemma 2.3. Let ξ , ζ ∈ ∏d
i=1D[0, T ] be given. Note first that

|ξi (T ) − ζi (T )| = |ξi (T ) − ζi (λ(T ))| ≤ ‖ξi − ζi ◦ λ‖

for any λ ∈ 
[0, T ] since λ(T ) = T . Taking infimum over all λ ∈ 
[0, T ], we see
that |ξi (T ) − ζi (T )| ≤ dJ1(ξi , ζi ). Therefore,

|bᵀξ(T ) − bᵀζ (T )|

≤
d∑

i=1

|bi | · |ξi (T ) − ζi (T )| ≤
d∑

i=1

|bi | · dJ1(ξi , ζi ) ≤ ‖b‖1 · dp(ξ , ζ ).

��

Appendix B Some useful tools on large deviations

In this appendix, we include results that facilitate the use of the extended LDP. Given
that the probability measures of (Xn) satisfy the extended LDP in a metric space
(X , d), our results include the derivation of the extended LDP in closed subspaces
of X , and a variation of the contraction principle for Lipschitz continuous maps. Let
DI � {x ∈ X : I (x) < ∞} denote the effective domain of I .

Lemma B.1 Let E be a closed subset of X , and let Xn be such that P(Xn ∈ E) = 1
for all n ≥ 1. Suppose that E is equipped with the topology induced by X . Then, if
the probability measures of (Xn) satisfy the extended LDP in (X , d) with speed an,
and with rate function I so that DI ⊆ E, then the same extended LDP holds in E.

Proof Suppose that an extendedLDPholds inX . For the upper bound, let F be a closed
subset of E so that F = F ′ ∩ E for some F ′ that is a closed subset of X . Then, F
is a closed subset of X . Hence, lim supn→∞ 1

an
logP (Xn ∈ F) ≤ − inf x∈Fε I (x) =

− inf x∈Fε∩E I (x). Next, for the lower bound, let G be an open subset of E . That is,
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G = G ′ ∩ E , where G ′ is an open subset of X . Then,

lim inf
n→∞

1

an
logP (Xn ∈ G)

= lim inf
n→∞

1

an
logP

(
Xn ∈ G ′) ≥ − inf

x∈G ′ I (x) = − inf
x∈G I (x).

The level sets �I (α) ⊆ X are closed, so I restricted to E remains lower semi-
continuous. ��

We continue with a useful lemma on pre-images of Lipschitz continuous maps on
metric spaces.

Lemma B.2 Let (S, σ ) and (X, d) bemetric spaces. Suppose that� : (X, d) → (S, σ )

is a Lipschitz continuous mapping with Lipschitz constant ‖�‖Lip. Then, for any set
F ⊂ S, it holds that

(
�−1(F)

)ε ⊆ �−1
(
F ε·‖�‖Lip

)
.

Proof Let ζ ∈ (
�−1(F)

)ε
. For each n, there exists ξn such that ξn ∈ �−1(F) and

d(ζ, ξn) ≤ ε + 1/n. Note that σ(�(ζ ), F) ≤ σ(�(ζ ),�(ξn)) ≤ ‖�‖Lip · d(ζ, ξn) ≤
‖�‖Lip · (ε + 1/n). Taking n → ∞, we have that σ(�(ζ ), F) ≤ ε · ‖�‖Lip. That
is, �(ζ) ∈ F‖�‖Lipε , or ζ ∈ �−1

(
F‖�‖Lipε). Since ζ was chosen arbitrarily from

(
�−1(F)

)ε , we arrive at the desired inclusion. ��
The following lemma is a version of the contraction principle adapted to the setting

of extended LDP’s.

Lemma B.3 Let (X, d) and (S, σ ) be metric spaces. Suppose that the sequence of
probability measures of (Xn) satisfies the lower and upper bounds of extended LDP
in (X, d) with speed an and a function I (that is not necessarily a rate function).
Moreover, let� : (X, d) → (S, σ ) be a Lipschitz continuousmapping and set I ′(y) �
inf�(x)=y I (x). Then,

(i) �(Xn) satisfies the following lower and upper bounds: for any open set G ⊆ S,

lim inf
n→∞

1

an
logP (�(Xn) ∈ G) ≥ − inf

x∈G I ′(x),

and for any closed set F ⊆ S,

lim sup
n→∞

1

an
logP (�(Xn) ∈ F) ≤ − lim

ε→0
inf
x∈Fε

I ′(x).

(ii) Suppose, in addition, that I is a rate function and � is a homeomorphism. Then,
I ′ is a rate function, and �(Xn) satisfies the extended LDP in (S, σ ) with speed
an and rate function I ′.
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(iii) If I ′ is a good rate function—i.e., �I ′(M) � {y ∈ S : I ′(y) ≤ M} is compact
for each M ∈ [0,∞)—then �(Xn) satisfies the LDP in (S, σ ) with speed an and
good rate function I ′.

Proof (i) For the upper bound, let F be a closed subset of (S, σ ). Thanks toLemmaB.2,
for any ε > 0, we have that

(
�−1(F)

)ε ⊆ �−1
(
F ε·‖�‖Lip). Hence,

− inf
x∈(�−1(F))

ε
I (x) ≤ − inf

x∈�−1
(
F ε·‖�‖Lip

) I (x). (B.1)

Furthermore, by the upper bound of the extended LDP of Xn , for any δ > 0 there
exists an n(δ) such that for any n ≥ n(δ),

P(�(Xn) ∈ F) = P(Xn ∈ �−1(F))

≤ exp

(

an

(

− inf
x∈(�−1(F))

ε
I (x) + δ

))

≤ exp

⎛

⎝an

⎛

⎝− inf
x∈�−1

(
F ε·‖�‖Lip

) I (x) + δ

⎞

⎠

⎞

⎠ , (B.2)

for any n ≥ n(δ) and ε > 0. Therefore,

lim sup
n→∞

1

an
logP (�(Xn) ∈ F) ≤ − inf

x∈�−1
(
F ε·‖�‖Lip

) I (x)+δ = − inf
y∈F ε·‖�‖Lip

I ′(y)+δ.

Letting δ → 0 and then ε → 0, we arrive at the desired large deviation upper bound.
For the lower bound, consider an open set G. Since �−1(G) is open,

lim inf
n→∞

1

an
logP (�(Xn) ∈ G)

= lim inf
n→∞

1

an
logP

(
Xn ∈ �−1(G)

)
≥ − inf

y∈�−1(G)
I (y) = − inf

x∈G I ′(x).

(ii) Since the upper and lower bounds for the extended large deviation principle have
been proved in i), we only have to prove that I ′ is lower semi-continuous. To see this,
note first that I ′(y) = I (�−1(y)), and hence, for any M > 0,

{y ∈ S : I ′(y) ≤ M} = {y ∈ S : I (�−1(y)) ≤ M}
= {�(x) : I (x) ≤ M} = �(�I (M)).

Since� is a homeomorphism, the r.h.s. is closed. Hence,�(Xn) satisfies the extended
LDP.
(iii) From the standard argument—see, for example, the proof of Theorem 4.2.1 of
Dembo and Zeitouni [9]—I ′ is a good rate function. From Lemma 4.1.6 of Dembo
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and Zeitouni [9], we obtain limε→0 inf y∈Fε‖�‖Lip I
′(y) = inf y∈F I ′(y).Consequently,

lim sup
n→∞

logP (Sn ∈ F)

an
≤ − lim

ε→0
inf

y∈Fε‖�‖Lip
I ′(y) = − inf

y∈F I ′(y).

��
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